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Abstract

We analyze the geometric structure and mechanical stability of a complete set of isostatic and

hyperstatatic sphere packings obtained via exact enumeration. The number of nonisomorphic

isostatic packings grows exponentially with the number of spheresN , and their diversity of structure

and symmetry increases with increasing N and decreases with increasing hyperstaticity H ≡ Nc −

NISO, where Nc is the number of pair contacts and NISO = 3N−6. Maximally contacting packings

are in general neither the densest nor the most symmetric. Analyses of local structure show that

the fraction f of nuclei with order compatible with the bulk (RHCP) crystal decreases sharply with

increasing N due to a high propensity for stacking faults, 5- and near-5-fold symmetric structures,

and other motifs that preclude RHCP order. While f increases with increasing H, a significant

fraction of hyperstatic nuclei for N as small as 11 retain non-RHCP structure. Classical theories

of nucleation that consider only spherical nuclei, or only nuclei with the same ordering as the bulk

crystal, cannot capture such effects. Our results provide an explanation for the failure of classical

nucleation theory for hard-sphere systems of N <∼ 10 particles; we argue that in this size regime,

it is essential to consider nuclei of unconstrained geometry. Our results are also applicable to

understanding kinetic arrest and jamming in systems that interact via hard-core-like repulsive and

short-ranged attractive interactions.

PACS numbers: 82.70.Dd,02.10.Ox,82.60.Nh,61.66.-f
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I. INTRODUCTION

Crystallization of monodisperse hard spheres is a complex problem for several reasons. In

the absence of attractive interactions, crystallization is associated with minimization of free

volume. For bulk systems, the ground states, the FCC and HCP lattices, as well as other

stacking variants of hexagonal planes, possess volume fraction φxtal = π/
√
18 ≃ .7405 [1]. In

addition, there are an exponential number of rigid packings with volume fractions that range

from random close packing [2] to φxtal. The large number of metastable structures and large

barriers separating the amorphous and crystalline states leads to formation of amorphous

structures [3–7] if the quench rate is not sufficiently slow. This makes understanding crystal

nucleation in these systems particularly important since jamming or glass-formation may

be avoided only through nucleation and growth of crystallites. Since the bulk crystal state

maximizes φ, classical nucleation theory suggests that the densest packings of N spheres

within a (minimal) spherical volume V are optimal nuclei. However, this approach should

work if and only if these packings possess the same structural order as the bulk crystalline

phase. A recent study by Hopkins et al. [8] showed that this condition fails; the densest

packings did not in general have FCC, HCP, or Barlow [9, 10] order. Instead, their surface

order was dominated by the spherical boundary conditions, and so they may not correspond

to the stable nuclei that form in unconfined geometries, i.e. within an arbitrary volume in

a larger system.

It is important to note that small nuclei may be distinctly aspherical, with a wide variety

of shapes, symmetries, and formation probabilites. Specifically, N -sphere nuclei with Nc

contacts can form M(N,Nc) packings of distinguishable shape, symmetry, and entropy

[11]. However, the full range of shapes, symmetries and statistical-gometrical properties of

such packings has not been quantitatively characterized, even for small N . There have been

numerous studies of the phase diagrams and crystal nucleation and growth in systems of hard

spheres and sticky hard spheres [12–17]. However, studies of hard sphere crystal nucleation

in particular have shown that quantities inferred from experimental results and classical

nucleation theory can differ from simulation results [18] by orders of magnitude. Thus,

there is a need to characterize the structural properties of nuclei posessing arbitrary geometry

and interactions with the surrounding fluid [17, 19] to gain a more quantitatively accurate

description of crystal nucleation and growth. In this paper, we analyze the statistical-
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geometrical properties of small sticky-hard-sphere nuclei to lay a foundation for a more

quantitative understanding of crystal nucleation in systems such as colloids with hard-core-

like repulsions and short-range attractions [11, 20].

Determining these properties is largely an exercise in the geometry of finite sphere pack-

ings [21–25]. The two key mathematical problems are “What is the maximum number

of contacts Nmax
c (N) that can be formed by N monodisperse spheres?” and “How many

different ways M(N,Nc) can N spheres form Nc contacts?” Solving these problems simul-

taneously yields complete sets of isocontacting packings of hard spheres and of isoenergetic

states of sticky hard spheres. These in turn have applications to physical problems ranging

from crystallization and jamming [3–7, 12–15, 18] to cluster physics [11, 22, 26] to liquid

structure [16, 27–29] to protein folding [30, 31], as well as engineering applications such as

circuit design [32] and error-correcting codes [33].

Despite this wide applicability, progress in obtaining solutions has been slow. Deter-

mining Nmax
c (N) corresponds to the generalized Erdős unit distance problem [34] in three

dimensions, which remains unsolved, while determining M(N,Nc) has been proven to be

algorithmically “NP-complete” [35]. The latter condition impedes calculation of M(N,Nc)

via Monte Carlo or related methods [36]. Consequentially, M(N,Nmax
c (N)) has been deter-

mined for N as large as 10 only recently [22, 25, 37]. Here we present an efficient method

for finding Nmax
c (N), M(N,Nc) and the permutational entropies of distinguishable sphere

packings. M is an integer for isostatic (Nc = 3N−6 ≡ NISO) and hyperstatic (Nc > 3N−6)

clusters of sticky spheres [21, 22] wherein each sphere possesses at least 3 contacts. We fo-

cus on packings satisfying these necessary [38] conditions for mechanical stability since they

correspond to solidlike clusters that likely play an important role in nucleation and growth

of crystals.

We find all isostatic and hyperstatic sticky hard sphere packings for N ≤ 11 via ex-

act enumeration, and present novel analyses of several statistical-geometrical properties of

this complete set of packings that are relevant for understanding crystallization and jam-

ming. Several dramatic features are associated with the increasing maximum hyperstaticity

Hmax(N) = Nmax
c (N)−NISO for N > 9. Key amongst these are that maximally contacting

packings are in general quite different from the densest packings. Minimal energy (maximally

contacting) packings are not necessarily either the most compact or symmetric. Instead, the

most symmetric and compact packings are often mechanically stable “excited states” with
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Nc < Nmax
c (N). While many of these stable packings correspond to “on-pathway” nu-

clei possessing structural order consistent with the bulk (Barlow-ordered) crystalline phase,

many do not. The latter correspond to ‘off-pathway” nuclei possessing structural motifs in-

compatible with Barlow order, such as 5-fold-symmetries, stacking faults, and twin defects,

all of which are known to impede crystallization [12–15, 20]. The fraction of isostatic nuclei

possessing non-Barlow order grows rapidly with increasing N to nearly 95% for N = 11.

Crystalline order increases with increasing hyperstaticity, yet a significant fraction (∼ 50%)

of hyperstatic nuclei for N as small as 11 retain non-Barlow structure.

The outline of the remainder of the manuscript is as follows. In Section II we describe our

exact enumeration procedure, focusing particularly on advances beyond those employed in

previous studies [22, 25, 37]. Section III presents analyses of the structure and symmetry of

the sphere packings, including size, shape, and the statistical prominence of key structural

motifs. Section IV relates our work to other studies of crystal nucleation that include

interactions of nuclei with the bulk fluid and a range of nucleation pathways. In Section V,

we place our results in context with other recent work, and conclude. Finally, Appendix A

describes mechanical stability analyses of the nuclei, Appendix B shows convergence of the

exact enumeration procedure, and Appendix C explains implicit contact graphs for sphere

packings.

II. METHODS

A key feature of (sticky) hard sphere packings is that their (isoenergetic) isocontacting

states are in general highly degenerate. Many distinguishable arrangements (“macrostates”)

of N particles with Nc contacts are possible. Here we employ a particular definition of

the term macrostate. An N -particle, Nc-contact macrostate is defined by a unique set

of N(N − 1)/2 squared interparticle distances {r2ij} [38, 42]. Different macrostates have

different {r2ij} and “shapes”. In general, systems of N spheres with Nc contacts possess

M(N,Nc) distinguishable macrostates. For example, M(6, 12) = 2 since exactly two six-

particle macrostates exist for systems with Nc = Nmax
c (6) = 12 (Fig. 1) [21].

