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We study spectral properties and the dynamics after a quamete-dimensional spinless fermions with short-
range interactions and long-range random hopping. We shatatsufficiently fast decay of the hopping term
promotes localization effects at finite temperature, whiokvents thermalization even if the classical motion
is chaotic. For slower decays, we find that thermalizatioesdoccur. However, within this model, the latter
regime falls in a new universality class, namely, obseesbkhibit a power-law (as opposed to an exponential)
approach to their thermal expectation values.

PACS numbers: 05.70.Ln,72.15.Rn,05.60.Gg,71.30.+h

The study of the dynamics and conditions for thermalizafurther insights on this problem. We show that many-body
tion in isolated many-body systems has a long history in thelocalization effects [13] invalidate the expectation thlaissi-
oretical physics [1]. In classical physics, the requiretaéor ~ cal chaos leads to thermalization of the quantum counterpar
thermalization are well understood. Boltzmann'’s ergogic h (For recent connections between the effect of localizaition
pothesis holds only if the motion of the individual parteise ~ Fock space and thermalization in spin systems, see Rej. [14]
fully chaotic. The situation in quantum systems is lessrclea We also put forward a new route towards thermalization in
Quantum time evolution is described by a linear differdntia quantum systems characterized by power-law relaxation dy-
equation so that dynamical chaos does not occur. The devatamics. We support these results by numerical calculaiions
opment of the theory of quantum chaos in the 80’s and 90’she following 1D spinless fermions system, with long-range
brought a new language and techniques to tackle this prolitopping and short-range interactions,
lem [2]. With respect to thermalization, this effort crylsta L L
lized in two main results: the so called Berry’s hypothe3]s [ g y ( ot ) A A1
which states that eigenstates of a classically chaotiesyst H= %J” fifi+He. +V|z (n' 2) <n,+1 2> @)
can be written as a finite sum of plane waves with random co-
efficients, and the eigenstate thermqlizgtion hypothEﬂiHQ whereﬂT creates a fermion in the sife andri; is the number
proposed by Deutsch [4] and Srednicki [S], which states thapserator in the sitg. The hopping term is built by means of a

observables in individual eigenstates of a generic mamybo 4 ,ssian random distribution, with zero mean) = 0, and
system already exhibit thermal behavior.
-1
5 .

In the limit V = 0, the properties of (1) depend @nbut
otonf > 0 [15]. Fora < 1, eigenstates are delocalized
nd the spectral correlations are described by Wigner-Dyso

Until a few years ago, technical difficulties prevented a sys )
tematic study of the proposals above. However, recent ad- <(Jii) > =
vances in cold gases systems, together with the enhancement

of computer power and the development of novel computa-
tional methods, are making possible a more quantitative-com
parison. This has dramatically boosted the theoretical an

experimental interest in non-equilibrium dynamics in gahe (WD) statistics. Foo > 1, eigenstates are localized and spec-

iatlr\l/\(/jatsh:;rgv?/lrllz:fOgrilrmgﬁtrgltlz uiﬁ;&%{;!”ﬁggﬁ ’ ;Eeqr?c’)ment-ral correlations are described by Poisson statisticsaferl,
um distributionpof a 0as o¥ bosbns tra qed in :'31 Uasi One(_aigenstates are multifractal and spectral correlatioasirar

. : 9 . bp q termediate between WD and Poisson [16, 17]. We then fix
dimensional (1D) geometry did not relax to the thermal pre-

- o . : B =0.1andVv =1. (The latter sets the unit of energy through-
ictlon, Ml s = expecledin o nieoable Yt [ putnis paper,ars — 1) Thesevales were chosen o -
tall ThepETHg on the other hand. has been confirrFr)1ed r]ui_mize finite size effectsff <« 1) and at the same time to avoid
me):ically for no,nintegrable systems’ [9], and has been showFlhe trivial insulator limit that occurs if the potential egg is

S : much larger than the kinetic one [11]. Likewise, if the iater
to break down when approaching integrable points [10-12]. tion is too weak, thermalization may not occur [10]. Finally

A better understanding of the conditions for thermalizatio we note that these types of long-range Hamiltonians have bee
would not only put the foundation of quantum statistical me-used to model systems with strong dipolar interactions.[18]
chanics on a more solid ground but also have a strong im- We first use a finite size scaling analysis to investigate the
pact in different fields, from cold gases to cosmology, whereeffect of the many-body interactions on the spectrum [17].
non-equilibrium dynamics play a key role. Here, we provideThis is a powerful tool to study many-body localization i th




presence of interactions [11, 13]. We compute the eigenval- In order to proceed, we first note that time scales and finite-
ues of the Hamiltonian (1) for different sizes and values ofsize effects relevant to the study of quantum thermalipatio
a utilizing standard diagonalization techniques. In allesas may depend on the observable and particle statistics [10, 12
the filling factorp/L = 1/3, wherelL is the system size and However, for few-body observables, it is generically extpdc

p is the number of particles. The spectrum thus obtained ishat thermalization occurs away from integrability. Hene,
appropriately unfolded, i.e, it is rescaled so that the spkc report results for two of those observables: the momentum
density on a spectral window comprising several level spacdistribution function fitk)] and the density-density structure
ings is unity. The number of disorder realizations congder factor N(K)],

