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We study spectral properties and the dynamics after a quenchof one-dimensional spinless fermions with short-
range interactions and long-range random hopping. We show that a sufficiently fast decay of the hopping term
promotes localization effects at finite temperature, whichprevents thermalization even if the classical motion
is chaotic. For slower decays, we find that thermalization does occur. However, within this model, the latter
regime falls in a new universality class, namely, observables exhibit a power-law (as opposed to an exponential)
approach to their thermal expectation values.
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The study of the dynamics and conditions for thermaliza-
tion in isolated many-body systems has a long history in the-
oretical physics [1]. In classical physics, the requirements for
thermalization are well understood. Boltzmann’s ergodic hy-
pothesis holds only if the motion of the individual particles is
fully chaotic. The situation in quantum systems is less clear.
Quantum time evolution is described by a linear differential
equation so that dynamical chaos does not occur. The devel-
opment of the theory of quantum chaos in the 80’s and 90’s
brought a new language and techniques to tackle this prob-
lem [2]. With respect to thermalization, this effort crystal-
lized in two main results: the so called Berry’s hypothesis [3],
which states that eigenstates of a classically chaotic system
can be written as a finite sum of plane waves with random co-
efficients, and the eigenstate thermalization hypothesis (ETH)
proposed by Deutsch [4] and Srednicki [5], which states that
observables in individual eigenstates of a generic many-body
system already exhibit thermal behavior.

Until a few years ago, technical difficulties prevented a sys-
tematic study of the proposals above. However, recent ad-
vances in cold gases systems, together with the enhancement
of computer power and the development of novel computa-
tional methods, are making possible a more quantitative com-
parison. This has dramatically boosted the theoretical and
experimental interest in non-equilibrium dynamics in general
and thermalization in particular [6]. For instance, in Ref.[7],
it was shown experimentally that, after a quench, the momen-
tum distribution of a gas of bosons trapped in a quasi one-
dimensional (1D) geometry did not relax to the thermal pre-
diction. Although this is expected in an integrable system [8],
it was surprising that such an effect could be seen experimen-
tally. The ETH, on the other hand, has been confirmed nu-
merically for nonintegrable systems [9], and has been shown
to break down when approaching integrable points [10–12].

A better understanding of the conditions for thermalization
would not only put the foundation of quantum statistical me-
chanics on a more solid ground but also have a strong im-
pact in different fields, from cold gases to cosmology, where
non-equilibrium dynamics play a key role. Here, we provide

further insights on this problem. We show that many-body
localization effects [13] invalidate the expectation thatclassi-
cal chaos leads to thermalization of the quantum counterpart.
(For recent connections between the effect of localizationin
Fock space and thermalization in spin systems, see Ref. [14]).
We also put forward a new route towards thermalization in
quantum systems characterized by power-law relaxation dy-
namics. We support these results by numerical calculationsin
the following 1D spinless fermions system, with long-range
hopping and short-range interactions,

Ĥ =∑
i j

Ji j

(

f̂ †
i f̂ j +H.c.

)

+V ∑
i

(

n̂i −
1
2

)(

n̂i+1−
1
2

)

, (1)

where f̂ †
j creates a fermion in the sitej, andn̂ j is the number

operator in the sitej. The hopping term is built by means of a
Gaussian random distribution, with zero mean〈Ji j 〉= 0, and
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In the limit V = 0, the properties of (1) depend onα but
not on β > 0 [15]. For α < 1, eigenstates are delocalized
and the spectral correlations are described by Wigner-Dyson
(WD) statistics. Forα > 1, eigenstates are localized and spec-
tral correlations are described by Poisson statistics. Forα = 1,
eigenstates are multifractal and spectral correlations are in-
termediate between WD and Poisson [16, 17]. We then fix
β = 0.1 andV = 1. (The latter sets the unit of energy through-
out this paper, andkB = 1.) These values were chosen to min-
imize finite size effects (β ≪ 1) and at the same time to avoid
the trivial insulator limit that occurs if the potential energy is
much larger than the kinetic one [11]. Likewise, if the interac-
tion is too weak, thermalization may not occur [10]. Finally,
we note that these types of long-range Hamiltonians have been
used to model systems with strong dipolar interactions [18].