There are many ways to organize indistinguishable spheres into any given macrostate;

these correspond to permutations of particle indices {i, j} that preserve {r2ij}. We refer to

the number of allowed permutations as the number of microstates ωk corresponding to a
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(a) (b)

FIG. 1: (Color online) Macrostates: M(6, 12) = 2. The octahedral structure (a) has high symmetry

and low permutational entropy (ωa = 15), while the capped trigonal bipyramid structure (b)

has low symmetry and high permutational entropy (ωb = 180) [11]. The position of the green

(rightmost) sphere in (b) implies a stacking fault. Note that in this and many subsequent figures,

sphere sizes are reduced for visual clarity, and the connecting bars indicate pair contacts.

particular macrostate k. Differing structure and symmetry of macrostates imply they have

different ωk (i.e. permutational entropies). For example, the highly symmetric octahedral

structure shown in Fig. 1(a) has ωa = 15, while the less symmetric structure shown in

panel (b) has ω2 = 180. Note that (a) is a subset of the FCC and HCP lattices, while

the capped trigonal bipyramid (b) is a stack-faulted structure; for example, if the green

sphere is removed, the remaining 5 spheres have HCP order. Such effects have important

implications for nucleation, as macrostates with higher ω will form with greater probability

[11, 43]. These will be discussed in detail below.

The potential for sticky hard spheres with diameter D and contact attractions is [40]:

Uss(r) =

{

∞ , r < D

−ǫ , r = D

0 , r > D.

(1)

Since Uss(r) possesses no scale, and we consider monodisperse systems, the value of D

is arbitrarily set to unity below. Hard-sphere constraints imply that the center-to-center

distances rij between unit spheres i and j with positions ~ri and ~rj obey rij ≥ 1, where the

equality holds for contacting pairs.

In this manuscript, we enumerate the global and low-lying local potential energy min-

ima [38] of Eq. 1. It is worth noting that at finite temperature T and zero pressure, systems

interacting via the sticky hard-sphere potential (Eq. 1) will have no persistent contacts since

the range of attractive interactions is exactly zero. For this reason Baxter [41] introduced
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the adhesive hard sphere (AHS) interaction potential

UAHS(r) =
{

∞ , r < D

log
(

12τ
r − rc
D

)

, D < r < rc

0 , r > rc

(2)

where τ is a temperature-like parameter and rc is the interaction range. The packings

reported in this work have configurations ({~r}) that are identical to the corresponding AHS

packings in the τ → 0 and rc → 0 limits. While AHS systems have also been shown

to possess thermodynamic anomalies in the rc → 0 limit [27], several theoretical studies

[7, 17, 40] have shown that these vanish when rc is as small as ∼ .01D, e.g by identifying

Eq. 2 as the short-range limit of the attractive square-well potential. Applicability of our

studies to systems interacting via short (but finite) range potentials is discussed in Section

IIIC.

Employing an infinitely narrow potential well also allows all isostatic and hyperstatic

N -sphere configurations to be conveniently characterized by N × N adjacency matrices Ā

with Aij = 1 for contacting particles and Aij = 0 otherwise. In general, the configuration

{~r} = {~r1, ~r2, ...~rN} can be solved (cf. Section IID) from Ā [38] provided two minimal

conditions for mechanical stability are met [44]: (i) each particle possesses at least 3 contacts

and (ii) Nc ≥ NISO. Throughout this paper, we refer to these as conditions (i) and (ii).

Using an efficient exact enumeration algorithm schematically depicted in Fig. 2, we identify

all Ā and {~r} that correspond to nonoverlapping configurations with Nc ≥ NISO contacts.

These configurations all have equal potential energy U = −ǫ∑j>iAij = −Ncǫ for sticky

spheres, and their {~r} are identical to corresponding Nc-contact hard sphere packings (to

see this, consider approaching the limit ǫ→ 0 from ǫ < 0). Overlapping configurations with

one or more rij < 1 have infinite U . We refer to configurations with no interparticle overlaps

as “valid packings” and overlapping configurations as “invalid packings.”

Generate adjacency matrix 
from binary number

Apply Geometric 

Rejection Rules

Analyze structure 

      and stability

Solve

for {r}

FIG. 2: Schematic of our exact enumeration algorithm including structural and stability analyses.

The rest of this section describes our exact enumeration method in detail, following

the scheme depicted in Fig. 2. For each N and Nc, we perform complete enumeration by
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efficiently iterating over all adjacency matrices (Section IIA). Valid packings are found by

applying geometrical and graph-theoretic rejection rules (Sections IIB and IIC) and then

solving (Section IID) for the structure {~r} of nonisomorphic packings passing these rejection

rules. The structure and stability of valid packings are then analyzed as described in Sections

II E and II F.

A. Exact Enumeration Method

Since all elements of adjacency matrices are 0 or 1, they correspond to binary numbers B.
The matrices are symmetric, and diagonal elements are zero by convention, so any Ā may

be uniquely associated with one of 2N(N−1)/2 distinct B. All sticky sphere packings may be

found by iterating sequentially [45] over the B and mapping each to an adjacency matrix .

The number of adjacency matrices that must be iterated over to find all macrostates and

microstates for fixed N and Nc but with no constraints on the arrangement of the elements

(i.e. arbitrary topology) is

Narb =
[(N2 −N)/2]!

Nc![(N2 −N)/2 −Nc]!
. (3)

Narb grows faster than exp(N) and rapidly becomes prohibitively large; for example, Narb =

3.824 · 1015 for N = 11 and Nc = 27.

However, all macrostates can be found with greatly reduced computational effort through

appropriate selection of “topological” constraints on the elements of Ā. Biedl et al. [46]

proved that all connected sphere packings admit linear polymeric paths, i.e. for any valid

packing, one can always permute particle indices so that the packing is fully traversed by

a “polymeric” Ā with Ai,i+1 = 1 for all i. As in Ref. [37], we impose polymer topology

by fixing Ai,i+1 = 1. Thus N − 1 elements of Ā are fixed to unity, and the remaining

N(N − 1)/2 − (N − 1) elements are left unconstrained. This arrangement reduces the

number of binary numbers and adjacency matrices over which one must iterate to

Npol =
[(N2 − 3N + 2)/2]! ([Nc − (N − 1)]!)−1

[(N2 − 3N + 2)/2− ((Nc − (N − 1))]!
. (4)

For each N and Nc, we iterate sequentially over the Npol binary numbers and adjacency ma-

trices as illustrated in Fig. 4. Npol/Narb decreases faster than exponentially with increasing

N , with a corresponding reduction of computational effort. For the purposes of calculat-
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ing M(N,Nc), this provides a speedup of about 3 orders of magnitude for the largest N

considered here (Fig. 3.)
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FIG. 3: (Color online) Computational effort reduction obtained by using polymeric topology in

enumeration. The graph shows faster than exponential decay of Npol/Narb with increasing N for

Nc = 3N − 6.

Here we are considering colloidal clusters with no fixed topology. Enumerating over ad-

jacency matrices with polymer topology naturally produces {ωk} corresponding to packings

with polymer topology, i.e. different absolute macrostate populations ωk and ratios ωk/ωj

(j, k ∈ {1,M}) due to entropic factors such as blocking [37]. However, the ωk for colloidal

clusters may be calculated via symmetry operations:

ωk = CkN !/Ak (5)

where Ak is the number of automorphisms of the adjacency matrix corresponding to

macrostate k [47]. Ck = 2 for macrostates possessing chiral enantiomers and 1 for those

which do not [22, 42]. The total number of microstates for nuclei with N particles and Nc

contacts is then

Ω(N,Nc) =
M(N,Nc)

∑

k=1

ωk. (6)

Note that while Eq. 5 treats particles {1, N} as distinguishable [48], we have verified that

Eqs. 5-6 produce the same ωk and Ω produced by an alternative method [11, 25] that treats

particles as indistinguishable and calculates ωk using the number of symmetries c possessed

by the coordinate solutions {~rk}.
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FIG. 4: Schematic of Part 1 of our enumeration protocol: Geometric rejection rules. The sequential

enumeration over binary numbers and application of rejection rules correspond to the left two boxes

in Fig. 2 and are implemented as described in Sections IIA-II C.

