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We present an X-ray microtomography study of the compaction process of 

cylindrical rods under tapping. The process is monitored by measuring the evolution 

of the orientational order parameter, local and overall packing densities as function of 

tapping number for different tapping intensities. The slow relaxation dynamics of the 

orientational order parameter can be well fitted with a stretched-exponential law with 

stretching exponent ranging from 0.9 to 1.6. The corresponding relaxation time versus 

tapping intensity follows an Arrhenius behavior which is reminiscent of the slow 

dynamics in thermal glassy systems. We also investigated the boundary effect on the 

ordering process and found that boundary rods order faster than interior ones. In 

searching for the underlying mechanism of the slow dynamics, we estimated the 

initial random velocities of the rods under tapping and found that the ordering process 

is compatible with a diffusion mechanism. The average coordination number as 

function of tapping number at different tapping intensities has also been measured 

which spans a range from 6 to 8.  
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I. INTRODUCTION 

Other than having important industrial applications, understanding of the 

compaction process of granular materials has also attracted a lot of scientific interest 

recently. The close analogy of the slow dynamics displayed by granular materials 

under compaction with thermal glassy dynamics suggests a unifying jamming concept 

[1, 2]. The compaction dynamics can also be used to verify possible thermodynamic 

descriptions of the naturally out-of-equilibrium granular systems [3]. Extensive 

experimental and theoretical studies have been carried out in understanding the 

compaction dynamics [1]: mechanisms based on free volume [4], the parking-lot 

model [5], etc., have been proposed; numerical simulations also offered great insights 

[6-8]. Phenomenologically, compaction proceeds through the filling of large voids in 

the packing and the reduction of free volume around a particle. As the packing gets 

denser, it entails the cooperative movements of increasing number of particles and the 

associated relaxation time diverges exponentially [5]. 

Recently, there has been growing interest in using microscopic information to 

interpret the compaction process with the development of three dimensional 

visualization techniques such as X-ray tomography [9-12]. Detailed study of 

particle-level dynamic [13] , structural [9], and force [11] information can provide 

invaluable knowledge to the understanding of the compaction dynamics. Especially, it 

has been noted that both spatial and temporal heterogeneities have been identified as 

intrinsic features of granular dynamics [7, 14].     

Most of the past efforts on the compaction process have been focused on 
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spherical particles [15, 16]. In reality, granular particles are rarely perfectly spherical, 

and non-spherical particle packings have displayed many behaviors which are 

significantly different from their spherical counterparts. For instance, both 

spherocylinders and ellipsoids have maximum random packing fractions higher than 

the ρrcp≈0.64 limit of spherical ones [17]. In packings made up of long rods, the rods 

tend to align with each other through an excluded-volume interaction [18]. Therefore, 

it can exhibit high degrees of ordering upon tapping under certain circumstances [19]. 

Nevertheless, the relaxation dynamics of non-spherical particle packings under 

tapping is very similar to that of spherical ones [15, 16, 17, 18]. Therefore, the study 

of the compaction dynamics in non-spherical particle packings can provide different 

paradigms for the understanding of the universal compaction mechanism. 

Different experimental laws have been proposed to interpret the macroscopic 

compaction dynamics. The packing density ρ of a spherical packing under tapping has 

been suggested by Chicago group to follow an inverse logarithmic law [16]  
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where fρ  and 0ρ  are the packing densities of the final and the initial states 

respectively, B is a fitting constant depending on the dimensionless tapping intensity 

Γ which is defined as the ratio between the measured peak acceleration and the 

gravitational acceleration g. And τ is the relaxation time of the exponential law with 

the unit of one tap. This behavior was found to be consistent with the free volume 

model [4].   