We first use a finite size scaling analysis to investigate the
effect of the many-body interactions on the spectrum [17].
This is a powerful tool to study many-body localization in the
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presence of interactions [11, 13]. We compute the eigenval-
ues of the Hamiltonian (1) for different sizes and values of
α utilizing standard diagonalization techniques. In all cases,
the filling factor p/L = 1/3, whereL is the system size and
p is the number of particles. The spectrum thus obtained is
appropriately unfolded, i.e, it is rescaled so that the spectral
density on a spectral window comprising several level spac-
ings is unity. The number of disorder realizations considered
is such that, statistical fluctuations are negligible. As a scaling
variable we choose the functionη [17] related to the variance
var= 〈s2〉− 〈s〉2 of the level spacing distributionP(s). P(s)
is the probability of finding two neighboring eigenvalues at
a distances= (εi+1− εi)/∆, where∆ is the local mean level
spacing, and

η = [var− varWD ]/[varP− varWD] . (3)

varWD = 0.286 (varP = 1) is the value of the variance for a
disordered metal (insulator) in the thermodynamic limit and
〈sn〉 =

∫

snP(s) [19]. An increase (decrease) ofη with L sig-
nals that the system will be an insulator (metal) in the thermo-
dynamic limit.

Figure 1 depicts results forη vs α for different sizes. It is
apparent that forα & 1.2 the parameterη increases with sys-
tem size, as is expected of an insulator. Hence, localization
takes place in the interacting system, in contrast to the classi-
cal counterpart, which is chaotic for anyα. Forα . 1, on the
other hand,η behaves as expected of a metal. To be certain
whether the system is metallic forα ≈ 1, much larger systems,
currently not accessible numerically, need to be studied.
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FIG. 1. (Color online) Scaling variableη [see Eq. (3)] as a function
of α for different system sizes but the same filling factor, 1/3. For
α . 1 (α & 1.2), η decreases (increases) with the system size. This
is a signature of a metallic (insulating) phase. The number of realiza-
tions is 10000, 10000, and 400 forL = 12, 15, and 18, respectively.

We now investigate the thermalization properties of the
Hamiltonian (1). We aim to (i) identify a region ofα ’s for
which the system does not thermalize even though the clas-
sical counterpart does, (ii) see how that region relates to the
localization regime found by the spectral analysis, (iii) inves-
tigate the microscopic origin of the lack of thermalization, and
(iv) study the approach to equilibrium in the region ofα ’s for
which thermalization eventually occurs.

In order to proceed, we first note that time scales and finite-
size effects relevant to the study of quantum thermalization
may depend on the observable and particle statistics [10, 12].
However, for few-body observables, it is generically expected
that thermalization occurs away from integrability. Here,we
report results for two of those observables: the momentum
distribution function [n̂(k)] and the density-density structure
factor [N̂(k)],

n̂(k) =
1
L ∑

l ,m

eik(l−m) f̂ †
l f̂m, N̂(k) =

1
L ∑

l ,m

eik(l−m)n̂l n̂m, (4)

which are the Fourier transforms of the one-particle and
density-density correlation matrices [20], respectively. Both
observables can be measured in ultracold gases experiments.

In all the cases shown below, we start from an eigen-
state of the Hamiltonian (1) in a certain realization of the
disorder. Then, we change to another disorder realization
for the sameα, and study the time evolution of the ini-
tial state with this new Hamiltonian,̂Hfin. This procedure
is usually known as a quench. The initial state [|Ψ(0)〉] is
selected such that the time evolving system has an energy
E = 〈Ψ(0)|Ĥfin|Ψ(0)〉, which, for every disorder realization,
is the same as the one of a thermal state with temperature
T = 10.0 (E = Tr{e−Ĥfin/TĤfin}/Tr{e−Ĥfin/T}). This yields
energies that fall close to the center of the spectrum of the fi-
nal Hamiltonian. In what follows,Oi j are the matrix elements
of a given observable in the eigenstates of the final Hamil-
tonian,Oi j = 〈ψi |Ô|ψ j〉, andCj is the overlap between the
initial state and|ψ j〉, Cj = 〈ψ j |Ψ(0)〉.

In order to determine whether thermalization occurs fol-
lowing the quench, one needs to find a meaningful quan-
tity to compare with the microcanonical (thermal) average,
Omicro =

1
N∆E

∑ j O j j , whereN∆E is the number of states in
the microcanonical window (centered aroundE, and with∆E
selected such that the average is robust against small changes
of ∆E). If relaxation takes place for the observables of in-
terest, and the spectrum is nondegenerate, the infinite time
average (also known as the diagonal ensemble prediction)
Odiag= ∑ j |Cj |

2O j j is the right choice [9]. We first compute
the normalized difference between these two ensembles,

∆O=
∑k |Odiag(k)−Omicro(k)|

∑k Odiag(k)
, (5)

and then average it over different disorder realizations toob-
tain 〈∆O〉dis. Note that here, and in what follows, by “O” we
mean “n” or “ N” for the momentum distribution and structure
factor, respectively.