B. Geometric Rejection Rules

Valid sticky sphere packings correspond to N -vertex, Nc-contact unit distance graphs

that are embeddable [35] in three dimensions. A key advance in determining embeddability

of small packings was recently made by Arkus, Brenner and Manoharan [22, 25]. They

used concepts from sphere geometry to develop geometric rejection rules identifying invalid

packings with patterns within adjacency matrices. Geometric rejection rules facilitate con-

nections to graph theory and enable formulation of rules in terms of Boolean satisfiability

conditions. These conditions can be conveniently organized into a series of “M”-rules that

reject an invalid Ā based on patterns within M ×M subgraphs of Ā, or restrict the way

additional spheres can be added to form valid (M +1)-particle packings. We apply these in

order of increasing M to reject invalid packings.

As illustrated in Fig. 4, we apply the rejection rules to all

F (M) =
N !

M !(N −M)!
, (7)
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M ×M subgraphs of each Ā. Any subgraph violating any rule indicates an invalid packing.

For example, at each rule-level M , we test for over-connected “O”-clusters as follows. O-

clusters are defined by the M-subgraph and the O −M particles that contact at least one

particle in the M-subgraph. We independently verfied that Nmax
c (O) is the same as found

in Refs. [21, 22] for O ≤ 11. If the total number of contacts in the O-cluster is greater than

Nmax
c (O) (i.e. 3O − 6 for O ≤ 9, 3O − 5 for O = 10, and 3O − 4 for O = 11), we reject the

adjacency matrix. These overconnected-subcluster rules eliminate many invalid packings

and improve the efficiency of the code.

Refs. [22, 25] reported a complete set of rejection rules for packings ofN ≤ 7 spheres. This

is equivalently a complete set of rejection rules for M ≤ 7 subclusters (with Mc = 3M − 6

contacts) within larger packings. We have extended this set to reject all invalid isostatic

and hyperstatic packings of N ≤ 9 particles, and many invalid packings of N > 9 particles.

Note that in contrast to Ref. [25], we do not use the triangular bipyramid rule [50], nor

explicitly search for conflicts in the distance matrix D̄ (Dij = rij) arising from different

M < N subgraphs. Instead we employ geometric and graph-theoretic rejection rules that

do not require calculation of unknown distances. Space constraints preclude describing our

complete set of rejection rules for M ≤ 9; here we highlight several rules not contained in

Refs. [22, 25].

Several rejection rules are obtained from known graph-theoretic results for the embed-

dability of sphere packings. Kuratowski graphs [51] Km,n have m+n vertices and mn edges,

with each of the vertices having degree n. The graphs K3,3, K3,4, and K5,4 are not embed-

dable as 3D sphere packings [52, 53]; these results imply rejection rules for (M = 6, Mc = 9),

(M = 7, Mc = 14), and (M = 9, Mc = 18) subgraphs, respectively.

We make use of the fact that no structures with BCC symmetry are among the isostatic

or hyperstatic packings for sticky hard spheres [54] since placing a ninth sphere inside a cube

implies overlap. Figure 5(a) shows a cubic structure with M = 8 and Mc = 12. Placing a

ninth sphere in the interior of the cube to form a putative N = 9, Nc = 20 BCC packing

implies an overlap of at least (
√
3 − 1)/4, i.e. an rij ≤ 1 − (

√
3 − 1)/4). As illustrated in

Fig. 5, many M = 8 rejection rules are obtained by observing that a ninth sphere must lie

in the interior of a cube or sheared cube if it contacts more than 4 of the 8 particles; any

such placement implies particle overlap. These rules eliminate many invalid N = 9, Nc = 21

packings not eliminated by M < 8 rules, and become increasingly effective at eliminating

10



(a) (b) (c) (d) (e)

FIG. 5: (Color online) Schematic for M = 8 cube and sheared cube-based geometric rejection

rules. No 9th particle may contact more than four particles of any subgraph isomorphic to the

cube (panel (a)), sheared cubes with contacts across one (panel (b)), two (panel (c)), or three

(panel (d)) faces. Similar exclusions apply to other subgraphs similar to panels (c-d) but with

different topology, e.g. two cross-face contacts on opposite as opposed to adjacent faces. Panel (e):

no 9th particle may contact more than four particles of the square antiprism with Mc = 16 or the

sheared square antiprism with Mc = 17 (the 17th contact is indicated by the green line).

invalid packings for N > 9.

Other M = 8 rejection rules relate to “irregular” seeds lacking any underlying cube or

sheared-cube topology. Figure 6(a) shows an M = 8, Mc = 17 packing that cannot be

“4-kissed” to form a 9/21 packing. A ninth monomer cannot contact the four (blue and

green) monomers because doing so would imply overlap between the green monomers (i.e.

an interparticle distance dgg ≃ 0.615), indicated by the dashed red line. Figure 6(b) shows

an M = 8, Mc = 13 packing with the topology of a partial icosohedron. A ninth monomer

cannot contact all eight to form a N = 9, Nc = 21 packing without implying overlap. The

rules shown in Figs. 5-6, together with a few additional similar rules forM < 8, are sufficient

to reject all invalid N = 9, Nc = 21 packings.

C. Systematic development of additional rejection rules

The number Q of rejection rules required to reject all invalid N -sphere packings is ex-

pected to grow exponentially with N [50, 55]. Development of geometric rejection rules “by

hand”, as described in the above subsection, therefore becomes increasingly difficult as N

increases. Here we report a systematic method for developing additional rejection rules. We

employ a “deep-seed” elimination procedure:

1) Find all nonisomorphic “M-seed” graphs of M vertices and Mc < 3M − 6 edges
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(a) (b)

FIG. 6: (Color online) “Irregular” M = 8 rules. Panel (a): Contact of a ninth monomer with the

red and blue (darkest shaded) monomers implies overlap of the green (lightest shaded) monomers

(red dashed line, dgg < 1) and/or a planar angle Ψ < 2π/3 (see Fig. 7). Panel (b): Contact of a

ninth monomer with each of the eight shown implies at least one overlap.

FIG. 7: (Color online) A useful rejection rule for M -particle packings containing open 4-rings on

their surfaces is that an (M+1)st particle can contact each of the 4 particles in the ring only if the

planar angle ψ (indicated by the arrows) satisfies 2π/3 ≤ ψ ≤ π.

satisfying minimal rigidity condition (ii) and passing all L ≤M rejection rules.

2) Determine which of these can form known-valid packings of P =M+1 particles and Pc

contacts by examining all possible arrangements wherein the P th sphere contacts (Pc −Mc)

spheres of the M-seed.

3) A seed graph that can never have such an (Pc−Mc) kisser often yields a novel rejection

rule.

For example, we find 540 nonisomorphic M = 9, Mc = 20 seed graphs that satisfy

condition (ii) and pass all M ≤ 8 rejection rules. A tenth sphere can contact four (of

the nine) particles to form a P = 10, Pc = 24 packing for only 197 of these seeds. The

remaining 343 seeds cannot be a subgraph of any valid 10/24 packing. Therefore all Ā

containing subgraphs Ā′ isomorphic to any of these 343 and a 10th particle contacting four

of the particles in Ā′ correspond to invalid packings and are rejected at theM = 9 level. This
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“no-4-kisser” rule is particularly effective, eliminating 132 nonisomorphic invalid N = 10,

Nc = 24 packings that passed all previously implemented rules. Most of these eliminated

packings are invalid because the putative 10th sphere contacts an open 4-ring on the surface

of a 9-sphere seed. The additional four contacts can be formed without producing overlap

only if the planar angle ψ satisfies 2π/3 ≤ ψ ≤ π (Fig. 7). While all M = 9, Mc = 20

packings fail to satisfy condition (i), many are insufficiently floppy for ψ to fall within this

range, i.e. addition of a 10th sphere implies ψ < 2π/3 or ψ > π.