Later studies by Rennes group [15, 20] have also found in both spherical and 
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nonspherical packings that ρ can be well fitted with a stretched-exponential 

Kohlrausch-Williams-Watts law (KWW law)  
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 where β is the stretching exponent. The KWW law has been usually employed in the 

description of the slow dynamics in thermal glassy systems, so the close analogy of 

the compaction dynamics in two disparate systems implies a close connection 

between them. The different compaction dynamics observed by aforementioned two 

groups has been attributed to the different containers used: In Chicago group’s 

experiment, the container was a very long tube with a small diameter comparable with 

the particle size which prohibits convection. In Rennes group’s experiment, the 

container’s diameter was much larger than the particle size which significantly 

reduces the boundary effect. Instead, strong convection has been observed and the 

compaction dynamics is attributed to a convection-mediated mechanism and the 

corresponding relaxation time τ is suggested to be determined by the convection speed 

[22]. A similar stretched-exponential behavior has also been identified in studies of 

the compaction of two-dimensional granular particles [21, 23]. However, no boundary 

or convection effect was observed [21, 23]. Therefore, it is interesting to resolve these 

differences. 

 Due to the experimental difficulty in tracking the three-dimensional granular 

packing structure non-invasively, there has been a lack of experimental results on the 

microscopic compaction dynamics. Instead, the ordering process has been 

investigated primarily using macroscopic parameters such as packing density or 
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volume fraction. Since the understanding of the compaction process using statistical 

mechanics ultimately requires the knowledge of distributions on particle level, 

obviously, substantial information can be gained by directly investigating the 

microscopic structure and dynamics.   

In this paper, we exploit X-ray microtomography [24] to study the compaction 

dynamics of a three-dimensional packing consisting of cylindrical rods under tapping. 

This paper is organized as follows. In Sec. II, we describe the experimental setup and 

the sample preparation procedure. In Sec. III, we present the behaviors of packing 

density and vertical order parameter as function of tapping number, together with the 

fitting results using the KWW and the inverse logarithmic laws. We discuss the 

boundary effect on the ordering process in Sec. IV. In Sec. V, we discuss the 

Arrhenius behavior of the relaxation time as function of tapping intensity. We also 

present measurements of the rods’ random velocities during one tap and a possible 

diffusion mechanism of the slow ordering dynamics. In Sec. VI, we discuss the 

average coordination number of the packing as function of tapping number for 

different tapping intensities. We summarize our findings in Sec. VII. 

II. EXPERIMENTAL  SETUP  AND  PROCEDURE  

We performed the experiment using uniform-sized nylon rods which are 1.0 mm 

in diameter and 4.0 mm in length. Each rod weighs around 3.5 mg. Around 350 rods 

were filled into a 50-mm-tall acrylic tube (10-mm inner diameter) mounted vertically 

on an electromagnetic exciter. The disordered packing has an initial height about 34 

mm. The experimental setup and protocol are similar to those of Villarruel et al. [19] 



6 
 

in terms of the rod size, the rod’s aspect ratio and the rod/container size ratio. The 

major difference lies in the much smaller filling height in our case. 

A single cycle of a 30-Hz sine wave was output from a signal generator to drive 

the exciter, producing individual shaking or “tapping”. Successive taps are spaced 

with 1.0 s intervals to allow the system to relax completely. In order to reduce 

electrostatic charges, the rods were grounded on an aluminum foil before each 

experimental run.  

The evolution of the rods’ ordering process under tapping was studied by an 

X-ray microtomography setup (MicroXCT-200, Xradia Inc.). In our experiment, the 

voltage and the power of the X-ray tube were set at 40 kV and 8 W respectively. The 

effective spatial resolution of the detector was 10.16 μm after optical magnification 

(2×). The imaging window has a field-of-view of 10.4×10.4 mm2 and was positioned 

at the medium height of the packing. There are about 90 rods within the X-ray 

imaging window. We took 1,200 projection images around the sample and the 

exposure time was set to 20 s for each projection image. The rods were tapped till a 

total of 104 times for different Γ and tomography was conducted at several tapping 

number t for every Γ. Before each run, the container was first emptied and then 

refilled to form an initially disordered packing. 