In Fig. 2, we depict〈∆n〉dis and〈∆N〉dis for different val-
ues ofα vs system size. Thermalization occurs if〈∆O〉dis
vanishes in the thermodynamic limit. A nonzero value of
〈∆O〉dis in this limit indicates that the observableO relaxes
to a nonthermal expectation value. Forα > 1, a weak size
dependence is observed for the largest system sizes we can
study, with 〈∆O〉dis likely saturating to non-zero values for
α & 1.2. Therefore, thermalization is not expected to occur in
this regime. Interestingly, as the value ofα decreases below
α ∼ 1, the normalized differences exhibit a fast decrease for
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FIG. 2. (Color online)〈∆n〉dis and〈∆N〉dis [see Eq. (5)], as a func-
tion of the system size, forα = 0.6, 0.8, 1.0, 1.2, and 1.4. Points
correspond to(L, p) = (9,3),(12,4), (15,5), and(18,6). The disor-
der average is performed over at least 8,500 different realizations for
L ≤ 15, and 1020 forL = 18. The classical dynamics is chaotic but
there is no thermalization for largeα due to localization effects.

the smallest systems shown. They become much smaller than
those forα & 1.2 for the largest system sizes accessible here,
for which 〈∆O〉dis is very close to zero within our error bars
and still decreasing with increasing system size. These results
suggest that thermalization occurs in this regime.

In order to further support the conclusions of the finite
size scaling analysis we look at the actual diagonal and mi-
crocanonical expectation values of observables for several
quenches. Results forn(k = 0) are shown in Fig. 3, as a
function of the energy. In all regimes, the microcanonical
results can be seen to be almost independent of the energy,
while the diagonal ensemble results exhibit fluctuations that
increase asα increases. Hence, increasingα increases the
difference between the infinite-time-average and the micro-
canonical results, as well as increases the dependence of the
infinite-time-average on the initial state selected.

A natural question that follows is whether the absence of
thermalization, as well as the sensitivity to the initial state se-
lected, for largeα, is related to the breakdown of ETH (as seen
in clean systems approaching an integrable point [10, 11]) or
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FIG. 3. (Color online) Microcanonical and diagonal resultsfor
n(k = 0) in 51 different quenches. The systems have 18 sites and
6 particles, withα = 0.6, 1.0, and 1.4.
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FIG. 4. (Color online)〈∆nmax
ii 〉dis and〈∆Nmax

ii 〉dis (main panels), and
〈∆navg

ii 〉dis and〈∆Navg
ii 〉dis (insets) vs system size. Lines are the same

as in Fig. 2. As a consequence of localization effects, ETH does not
hold for large values ofα.

it is rather related to some atypical properties of the overlaps
Cj . To answer that question, we compute the normalized dif-
ference between the observable in each eigenstate and in the
microcanonical ensemble

∆Oii =
∑k |Oii (k)−Omicro(k)|

∑k Omicro(k)
. (6)

This allows us to determine, for each disorder realiza-
tion, the maximal difference within the microcanonical win-
dow ∆Omax

ii = Max[∆Oii ]∆E as well as the average∆Oavg
ii =

1
N∆E

∑i ∆Oii . We then average both quantities over different

disorder realizations to obtain〈∆Omax
ii 〉dis and〈∆Oavg

ii 〉dis.
In the main panels in Fig. 4, we depict〈∆nmax

ii 〉dis and
〈∆Nmax

ii 〉dis vs L for different values ofα. ETH holds when
〈∆Omax

ii 〉dis → 0 for L → ∞. In the range of sizes that we can
study, this behavior is apparent forα .1. Forα & 1.2, we find
clear indications that ETH fails, which can be understood as
a result of localization induced by disorder [13]. A very sim-
ilar behavior is observed in the insets of Fig. 4, which show
〈∆navg

ii 〉dis and〈∆Navg
ii 〉dis. In the regionα ≈ 1, on the other

hand, our results are not conclusive. This is an interesting
problem for future works as, in the noninteracting limit,α = 1
corresponds to a metal-insulator transition characterized by
multifractal eigenstates. We speculate that fluctuations at all
scales associated with multifractality may lead to interesting
behavior in the many-body properties of the system.

The robustness of the results for〈∆Omax
ii 〉dis and〈∆Oavg

ii 〉dis,
as well as their clear correlation with the thermalization indi-
cators in Fig. 2, allow us to conclude that: (i) the lack (oc-
currence) of thermalization is directly related to the failure
(validity) of ETH; and (ii) that ETH holds and thermalization
occurs only for values ofα . 1. Forα greater than, and not
too close to, one, the quantum system will not thermalize even
though the dynamic of the classical counterpart is chaotic.