D. Efficient Euclidean structure solver

No. of trials > nT?

Generate random 

star ng points

Calculate F(x)

|F(x)| < TOL?

Calculate the 

Jacobian of 

F(x): Update 

variables via 

Netwon’s 

method

No. of Newton

itera ons > nI? 

Solu on 

found?

Valid packing; go 

to next adj. mat.

YES

YES

YES

YES

NO

NO

NO

NO

Pass adj. mat. to 
structure solver

   Invalid packing; 

        go to next 

        adj. mat

FIG. 8: Schematic of Part 2 of our enumeration protocol; Euclidean structure solver. This diagram

corresponds to the third box in Fig. 2. All symbols (nT , nI , F (x), TOL) are described in the

text.
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We solve for the Euclidean structure {~r} of nonisomorphic packings which are not elim-

inated by any of the geometric rejection rules. The adjacency matrix yields a set of Nc

equations and N(N − 1)/2−Nc inequalities for i ∈ [1, N ], j ∈ [i+ 1, N ]:

|~ri − ~rj |2 = 1 ; Aij = 1

|~ri − ~rj |2 ≥ 1 ; Aij = 0.

(8)

Solutions to Eq. 8 are valid N/Nc packings except in the case where they possess “implicit”

contacts corresponding to the “=” case of the “≥”. Proper accounting of implicit contact

graphs is key to exact enumeration studies, both for determining M and for developing

graph-theoretic rejection rules; see Appendix C for a discussion of these issues.

We solve Eq. 8 efficiently using a multidimensional Newton solver with step size control

[56] schematically depicted in Fig. 8. Initial conditions for the solver {~rinit} are generated

by placing N particles randomly within a cube of length N , centered at the origin. The

solver then attempts to find the roots of

F (~r) =
∑

j>i δ (Aij − 1)
(

|~ri − ~rj |2 − 1
)

+

R
∑

j>i δ (Aij)
(

|~ri − ~rj|2 − 1
)

Θ (1− |~ri − ~rj|) = 0,
(9)

where F ({~r}) is the “error” function, δ is the Kronecker delta function, and Θ is the Heav-

iside step function with Θ(x) = 0 for x ≤ 0 and 1 for x > 0. The first term in Eq. 9

enforces non-overlapping contact between particle pairs with Aij = 1 and the second term is

a repulsive term penalizing overlaps for particles with Aij = 0. For R = 10 the combination

of repulsive force and step size control gives a large (order-of-magnitude) speedup over a

version lacking these features.

The iterative nature of our solver is illustrated in Fig. 8. Solutions are considered con-

verged and a valid packing is found when |F ({~r})| < TOL. If |F ({~r})| > TOL after nI

Newton iterations, the solution is discarded and the process begins with a new {~rinit}. If

a solution is not found after nT attempts, Ā is rejected as an invalid packing. We find

that failure of convergence of the structure solver to converge to |F ({~r})| < TOL within

nT attempts is sufficient to reject invalid packings, provided nT is sufficiently large. This

sampling over different {~rinit} is an important part of our enumeration procedure since the

set of geometric rejection rules remains incomplete for N > 9; further details are given in

Appendix B.
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E. Dynamical matrix analyses

Determining mechanical stability of packings is of great interest since packings with

“floppy” modes have high vibrational entropy. We determine stability using dynamical

matrix analyses [44]. The Hessian matrix

∂2U

∂~ri∂~rj
, (10)

has 3N − 6 positive eigenvalues for mechanically stable packings, but fewer for floppy pack-

ings. Since Eq. 1 is singular at r = 1, we (following Ref. [37]) replace it by

Uharm(r) =
{

−ǫ+ kc
2
(r − 1)2 , r < rc

0 , r > rc

(11)

with U =
∑

j>i Uharm(rij). Note that Eq. 11 reduces exactly to the sticky sphere potential

(Eq. 1) in the limit kc → ∞. We choose kc = 105ǫ and rc/D = 1 +
√

2ǫ/k. For this kc, in

all cases (since implicit-contact graphs are eliminated; see Appendix C), only the Nc pairs

specified by Ā interact via Uharm.

F. Structural Analyses

We analyze the structural order of nuclei using several measures: crystallographic point

group symmetry, compatibility with the bulk crystal, and the presence of various structural

motifs within nuclei.

Point groups provide a convenient means of classifying sticky sphere packings.

Macrostates with higher symmetry have lower permutational entropy [11] and are often

associated with higher crystalline order. We evaluate point group symmetries of packings

using the Euclidean solutions for {~r} and the symmetry evaluator of Lee and Shattuck [57].

Barlow packings [9, 10] are hard-sphere packings composed of layered hexagonal-close-

packed planes; their three-dimensional order may be FCC, HCP, or mixed FCC/HCP,

but they possess no defects (e.g. stack faults.) They are optimal nuclei for hard- and

sticky-hard-sphere crystals since they possess the same ordering as the bulk equilibrium

crystals, and have φ → π/
√
18 in the N → ∞ limit. We identify nuclei with Bar-

low order by verifying that all {r2ij} are equal to values found in Barlow packings, i.e.
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{r2ij} ∈ {0, 1, 2, 8/3, 3, 11/3, 4, 5, 17/3, 6, 19/3, 20/3, 7, 22/3, 8,
25/3, 9, 29/3, 10, 31/3, 32/3, 11, 34/3, ...} for all i and j.

Structural motifs relevant to nucleation, e.g. 5- and near-5-fold symmetric structures

and stacking faults, are identified through the presence of M ×M subgraphs Ā′ uniquely

associated (Section IID) with the corresponding structures within the N × N adjacency

matrices. For motifs associated with a pattern X , we identify the number of macrostates

MX and fraction of microstates fX including these patterns via

MX(N,Nc) =
M(N,Nc)

∑

k=1

G(X), (12)

where Gk(X) is 1 if structure of the kth macrostate matches the pattern and 0 otherwise,

and

fX(N,Nc) = Ω−1
M(N,Nc)

∑

k=1

ωkGk(X), (13)

where {ω} and Ω are given by Eqs. 5-6.

We choose to identify these motifs as described above rather than alternatives such as

determining the number of “crystal-like” particles as is common practice in the literature

[58]. The latter practice is better suited to studies of bulk crystallization, whereas we

consider small nuclei where surface effects dominate. For example, while many studies have

examined formation of nuclei with Barlow (FCC, HCP, and RHCP) ordering, we are not

aware of any previous studies that quantitatively examined the fraction fBarlow of nuclei

possessing such order.

III. RESULTS

We now report results for the number, structure, symmetry, and dominant structural

motifs within all isostatic and hyperstatic sticky sphere packings for N ≤ 11. Results for

M(N,Nc) are shown in Table I. Values for N ≤ 10 are the same as reported in Refs. [25, 37].

M grows exponentially with increasing N . Exponential growth is expected for systems with

short-range interactions and liquidlike order [59], but has not previously been conclusively

demonstrated for sphere packings [60]. The arguments by Stillinger and Weber in Ref. [59]

apply to “large” N; our results suggest that sticky sphere packings are already in the large-N

limit for N ≥ 9.
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To examine the degree of crystalline versus liquidlike order, we report the number of

macrostates with C1 point group ordering and Barlow ordering (MC1
and MBarlow respec-

tively). We also report the fraction of microstates fC1
and fBarlow with C1 and Barlow

order. For isostatic packings, fC1
increases rapidly with N , while fBarlow decreases rapidly

for N ≥ 7. Fractions of nuclei with Barlow order increase sharply with hyperstaticity,

consistent with the onset [4] of crystallization for Nc > NISO.