III. PACKING DENSITY AND ORDER PARAMETER 

Figures 1(a), (b) show the three-dimensional reconstructed packing structure 

before and after 104 times of tapping at Γ=3.41, which illustrate the onset of the 

vertical ordering. The tomogram at the medium height of the reconstructed structure 
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is shown in Fig. 1(c), and Fig. 1(d) is a simple image segmentation of Fig. 1(c) using 

a thresholding technique. 

The global packing density ρH is calculated using the total filling height H of rods 

in the tube. Fig. 2(a) shows the evolution of ρH as function of tapping number t for 

different Γ. In general, ρH increases monotonically with t. As shown in Fig. 2(b), the 

maximum ρH=0.52 can be reached at Γ=2.37 after 104 times of tapping. It is noted that 

the final ρH is fairly low for all Γ investigated. This is owing to the fact that we have 

small number of layers in the packing and the surface height measurements were 

sensitively dependent on the loosely packed surface layers. We can also directly 

obtain the local packing density ρS using the ratio between the volume occupied by 

the rods and the total container volume within the same height. The rods’ volume is 

obtained by integrating all the areas occupied in each tomogram like Fig. 1(d). The 

corresponding ρS is shown in Fig. 2(b). It is obvious that other than a scaling factor, ρH 

and ρS show very consistent behavior for different Γ we measured. We also attempted 

to fit ρH using both Eqs. (1) and (2) and the results are shown in Fig. 3(b). The KWW 

law yields consistently better fit as compared to the inverse logarithmic law. So we 

chose to fit ρH using the KWW law for all Γ. The fitting results are shown in Table I. 

The stretching exponent β=0.35±0.05 is consistent with previous measurements [21, 

22]. It is worth noting that our experimental configuration is very similar to the 

Chicago setup [19] in which the strong boundary effect prevents the occurrence of 

convection. We confirmed the absence of convection by ink-labeling several rods to 

watch their movements under tapping and found no evidence of convection. The good 
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fit of the relaxation dynamics with the KWW law implies a close analogy with 

thermal glassy behavior [22].  

The orientation of each rod within the X-ray tomography reconstructed region can 

be obtained by an image processing program. As a result, we can directly monitor the 

structural evolution of the vertical ordering process by calculating the orientational 

order parameter  

cos iS θ=< > ,                        (3) 

as function of tap number t, where iθ  is defined as the angle between the long axis of 

the rod and the vertical axis. iθ  is limited to the range of 0° to 90°. S is obtained by 

averaging over all rods within the reconstructed region. This definition of S is similar 

to the ordinary nematic order parameter [25-27].  

Figure 4 shows the evolution of S as function of t for different Γ. The ordering  

process measured by S shows much clearer trend as compared to ρH: S increases 

slowly when t<102 and begins to increase rapidly when t>102 . At t=104, it either 

continues increasing when Γ is small or saturates at a value when Γ is large. The final 

orders as measured by fS  at different Γ, which are shown in Fig. 4(b), are consistent 

with the ρH and ρS measurements. It suggests that the increase of the packing density 

is accompanied by an increase of the vertical order. The packing reaches maximum 

order when Γ=2.37. At Γ=1.56 or Γ=1.89, the order does not saturate after 104 times 

of tapping which suggests that the time for the system to reach steady state is beyond 

our experimental timescale.  

We also carried out the fitting of the evolution of S using Eqs. (1) and (2) by 
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simply replacing ρ with S and the results are shown in Fig. 3(a); the KWW law also 

shows consistently better fit than the inverse logarithmic law. In Fig. 4(a), the fitting 

results for different Γ using the KWW law is shown, and the corresponding fitting 

parameters are shown in Table I. One of the important points worth noting is that 

although S and ρH show very similar relaxation time constant τ at the same Γ, their 

stretching exponents β are clearly different, with β ranges from 0.3 to 0.4 for ρH and 

0.9 to 1.6 for S. 

IV. BOUNDARY EFFECT ON ORDERING 

Our experimental configuration is similar to that of Chicago group’s [19]. In this 

configuration, it is presumed that the boundary plays an important role in inducing the 

global order which is absent in the Rennes group’s setup [22].  