4

0.01

0.1
<

δn
(t

)>
di

s

α=0.6
α=1.0
α=1.4

10
0

10
1

10
2

10
3

10
4

t

0.01

0.1

<
δN

(t
)>

di
s

α=0.6
α=1.0
α=1.4

FIG. 5. (Color online) Time evolution of〈δn(t)〉dis and〈δN(t)〉dis
[see Eq. (7)] for differentα ’s. Thick lines are for 18 sites and 6
particles. Thin solid lines are power-law fits to the data. Other thin
lines are the corresponding results for 15 sites and 5 particles. An
average over 8500 (1020) realizations has been carried out for the
15-site (18-site) system.

A fundamental problem that has not been addressed in pre-
vious computational studies – due to large fluctuations thatoc-
cur during the time evolution in exact diagonalization studies
(because of finite size effects) and to the limited times acces-
sible in time-dependent density-matrix renormalization group
(t-DMRG) approaches [21] – is that of how observables ap-
proach their thermal values during the relaxation dynamics.
The naive expectation is that the approach should be exponen-
tial as in classical systems, where a few collisions per particle
suffice for the system to relax to thermal equilibrium. How-
ever, such a behavior has yet to be seen in the experiments
or numerical simulations of isolated systems in the quantum
regime. Disordered systems provide a unique opportunity to
address this problem as the average over disorder realizations
reduces dramatically fluctuations due to finite size effects. In
what follows, we compute the time evolution of the difference

δO(t) =
∑k |O(k, t)−Odiag(k)|

∑k Odiag(k)
, (7)

and then average it over different disorder realizations toob-
tain 〈δO(t)〉dis [10]. In Fig. 5, we show results for〈δn(t)〉dis
and 〈δN(t)〉dis as a function of time,t, for three different

values ofα and the two largest systems sizes that we can
study. Forα > 1, an extremely slow relaxation dynamics
can be observed, and the system may never reach the infinite
time-average prediction in any experimentally relevant time
scale. Forα . 1, the relaxation dynamics seen in those plots
is quite unexpected. We find that〈δn(t)〉dis and 〈δN(t)〉dis
exhibit a clear power-law decay (∝ t−γ ). The region over
which the power-law decay is observed extends over a decade
and increases with increasing system size. As the value ofα
decreases (and localization effects decrease) the exponent γ
of the power law increases. However, no typical time-scale
emerges during relaxation [22]. This indicates a new route to
thermal equilibrium in many-body quantum systems charac-
terized by a power-law rather than an exponential decay.

After these results, it is natural to speculate whether such
power-law behavior also occurs in clean systems. Theoreti-
cally, it is well known that in the semiclassical limit classi-
cal cantori [23], remnants of KAM tori, induce slow diffu-
sion in phase space and power-law localization of eigenstates
in the one-body problem [24]. Therefore, it is plausible that
in certain region of parameters the approach to equilibrium
in systems controlled by cantori is also power-law like. In-
terestingly, indications of power-law relaxation have already
been seen in classical systems [25] and, experimentally, ina
strongly correlated one-dimensional Bose gas [26].

In conclusion, we have studied an interacting many-body
disordered system that exhibits a transition between metallic
and insulating behavior. Remarkably, we have identified a re-
gion of parameters (α & 1.2) in which, due to localization ef-
fects, ETH fails and thermalization does not take place evenif
the system is nonintegrable [14]. Forα . 1, ETH is valid and
thermalization occurs. Furthermore, in the latter regime,we
have found a novel route towards thermal equilibrium char-
acterized by power-law approach to the thermal expectation
values and, hence, by the lack of a well defined equilibration
time. The relevance of this scenario to experiments with ul-
tracold gases, as well as clean strongly correlated systems, is
a topic that requires future exploration.
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88, 016401 (2001); I. Varga, Phys. Rev. B66, 094201 (2002).

[16] S. M. Nishigaki, Phys. Rev. E59, 2853 (1999).
[17] B. I. Shklovskii, B. Shapiro, B. R. Sears, P. Lambrianides, and

H. B. Shore, Phys. Rev. B47, 11487 (1993); A. M. Garcia-
Garcia and E. Cuevas,ibid. 75, 174203 (2007).

[18] L. S. Levitov, Phys. Rev. Lett. 64, 547 (1990) .
[19] E. Cuevas, Phys. Rev. Lett.83, 140 (1999), E. Cuevas, E. Louis,

and J. A. Vergés,ibid. 77, 1970 (1996).
[20] Since we work at fixed number of fermionsp, 〈N̂(k = 0)〉 =

p2/L, so we set it to zero without any loss of generality.
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