The arguments of Phillips and Thorpe [61] that glass-formation is optimized when systems

are isostatic have been supported by many studies, including studies of systems interacting

via central forces. Our results support these arguments. Ω decreases sharply with increasing

hyperstaticity (e.g. Ω(N = 11, Nc = 29)/Ω(N = 11, Nc = 27) = 8.56 · 10−5), indicating an

entropic barrier to increasing Nc beyond NISO. A large fraction of isostatic nuclei have liquid-

like symmetry yet are solidlike in character (i.e. mechanically stable [38] -see Appendix A),

and cannot change structure without breaking bonds, indicating (for sticky spheres) an

enegetic barrier to increasing Nc beyond NISO. These results provide a quantitative (if

partial) explanation for earlier reports of glass formation by kinetic arrest in sticky hard

sphere systems [7, 20, 62]. Specifically, both energetic and entropic barriers should impede

nucleation of more ordered crystallites; our quantification of these effects may help explain

why classical nucleation theory breaks down for N <∼ 10 [18]. In the following subsections,

we will examine the shapes, symmetries, and relevant structural motifs of sphere packings

with N ≤ 11 in quantitative detail. We found 99% of these packings to be mechanically

stable; results of our stability analyses are discussed in Appendix A [63].

A. “Bulk” measures of shape and symmetry

The complete set of packings reported here [64] exhibits a great diversity of symmetries

and shapes. Figure 9(a) shows values of R2
g,

R2
g =

1

N

N
∑

i=1

|~ri − 〈~r〉|2 , (14)

for all 9 ≤ N ≤ 11 macrostates. Each data point shows results for one macrostate. Two

notable features are apparent. First, for isostatic states, the widths of the distributions

∆R2
g/

〈

R2
g

〉

increase with increasing N . Second, the most compact packings for N = 10 and

11 are not the maximally contacting packings. For example, 25 of the 259 N = 10, Nc = 24
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TABLE I: Numbers of macrostates M, macrostates with liquid-like (C1) symmetry MC1
,

macrostates with Barlow ordering MBarlow, and fractions of microstates with C1 symmetry and

Barlow ordering (fC1 and fBarlow, respectively) [67]. Results for M for N ≤ 10 are the same

as reported in Ref. [25]. Note that some Barlow-ordered nuclei can have C1 symmetry, i.e.

fBarl + fC1 > 1. ∗: M(11, 27) excludes the “bridge” packings described in Appendix A.

N Nc M MC1
MBarlow fC1

fBarlow

5 9 1 0 1 0 1

6 12 2 0 1 0 .077

7 15 5 0 1 0 .612

8 18 13 2 4 .089 .268

9 21 52 21 11 .717 .154

10 24 259 188 33 .912 .115

10 25 3 0 3 0 1

11 27 1620∗ 1394 103 .954 .056

11 28 20 8 12 .744 .488

11 29 1 0 1 0 1

packings have a smaller R2
g than the most compact of the 3 N = 10, Nc = 25 packings, while

for N = 11, the most compact Nc = 28 packing and the 66 most compact Nc = 27 packings

have R2
g below that of the Nc = 29 minimal energy packing.

Figure 9(b) shows the shape anisotropy As for the same set of macrostates, i. e.

As(N,Nc) =
√

λmax/λmin where λmax are the maximum and minimum eigenvalues of the

moment of inertia tensor R̄2:

R̄2 =
1

N

N
∑

i=1

|~ri · êj − 〈~r〉 · êk|2. (15)

Here êl is the unit vector along the l-axis, where l = x, y, and z. Maximally symmetric

(sphere-like) packings have As ≃ 1. Isostatic packings show a broad range of anisotropy

that increases with increasing N . Anisotropy does not systematically increase with the

degree of hyperstaticity. However, it is clear that the range of anisotropy decreases. Both

the most and least symmetric packings are isostatic.

To check whether the results in Fig. 9 are representative of the full ensemble of packings,
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FIG. 9: (Color online) Distributions of (a) R2
g and (b) shape anisotropy As. Results from left

to right indicate increasing N and Nc. Roman numerals (I)-(IV) indicate the extremal packings

shown in Fig. 12.

we examine the probability distributions P (R2
g) and P (As), where

P (R2
g)(N,Nc) = Ω−1

M(N,Nc)
∑

k=1

ωkR
2
g,k, (16)

and

P (As)(N,Nc) = Ω−1
M(N,Nc)

∑

k=1

ωkAs,k, (17)

where R2
g,k, As,k, and ωk are the squared radius of gyration, anisotropy, and permutational

entropy (Eq. 5) of the kth macrostate.

Figure 10 shows P (R2
g) and P (As) for N = 11, Nc = 27. Slightly narrower distributions

are obtained for smaller N , but are qualitatively similar. Results indicate that the most

compact and the most symmetric nuclei have low entropy and are consistent with earlier

studies for smaller N [11, 22]. P (As) is particularly broad. These distributions indicate that

the “typical” nuclei is neither spherical nor characterized by a single value of Rg.

Although widths of the distributions of shapes, sizes, symmetries, and entropies decrease

for hyperstatic nuclei, they remain broad. The top panel of Fig. 11 shows the 20 macrostates

for N = 11, Nc = 28; R2
g and As are the same as in Fig. 9. The bottom panel shows their

relative permutational entropies ωk/Ω (Eqs. 5-6).
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FIG. 10: (Color online) Probability distributions of (a) R2
g and (b) shape anisotropy As for N = 11,

Nc = 27 packings.

The structural diversity of packings reported above illustrates a key feature that should

be included in theoretical treatments of nucleation in hard- and sticky-hard sphere systems.

Figure 11 shows why one would not expect classical nucleation theory to work for sticky hard

sphere packings in this N -regime and it is neccessary to consider nuclei possessing arbitrary

geometry. There has been great interest in recent years in finding the densest finite sphere

packings [6, 8], i.e. the N -sphere nuclei that minimize volume V . Most studies (e.g. Refs.

[6, 8, 43]) search for nuclei optimizing either density or energy. For hard- and sticky-hard

spheres, however, it is far from clear which quantity one should optimize. We have shown

in detail that the relation between the number of contacts and density is nontrivial, and

that packings optimizing these two features are in general different from each other. While

this competition will break down at large N , i.e. the FCC crystal is simultaneously the

densest packing and a maximally contacting packing for N → ∞ [1], and the N∗ at which

the crossover occurs is unknown, we have shown that N∗ > 11 [65].

Figure 12 further illustrates the competition between energy minimization and density
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FIG. 11: (Color online) Top panel: (a-t) The 20 distinguishable macrostates for N = 11, Nc = 28.

Bottom panel: Entropic fractions ωk/Ω for these macrostates. Relative values of ωk are inversely

proportional the symmetry numbers c of the associated point groups [11], i.e. the C1 macrostates

(a-k) have c = 1 while the most symmetric macrostates have c = 8.
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FIG. 12: (Color online) The (I) ground, (II) most spherically compact, (III) densest,and most

symmetric, and (IV) least compact and symmetric packings for N = 11. Packings (II-IV) are all

isostatic (Nc = 27) and therefore second excited states. Sphere radii in panels (I-II) have been

reduced for clarity.
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maximization, and the importance of asphericity therein, by contrasting “extremal” packings

for N = 11. The unique sticky hard sphere ground state (panel (I)) has Nc = 29 and HCP

order [22] but is neither the densest, most compact, nor most symmetric. Panel (II) shows

the packing that fits within the smallest spherical volume. It would be an ideal nucleus for

hard-sphere crystallization within the framework of classical nucleation theory, but is in fact

a “bad” (off-pathway) nucleus since it is a partial icosohedron lacking Barlow order. Panel

(III) shows the densest packing (in the sense that it fits within the smallest convex shrink-

wrapped volume Vsw), that has FCC order. It is also the most symmetric packing, i.e. the

nucleus that minimizes As. Finally, panel (IV) shows the packing that is simultaneously

the least compact and least spherically symmetric; it is also a “bad” nucleus lacking Barlow

order. Note that the packings shown in panels (II-IV) are all second excited states for sticky

spheres, energetically degenerate, and (except for (IV)) mechanically stable.