To study in more detail of the boundary effect upon the ordering process, we 

divided the tube’s interior into three zones by area proportion 2:1:1 from the border to 

the center. Rods are grouped into different zones by their center-of-mass locations. 

Fig. 5 shows the fits of S for three zones using the same KWW law as Eq. (2). The 

corresponding fitting results are shown in Table II. It is evident that the relaxation 

time τ in general increases from the tube’s border to the center which suggests that the 

boundary rods order faster than the interior ones. So a phenomenological ordering 

process happens like the following: the boundary makes the rods which are in contact 

with it to order vertically first; subsequently, the order gradually propagates into the 

interior through the rods’ intrinsic tendency to align with each other [18]. 

Ⅴ. SLOW DYNAMICS 
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  The slow relaxation towards ordering is manifested by the large relaxation time τ 

for all Γ. In the compaction process, the tapping intensity Γ  works like an effective 

temperature in generating structural rearrangements which lead to compaction. 

Interestingly, similar to thermal glassy systems, relaxation time τ versus Γ  follows 

an Arrhenius behavior  

0 0exp( / )τ τ= Γ Γ ,        (3) 

where 0τ  and 0Γ  are the characteristic relaxation time and tapping intensity. The 

fitting results are shown in Fig. 6 with 0 66 12 (taps)τ = ±  and 0 5.1 0.6Γ = ± .  

The Arrhenius behavior is consistent with our other experimental observations: at 

small Γ , the ordering time increases rapidly and the packing cannot achieve steady 

state over our experimental timescale; when Γ  is large, the system can reach steady 

state since the tapping is energetic enough for the system to explore the phase space.  

It has been suggested that the tapping-induced ordering is determined by the 

diffusion of defect particles and the corresponding ordering time scale is determined 

by the particles’ mobility or random velocity [21, 28]. We tried to verify this 

mechanism by measuring the rods’ random motions in the current study. It is worth 

noting that it is the random and not the overall average motion that drives the 

rearrangements of the rods which lead to compaction. In the current setup, the random 

velocity V of each rod is not a directly measurable quantity. Instead, we estimate each 

rod’s V by its relative displacement within the time interval of one tap (1/30 s). Due to 

the identical nature of the rods, it is difficult to match the same rods after tapping 

through image processing especially when Γ  is large. To prevent false matches, we 
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coated several rods with thin layers of iodine powders which can induce strong X-ray 

absorption and these rods are distinguished from the rest on the projection images as 

shown in Fig. 7. To calculate the relative displacements of these labeled rods during 

one tap, the tube was rotated along the vertical axis and the projection images were 

taken at 0° and 90°, from which the three coordinates of the center-of-mass of the 

labeled rods can be identified. By taking the projection images at exactly the same 

two orientations before and after one tap, the displacements of the center-of-mass of 

labeled rods along all three Cartesian coordinates can be calculated. The 

measurements were repeated around ten times at each Γ. In the current experiment, we 

focus on the initial random velocities of the rods during the first tap after preparation. 

So the tube was emptied and the packing was prepared freshly after each 

measurement.  

In Fig. 8, the histograms show the distributions of V measured at different Γ. It is 

obvious that there exists large dispersion of V for all Γ. There is a large dispersion of 

the heterogeneous dynamics in colloidal and granular systems in which the relaxation 

dynamics is mostly determined by a few very fast-moving particles [29, 30]. We can 

calculate the mean random velocity <V> of all rods for different Γ by taking a simple 

average of all measurements. The corresponding <V> as function of Γ is shown in Fig. 

9. Despite the large dispersion in V, <V> increases as Γ increases. It is interesting to 

note, if we can assume the ordering process is a defect-controlled simple diffusion 

process [21, 28], we can use <V> to estimate the average length scale a rod can 

diffuse over the relaxation time τ for different Γ. It turns out that this length scale is 
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about two to three times of the length of the rod for all Γ. Although this reasoning is 

an oversimplification since obviously the ordering process is controlled by both 

translational and rotational degrees of freedom and there is no guarantee of energy 

equipartition among them. However, the presumption of a simple diffusion process 

[28] is compatible with our experimental observations.  