B. Nuclei with structural motifs incompatible with bulk crystallization

Stacking faults and five-fold symmetric structures are “defects” incompatible with bulk

crystallization at φ = π/
√
18. Their presence is well-known to impede hard-sphere crystal-

lization [12–14, 20]. In this subsection, we quantify the propensity of nuclei to contain these

and related structural motifs.

The simplest stack-faulted motif is the M = 6, Mc = 12 capped trigonal bipyramid

structure shown in Fig. 1(b). Table II shows the number of macrostates Mctb and fraction

of microstates fctb that include this motif. Note that Mctb and fctb are lower bounds for

the numbers and fractions of stack-faulted structures since other stack-faulted motifs exist.

Nonetheless, the propensity for stack-faulting is surprisingly high given the small size of

the nuclei - above 50% for all N > 8 packings with Nc < Nmax
c . Stack faults appear in

hyperstatic nuclei at N = 11, which is consistent with the fact that these nuclei do not

maximize contacts.

Two five-fold-like structural motifs often found in small nuclei are seven-sphere minimal

energy packings (Mc = 15) and are shown in Fig. 13. Panel (a) shows a five-fold-symmetric

partial icosohedron. Panel (b) shows an nearly 5-fold symmetric structure which differs from

(a) in that the green (lightest shaded) dimers contact and the 5-ring is open rather than

closed with a separation rij = 1.19 [22]. Both of these structures are incompatible with
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close-packed crystal structure.

(a) (b)

FIG. 13: (Color online) Some structural motifs hostile to bulk crystallization: (a) The M = 7,

Mc = 15 partial icosohedral and (b) M = 7, Mc = 15 open-loop near-5-fold symmetric structures.

Table II shows the fraction of macrostates for 7 ≤ N ≤ 11 containing motifs that are

incompatible with long-range crystalline order. For isostatic packings, the 5-fold symmetric

subclusters in Fig. 13 are found in many macrostates and about 60% of microstates for

9 ≤ N ≤ 11. In contract, these 5-fold symmetric subclusters are found in only one of

the 24 nonisomorphic hyperstatic packings (and in <∼ 1% of microstates). The near-5-fold

symmetric structure shown in Fig. 13(b) corresponds to an elementary twin defect. The

high fraction of these (f5b) may explain why five-fold symmetric twinned crystallites are

commonly observed in sticky- and hard-sphere systems [12, 20].

Another metric for nuclei incompatible with bulk crystallization at φ = π/
√
18 is the

minimum 2nd-nearest neighbor distance rmin
2nd . FCC-, HCP-, and Barlow-ordered crystallites

have rmin
2nd =

√
2. Therefore nuclei with N > 6 and rmin

2nd <
√
2 cannot have Barlow order

[66]. Table II shows the numbers of macrostates M<
√
2 and fractions of microstates f<

√
2

with rmin
2nd <

√
2. The fact that f<

√
2 + fBarlow < 1 for all N and Nc does not indicate any

inconsistency since stack-faulted structures tend to be associated with neighbor distances

rij >
√
2,

In the above subsections, we have examined several measures of microstructural order.

fBarlow is a measure of “good” nuclei that are consistent with long-range crystalline order

(LRCO) while 1− fBarlow, f5a + f5b, fctb, and f<
√
2 are four independent measures of “bad”

nuclei that are inconsistent with LRCO [67]. The latter four all show the same trends; they

increase with N for isostatic packings (to very high fractions) and decrease with increasing

hyperstaticity. High energy barriers are expected between “bad” and Barlow-ordered nuclei

since many bonds must be rearranged to change from one ordering to the other. These

results provide an explanation for the propensity of sticky hard sphere systems to jam and
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TABLE II: Structural motifs that are incompatible with bulk crystallization as a function of N

and Nc. Left columns: Propensity of nuclei to contain minimal stacking faults. Note that fctb is

strictly ≥ f5b since the stack-faulted structure shown in Fig. 1(b) is a subset of the near-five-fold

symmetric structure shown in Fig. 13(b). Middle columns: Number of macrostates and percent of

microstates containing partial-iscohedral five-fold symmetric (M5a and f5a) and open-loop (M5b

and f5b) near-5-fold symmetric substructures in Fig. 13. Right columns: Propensity of nuclei to

contain second nearest neighbors with rmin
2nd <

√
2; values of rmin

2nd , numbers of macrostates M<
√
2

and fractions of microstates f<
√
2 with rmin

2nd <
√
2. Values of rmin

2nd for N = 5, 6, 7 and 8 are

the same as in Ref. [22]. Note that there are several “near-miss” N = 11, Nc = 27 macrostates

with rmin
2nd only slightly above 1. Some of these possess soft modes, but we have verified that these

cannot form 28th contacts.

N Nc Mctb fctb M5a f5a M5b f5b rmin
2nd M<

√
2 f<

√
2

7 15 3 .286 1 .102 1 .153
√

2− 2/
√
5 2 .255

8 18 7 .567 1 .153 3 .166 4
√
6/9 5 .331

9 21 30 .700 7 .098 22 .512
√

2− 2/
√
5 33 .691

10 24 165 .643 32 .135 110 .415 1.03296 185 .721

10 25 0 0 0 0 0 0
√
2 0 0

11 27 1126 .723 220 .130 726 .467 1.00489 1332 .835

11 28 8 .511 0 0 1 .0116 4
√
6/9 2 .035

11 29 0 0 0 0 0 0
√
2 0 0

glass-form in both simulations and experiments.

C. Applicability to other potentials and methods

Our results for sticky hard-sphere packings are relevant for analyses of clusters formed

by systems that interact via other potentials U(r) with hard-core like repulsions and short

range attractions. The sticky hard sphere model has been shown to provide a perturbative

“reference state” [68] for such potentials (the sphere diameter D may be replaced by the

minimum of a general interparticle potential). In other words, packings of sticky spheres

become increasingly similar to equilibrium clusters of particles interacting via a potential
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U(r) as the range of interaction rc (i. e. U(r) = 0 for r > rc) approaches D from above, and

are rigorously identical in the limit of hard core repulsions and rc/D → 1.

The minimum 2nd-nearest neighbor distance rmin
2nd (Table II) is a particularly useful metric

for evaluating the sticky hard sphere model’s suitability for determining minimal energy

clusters of other potentials since additional local free energy minima begin to appear when

rc >∼ 1+(r2ndmin−1)/2 [43]. Our complete set of sticky hard sphere packings form an arguably

complete set of initial guesses for identifying all isostatic clusters of up to 9 particles when

the interaction range (rc/D − 1) <∼ .025, and for up to 10 particles when the interaction

range (rc/D− 1) <∼ .015. The hyperstatic packing sets should be suitable initial guesses for

larger rc; for example, rc/D <∼ 1+(
√
2−1)/2 for our minimal energy (25− and 29−contact)

packings for N = 10 and 11, respectively.

For larger rc, “initial guesses” for strain-free [43] minimal energy clusters can be obtained

by selecting a subset of the sticky sphere packings satisfying 1+(r2ndmin−1)/2 <∼ rc [69]. Given

a complete set of initial guesses for the set of nonisomorphic clusters and their permutational

entropies (i.e. {~r} and {ω} for each of the M(N,Nc) nuclei), sophisticated energy-landscape

and transition-state analyses useful in cluster physics may be performed [26, 43]. Potentials

for which such a procedure should be applicable include the “narrow” square well, the short-

range limit of the Asakura-Oosawa and Morse potentials [11, 43], and the hard-core attractive

Yukawa potential in the strong screening limit. Such potentials describe a broad range of

physical systems ranging from colloids interacting via depletion-mediated attractions [11, 20]

to buckyballs [70]. Further, the ground and mechanically stable excited states of systems

interacting via Eq. 1 have been shown to describe the structure of real colloidal crystallites

in dilute solution at kBT ≃ 4ǫ [11, 71, 73]. These results provide justification for the use of

Eq. 1 in our exact enumeration studies.

Additionally, our results should be useful in numerical implementations of modern the-

ories for aspherical nuclei based on cluster expansions (Mayer f-bond diagrams [72]). Such

models are commonly used in liquid-state theory [27, 28, 41], and are in principle exactly

soluble, but have to date suffered from incomplete sets of Mayer diagrams describing dif-

ferently structured aggregrates as well as “dangerous” [27] singular cluster integrals that

impede implementation of such theories. The contact graphs (i.e. valid adjacency matrices)

reported here [64] correspond to a complete set of Mayer f-bond diagrams for ground state

aggregrates of M ≤ 11 particles as well as stable first excited states (for M = 10) and both
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first and second excited states for M = 11, while the implicit contact graphs (Appendix C)

correspond to cluster integrals that are singular.

IV. DISCUSSION

An advantage of exact enumeration is that it identifies all nuclei that can form, as opposed

to only those that do form for a specific preparation protocol. However, it treats N -particle

nuclei in isolation and neglects solvent effects. Sticky hard-sphere nuclei in a solution of

other sticky hard spheres would be “continuously bombarded by and grow by absorbing

smaller clusters” [19]. Such collisions can influence the pathways by which small nuclei form

larger crystallites. For example, an “off-pathway” (non-Barlow) nucleus might be excited

by a collision and reform into a larger “on-pathway” Barlow nucleus. Additionally, the

detailed structure of nuclei in such a solvent would be altered both by finite temperature

(e.g. vibrational entropy [11, 73]) and the crystallite-fluid interfacial free energy [29].

Many Monte Carlo studies have examined crystallization in bulk hard-sphere systems [12–

15]. Schilling et.al. [15] performed Monte Carlo simulations of crystallization in dense (φ =

0.54) hard-sphere liquids and argued that crystallization occurs through a two-step process

wherein (1) dense “amorphous” clusters form and act as (2) “precursors” for nucleation of

larger close-packed crystallites. They identified the growth of Barlow order during stage (2)

using the bond-orientational order parameter q6, but did not examine the detailed structure

of the amorphous clusters (i.e. they did not examine stacking faults or 5-fold symmetric

structures) [74]. Our results are not fundamentally inconsistent with theirs; the non-Barlow-

ordered nuclei we have identified above could correspond to their “amorphous” clusters.

We also note that differences between sticky-hard and purely repulsive hard spheres will

significantly alter the physics of the (1)→(2) process since non-Barlow clusters must break

bonds to rearrange into Barlow clusters, with a corresponding energetic cost.

In relating our studies to crystal nucleation we assume that mechanically stable nuclei

play a key role. This claim is clearly well supported in the dilute regime where solvent

effects are minimal [11, 75]. Additionally, our contention that understanding the statistical-

geometrical properties of small nuclei (and in particular, the prominence of structural

motifs that are incompatible with the bulk crystal) is relevant to glass-formation and

jamming is consistent with recent experimental work by Royall et.al. [62], which indicate
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that such local motifs lead to kinetic arrest in colloidal suspensions possessing hard-core

repulsive and short-range attractive interactions. In the semidilute or concentrated regimes

in which solvent effects are stronger, while our study cannot capture all the complexities of

nucleation from the bulk, quantitative comparison of the nuclear structures reported here

to those reported in studies of crystallizing liquids [16, 17, 29] is an interesting topic for

future work.

V. CONCLUSIONS

In this manuscript, we described the structural properties of a complete set of isostatic

and hyperstatic packings for hard spheres obtained via exact enumeration. For sticky hard

spheres with contact attractions, we also analyzed mechanical stability. Our key findings

included exponential growth in the number of nonisomorphic isostatic packings and nontriv-

ial variation of the size and symmetry of packings with increasing hyperstaticity. We also

calculated the absolute and relative entropies of all packings and their propensity to include

various structural motifs that are either compatible or incompatible with bulk crystallization

at φ = π/
√
18. Isotatic nuclei form an increasingly liquid-like ensemble as N increases. For

example, the fraction f of isostatic nuclei possessing Barlow-order decreases rapidly with N

to only about 5% for N = 11, and the remaining 95% contain defects such as stacking faults

and 5-fold-symmetric substructures. While f increases with hyperstaticity H ≡ Nc −NISO,

f is only about 50% for N = 11, H = 1 nuclei. Although we terminated our enumeration

studies at N = 11 due to the limits of current computational resources, the trends reported

here should [4, 12] continue to hold for higher N .

Additionally, we have shown that considering nuclei with N ∼ 10 captures a complex

regime [65] where classical nucleation theory performs particularly poorly [18]. In this

regime, maximizing density and maximizing Nc compete, the distributions of nuclear size

and symmetry are broad, and many nuclei are highly aspherical. Since colloids with hard-

core-like repulsions and short-range attractions form stable nuclei in this size regime [11, 76],

our results present challenges for traditional theoretical approaches to nucleation in sticky

hard sphere and related systems. Most analytic and seminumerical treatments (e.g. phase

field theory and the classical density functional of Cahn and Hilliard [78]) either assume
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ordering consistent with the bulk crystalline phase, or allow for ordering different than that

of the bulk crystal but assume that nuclei are spherical. Our results suggest that such

restrictions in traditional methods prevent them from capturing the potential complexity of

small-N crystallite nucleation. Novel theoretical treatments of nucleation should consider

nuclei of both arbitrary order and arbitrary geometry.

Finally, while there have been many recent detailed studies of crystallization in hard-

sphere systems, there have been relatively few [7, 31, 75] theoretical studies of the dynamics

of sticky hard sphere crystallization. The higher relative entropies of cluster formation for

less-ordered nuclei should strongly affect nonequilibrium behavior. For example, the large

fractions of small nuclei with C1 (i.e. liquid-like) symmetry, fivefold symmetry, stacking

faults, and other types of non-Barlow ordering constitute an effective “entropic” barrier to

nucleation and growth of large ordered crystalline domains that should play a key role in

controlling the critical quench rate above which these systems glass-form. For sticky spheres,

mechanical stability of the non-Barlow nuclei presents an additional energetic barrier to or-

dered crystallite growth. It would be interesting to compare the ensembles of nuclei produced

in nonequilibrium studies of sticky sphere aggregation to “ideally prepared” ensembles (in

which all possible aggregates are obtained) like those reported in this paper.
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Appendix A: Mechanical stability: Floppy packings and bridge structures for N = 11

“Floppy” packings possessing soft modes are of special interest for nucleation studies

at finite T since they possess higher vibrational entropy [11]. Table III shows values of
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the number of macrostates and fractions of macrostates possessing “nontrivial” soft modes

(i.e. soft modes in packings that satisfy the two necessary conditions (i-ii) for mechanical

stability). These soft modes correspond to small collective monomer motions that do not

break contacts [38]. Interestingly, the number of nontrivially floppy macrostates Mfloppy

increases faster than M with increasing N over the range 9 ≤ N ≤ 11. Both this result and

the exponential increase in M (Table I) are related to the emergence of hyperstatic packings

with Nmax
c (10) = 3N − 5 and Nmax

c (11) = 3N − 4. The presence of these hyperstatic

states both makes it easier to form isostatic packings (by adding low-coordinated spheres

to a hyperstatic packing), and increases the likelihood that such packings will be floppy.

However, the latter effect is small for the range of N considered.

TABLE III: Number of macrostates and fraction of microstates possessing nontrivial soft modes.

No N < 9 packings possess soft modes, and none of the N ≤ 11 packings possess more than one

soft mode.