We also calculated the mean random kinetic energy of the rods using 

 2 / 2kE mV= ,              (4) 

where m is the mass of the rod. Ek is only around several percent of the gravitational 

potential energy mgL/2 of a rod when it aligns vertically [31]. The overall average 

kinetic energy gained for each rod from one tap is  

2 2 2 2
exp / 2 / 2U mA m gω ω= = Γ ,      (5) 

where ω  is the angular frequency of the tapping. Comparing the random kinetic 

energy with the overall kinetic energy we arrive at exp/ 0.042kE U = . So only a very 

small fraction of the input energy is turned into the random motion of the rods.  

VI. COORDINATION NUMBER 

The coordination number and the associated free volume of each particle was 

essential in the statistical description of granular packings [32, 33]. In the current 

study, we analyzed the average coordination number <Z> by directly counting the 

contacting neighbors through a direct structure analysis. 

The coordination number in spherical granular packings has been extensively 

studied [32]. In spherical packings, using isostatic argument, <Z> equals 2N for 

frictionless particles and N+1 for frictional particles, where N is the degree of 
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freedom. A similar reasoning has been applied to rods [34]: the corresponding <Z> 

equals 10 in the frictionless case and 6 in the frictional case, in which we have 

assumed that N=5 for rods.   

The coordination number Z for the rod packings has been measured previously 

following the similar technique by Bernal [35, 36]. In the current study, we directly 

obtain Z and its distribution using non-invasive structural information alone. Through 

image analysis, the center of mass and the orientation of all rods can be extracted. 

Two rods are considered as contacting neighbors if the minimum distance r between 

their finite-length centerlines equals their diameter d. In practice, this criteria is very 

difficult to implement due to the uncertainty in the determination of the rods’ center of 

mass, orientation, and a size distribution of the rods. We adopted a similar technique 

from a previous study for the determination of Z [9]: First, the minimum distance r 

between a rod and any other rod has been calculated, and it is normalized by d in 

getting the normalized minimum distance parameter λ=r/d. Two rods are considered 

as contacting neighbors if their normalized distance is smaller than some value of λ. 

In the ideal case, Z as function of λ will show an abrupt jump from zero at λ=1 to the 

ideal coordination number value and then increase gradually as λ increases. In reality, 

Z displays a much gradual increase around λ=1 as shown in Fig. 10(a). Therefore, in 

practice, a small Gaussian distribution of λ has been assumed. The resulting Z versus λ 

can then be well fitted by a complementary error function assuming the form 

 
2

( ) exp( )
22 md d

Z tZ dtλ
ξ

λ
π

∞
−

< >= −∫ , (6) 

where ξ is the variance of the Gaussian distribution, dm is the fitted actual average 
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minimum distance between rods. The fitting results for several tapping numbers at 

Γ=7.23 are shown in Fig.10(a). The average coordination number <Z> and the 

probability distribution function of Z can also be obtained for the rods within our 

reconstructed image region. One thing to note is that in the above analysis, we have 

been very careful by only using rods which have no contacts with the tube boundary 

and at the same time are away from the top and bottom of the imaging window. As 

shown in Fig. 10(b), the average coordination number <Z> spans a range from 6 to 8 

as function of t for different Γ. There is a certain increasing trend of <Z> as t 

increases. However, due to the small number of rods in our imaging window, this 

trend is not conclusive. An average coordination number value from 6 to 8 is 

consistent with a frictional rod packing with medium aspect ratios [36]. Fig. 10(c) 

shows the probability distribution functions of the coordination number Z for different 

tapping number t at Γ=7.23. The results of a simple Gaussian fit are shown in Fig. 