N Nc Mfloppy ffloppy

9 21 1 .00427

10 24 4 .0194

10 25 0 0

11 27 31 .0136

11 28 1 .0116

11 29 0 0

Since 10 is the smallest N at which hyperstatic packings can form, it follows (but has

not heretofore been shown) that 11 is the smallest N at which “bridge” structures can

form. These structures are “trivially” floppy because they include monomers that possess

only two contacts and fail to satisfy condition (i). We find 25 graph-nonisomorphic N =

11, Nc = 27 bridge packings. A typical example is shown in Fig. 14(a); bridge spheres

(shown in green) have a single floppy mode associated with the free configurational degree

of freedom (motion along a circle of R =
√
3/2 centered on the line connecting the two

contacted spheres). Since we focused on mechanically stable or nontrivially floppy nuclei,

these 25 packings are not included in our structural analyses in Section III. However, it

is important to include bridge packings in exact enumeration studies that consider finite
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(a) (b)

FIG. 14: Color online) Structure of (a) trivially and (b) hyperstatic floppy nuclei for N = 11. Panel

(a) shows a typical bridge packing; a bridge monomer possessing only two contacts is shown in

green (the lighter shade). Panel (b): This N = 11, Nc = 28 packing ((q) in Fig. 11) is the smallest

hyperstatic sticky sphere packing possessing a soft mode. Arrows indicate particle displacements

proportional to a nontrivial zero eigenvector of the dynamical matrix.

temperature. These structures possess high configurational entropy, and for sticky sphere

systems, should dominate equilibrium populations of N = 11, Nc = 27 nuclei when kBT is

not small compared to the contact energy ǫ.

Another interesting feature of N = 11 packings is that 11 is the smallest N at which a

hyperstatic sticky sphere cluster with a floppy mode can form. The packing and associated

floppy mode are illustrated in Fig. 14(b). This packing has topology similar to a subset of

a BCC lattice; 3 adjacent squares of bonds surround a linear trimer. The floppy mode is a

torsional motion about this trimer, and is associated with the “squares” of bonds forming

the outer part of the packing.

Appendix B: Verification of M for N = 11

For N > 9 our set of rejection rules is incomplete and we rely upon the structure solver to

determine whether packings are valid. Here we provide evidence validating this procedure

by showing convergence with increasing nT of the fraction of adjacency matrices identified

as valid (see Fig. 4.) Figure 15 shows results for a set of 43 nonisomorphic N = 11, Nc = 28

packings and a set of 4534 nonisomorphic N = 11, Nc = 27 packings that passed a set of

M ≤ 10 rejection rules from a non-final version of our code. For fixed nT , the structure

solver finds Msolved valid packings. Msolved converges to Mfinal in the limit of large nT

and we report M = Mfinal in Section III. In all cases, including earlier tests on N = 10

packings (not shown), convergence is found for nT
>∼ 100 and increasing nT by another order
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FIG. 15: (Color online) Convergence of structure-solver forN = 11 packings with increasing nT (see

Section IID). Mfinal = 20 for Nc = 28 (dotted line) and 1658 for Nc = 27 (solid line; this includes

the 13 implicit contact packings discussed in Appendix C.). Here nI = 40 and TOL = 10−11.

of magnitude produces no additional solutions. Faster convergence is found for smaller N .

Appendix C: Implicit Contact Graphs

Equation 8 is a set of equations and inequalities sufficient to obtain the structure of

N -sphere packings with at least Nc contacts and no overlaps. The geometric rejection

rules enforce only the “>” portion of the rij ≥ 1 condition for {i, j} pairs with Aij = 0.

For N ≥ 10, there exist Ā with Nc contacts whose Euclidean solution {~r} is a packing

with Nc + 1 contacts. Such “implicit contact” graphs violate the spirit of our enumeration

method. Therefore, all Ā containing M ×M implicit-contact subgraphs are rejected at the

M-rule level.

We find 29 nonisomorphic M = 10, Mc = 24 implicit-contact graphs. All reduce to one

of the three M = 10, Mc = 25 minimal energy packings [22] when we solve for {~r}. Note

that we overcounted M(10, 24) in Ref. [37] by including 20 implicit-contact macrostates.

Similarly, we find 13 M = 11, Mc = 27 graphs, not containing isomorphic subgraphs of the

abovementioned set of 10/24 graphs, that imply structures with 28 or more contacts [64].

Fig. 16 illustrates one such structure: panel (a) shows an implicit contact adjacency matrix

with N = 11 and Nc = 27; contacts present in Ā are shown in black. The corresponding

packing (panel (b)) possesses 29 contacts (as determined by solving for {~r}) and is identical

to the N = 11, Nc = 29 packing shown in Fig. 12(a). The implicit contacts are shown in
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red in panel (a). In panel (b), the implicit contacts are shown as dashed lines, and spheres

possessing implicit contacts (particles 4, 6, 8, and 10) are shaded blue (dark).

(a) (b)
0 1 0 1 0 0 1 1 1 1 1

1 0 1 1 1 1 1 0 0 0 1

0 1 0 1 1 0 0 0 0 1 1

1 1 1 0 1 1 0 1 1 1 0

0 1 1 1 0 1 0 0 0 0 0

0 1 0 1 1 0 1 1 0 0 0

1 1 0 0 0 1 0 1 0 0 0

1 0 0 1 0 1 1 0 1 0 0

1 0 0 1 0 0 0 1 0 1 0

1 0 1 1 0 0 0 0 1 0 1

1 1 1 0 0 0 0 0 0 1 0

FIG. 16: (Color online) Panel (a): An implicit contact adjacency matrix with M = 11, 27 explicit

contacts (black 1’s) and two implicit contacts arising from the solution of Equation 8 (red [lighter

shaded] 1’s). Panel (b): Visualizing the structure reveals a Nc = 29 packing; implicit contacts are

shown as dashed green lines.
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[64] Adjacency matrices Ā and particle coordinates ~r for all nonisomorphic packings reported here,

as well as adjacency matrices for the implicit-contact graphs discussed in Appendix C, are

available for download at http://jamming.research.yale.edu/data/

stickyhardspherepackings.tar.gz.

[65] At sufficiently large N ∼ Nclassical, the minimal energy clusters of sticky hard spheres will be

close-packed and defect-free, and classical nucleation theory should perform better. However,

35



Nclassical is unknown. Ref. [25] shows that MEPs for several N ≥ 14 do not possess FCC,

HCP, or Barlow order but instead are stack-faulted. Ref. [8] showed that the densest spherical

packings retain non-Barlow order for N <∼ 500.

[66] For N = 6, rmin
2nd = 2

√
2/3 >

√
2; this distance is found in the octahedron, which is is a

subsection of both the FCC and HCP lattices.

[67] Note that stack-faulted structures (e.g. the capped trigonal bipyramid structure in Fig. 1(b))

to not in general have either C1 or Barlow ordering and that some structures incompatible

with close-packed ordering, i.e. 5-fold symmetric structures (see Section IIIB) have higher

symmetry than C1.

[68] T. W. Cochran and Y. C. Chiew, J. Chem. Phys. 124, 224901 (2006).

[69] Of course, some energy minimization procedure would need to be applied to such packings in

order to find the true local minima..

[70] C. P. Royall and S. R. Williams, J. Phys. Chem. B 115, 7288 (2011).

[71] Manoharan and collaborators have found a low fraction of Barlow packings (similar to that

shown in Table I) in colloids interacting via short-ranged depletion interactions [73].

[72] J. E. Mayer, J. Chem. Phys. 10, 629 (1942).

[73] R. Perry, G. Meng, T. Dimiduk, J. Fung, and V. N. Manoharan, Faraday Discussions, in press.

[74] Other recent studies have examined formation of both stacking faults and 5-fold structures

[12–14] in greater detail.

[75] R. S. Hoy and C. S. O’Hern, Soft Matter 8, 1215 (2012).

[76] In constrast to hard sphere systems, where the critical nuclear size is N ∼ 100 [12, 18, 77].

[77] P. Harrowell, J. Phys. Cond. Matt. 22, 1 (2010).

[78] J. W. Cahn and J. E. Hilliard, J. Chem. Phys. 28, 258 (1958); J. W. Cahn and J. E. Hilliard,

J. Chem. Phys. 31, 688 (1959).

36