10(d) with the corresponding standard deviation σZ lies in the range from 1.4 to 2.2.  

VII. CONCLUSION 

In conclusion, we have carried out a preliminary study of the compaction process 

of rods under tapping using X-rays tomography. We directly measured the evolution 

of the orientational order parameter, the local and global packing densities as function 

of tapping number for different tapping intensities. The slow relaxation dynamics can 

be well fitted using a KWW-type stretched-exponential law. The corresponding 

relaxation time vs. tapping intensity follows an Arrhenius behavior. After measuring 

the mean velocity of the rods gained from one tap, we found that the ordering process 
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can be well described by a diffusive process, with the tube boundary rods order faster 

than the interior ones. The average coordination number has also been measured 

which spans a range from 6 to 8.  
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TABLE I. Fitting results of the orientational order parameter and packing density 

using Eq. 2 at different tapping intensities.     

Γ τ (taps) β 

S 

1.89 894±124 0.7±0.1 
2.37 734±62 1.4±0.2 
3.41 232±22 1.0±0.1 
5.26 166±17 1.3±0.2 
8.39 101±24 1.5±0.8 
9.28 129±10 1.3±0.2 

ρ 
2.37 784±312 0.30±0.05 
3.41 325±82 0.37±0.04 
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TABLE II. Fitting results of the relaxation time of three zones for different tapping 

intensities using Eq. 2. 5R = mm is the inner radius of the container. 

 

Γ 
τ (taps) 

2 2R r R< <  2 2 2R r R< < 0 2r R< <  
1.55 996±154 1522±333 4068±474 
1.89 1076±775 1023±246 1418±189 
2.37 661±94 774±42 992±138 
3.41 245±105 337±129 296±54 
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FIG. 1. X-ray tomography reconstructed rods’ packing structure (a) before tapping, 

and (b) after 104 taps. (c) Tomogram at the medium height of reconstructed structure. 

(d) Image segmentation of (c) using simple thresholding.  
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FIG. 2. (color online). (a) Evolution of the packing density ρH as function of tapping 

number for different tapping intensities. (b) Final packing density ρH and ρS calculated 

respectively by the total filling height of the packing and from analysis of X-ray 

tomograms.   
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FIG. 3. (color online). Comparisons of the fitting of (a) orientational order parameter S 

and (b) packing density Hρ as function of tapping number t at Γ=3.41 using both 

KWW stretched exponential and inverse logarithmic laws.  
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FIG. 4. (color online). (a) Orientational order parameter S as function of tapping 

number t, for different tapping intensities and the corresponding fitting by KWW law. 

(b) Final orientational order parameter Sf  as function of vibration intensity. 
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FIG. 5. (color online). Orientational order parameter S and the corresponding fitting 

by KWW law, as function of tapping number t, for three zones at different tapping 

intensities (r is the distance from the center, 2 2R r R< <  represents the zone near 

the boundary, 2 2 2R r R< <  represents the middle zone, 0 2r R< <  represents 

the central zone). 
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FIG. 6. (color online). Fitting of relaxation time τ as function of inverse tapping 

intensity to an Arrhenius behavior as Eq. 3.  
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FIG. 7. X-ray projection images of the iodine-labeled rods taken at two perpendicular 

orientations before and after one tap at 2.37Γ = . (a),(b) 0°and 90°before tapping. 

(c),(d) 0°and 90°after tapping. 
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FIG. 8. Histograms of the distributions of random velocities of labeled rods for 

different Γ .  
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FIG. 9. (color online). Mean random velocity <V> as function of vibration 

intensity Γ .  
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FIG. 10. (a) (color online). Coordination number Z as function of normalized 

minimum distance parameter λ for several tapping numbers at 7.23Γ = . Solid lines 

are fitting results using Eq. 6. (b) Average coordination number <Z> as function of 

tapping number for different tapping intensities. (c) Probability distribution functions 

of coordination number Z, (d) corresponding averages and variances as function of 

tapping number at 7.23Γ = .   

  

 
 
 
 