is such that, statistical fluctuations are negligible. Asaling

variable we chtz)ose the functiam[l_?] re_late_d to the variance A(k) = 1 Zeik(lfm) f“lT fAmv N(k) _ 1 Zeik(lfm) Afm  (4)
var = (&) — (s)? of the level spacing distributioR(s). P(s) L & L &

is the probability of finding two neighboring eigenvalues at ' '

a distances = (&1 — &)/A, whereA is the local mean level which are the Fourier transforms of the one-particle and

spacing, and density-density correlation matrices [20], respectivapth
observables can be measured in ultracold gases experiments
n = [var— varyp|/[varr — varp] - 3) In all the cases shown below, we start from an eigen-

state of the Hamiltonian (1) in a certain realization of the
varyp = 0.286 (varp = 1) is the value of the variance for a disorder. Then, we change to another disorder realization
disordered metal (insulator) in the thermodynamic limiian for the samea, and study the time evolution of the ini-
(8" = [S'P(s) [19]. An increase (decrease) pfwith L sig-  tial state with this new Hamiltoniartdin. This procedure
nals that the system will be an insulator (metal) in the therm is usually known as a quench. The initial staf¢’(0))] is
dynamic limit. selected such that the time evolving system has an energy
Figure 1 depicts results for vs o for different sizes. Itis E = (¥(0)|Hsin|¥(0)), which, for every disorder realization,
apparent that foor > 1.2 the parameten increases with sys- is the same as the one of a thermal state with temperature
tem size, as is expected of an insulator. Hence, localizatioT = 10.0 (E = Tr{e Min/THg,} /Tr{e Mn/T}). This yields
takes place in the interacting system, in contrast to th&stla energies that fall close to the center of the spectrum of the fi
cal counterpart, which is chaotic for any Fora < 1, onthe  nal Hamiltonian. In what followsQ;; are the matrix elements
other hand/) behaves as expected of a metal. To be certaimf a given observable in the eigenstates of the final Hamil-
whether the system is metallic far~ 1, much larger systems, tonian, O;; = (¢4|O|y;), andC; is the overlap between the
currently not accessible numerically, need to be studied. initial state and;), C; = (¢;|¥(0)).
In order to determine whether thermalization occurs fol-

1.0 lowing the quench, one needs to find a meaningful quan-
- tity to compare with the microcanonical (thermal) average,
0.8- Onicro = ﬁ Y Ojj, where_f,e is the number of states in
| the microcanonical window (centered aroubdand withAE
0.6 selected such that the average is robust against small ebang
- | of AE). If relaxation takes place for the observables of in-
terest, and the spectrum is nondegenerate, the infinite time
0.4 average (also known as the diagonal ensemble prediction)
I Odiag = ¥ j|Cj|?Ojj is the right choice [9]. We first compute
0.2 the normalized difference between these two ensembles,
0— AO = 2k |Odiag(k) - Omicro(k)| : (5)
0 ¥ k Odiag(K)

FIG. 1. (Color online) Scaling variable [see Eq. (3)] as a function and then average it over different disorder realizationsito
of a for different system sizes but the same filling factof31For  tain (AO)qis. Note that here, and in what follows, b@* we

a <1 (a 2 1.2),n decreases (increases) with the system size. Thignean ‘" or “N” for the momentum distribution and structure
is a signature of a metallic (insulating) phase. The numbeeadiza-  factor, respectively.

tions is 10000, 10000, and 400 for= 12, 15, and 18, respectively. In Fig. 2, we depict{An)qis and (AN)gis for different val-

ues ofa vs system size. Thermalization occurs(&fO)is

We now investigate the thermalization properties of thevanishes in the thermodynamic limit. A nonzero value of
Hamiltonian (1). We aim to (i) identify a region af’s for (AO)gis in this limit indicates that the observab® relaxes
which the system does not thermalize even though the clage a nonthermal expectation value. For> 1, a weak size
sical counterpart does, (ii) see how that region relatebeo t dependence is observed for the largest system sizes we can
localization regime found by the spectral analysis, (iijgs-  study, with (AO)q;s likely saturating to non-zero values for
tigate the microscopic origin of the lack of thermalizatiand  a = 1.2. Therefore, thermalization is not expected to occur in
(iv) study the approach to equilibrium in the regionad$ for  this regime. Interestingly, as the value mfdecreases below
which thermalization eventually occurs. a ~ 1, the normalized differences exhibit a fast decrease for



0= 12 15 18

L
FIG. 2. (Color online)(An)gis and (AN)is [see Eq. (5)], as a func-
tion of the system size, fom = 0.6, 0.8, 10, 12, and 14. Points
correspond tdL, p) = (9,3),(12,4), (15,5), and(18,6). The disor-
der average is performed over at lea8@® different realizations for
L <15, and 1020 fot. = 18. The classical dynamics is chaotic but
there is no thermalization for large due to localization effects.

FIG. 4. (Color onlineAn"®) 4is and (AN ;s (main panels), and
(An5"9) gis and (ANSY9) s (insets) vs system size. Lines are the same
as in Fig. 2. As a consequence of localization effects, ETébdmt
hold for large values ofr.

it is rather related to some atypical properties of the @yl
Cj. To answer that question, we compute the normalized dif-

the smallest systems shown. They become much smaller thderence between the observable in each eigenstate and in the
those fora 2 1.2 for the largest system sizes accessible heremicrocanonical ensemble
for wh.ich <AO>di§ is very .close tc_) Zero within_our error bars  5k1Gii (K) — Omicro(K)|
and still decreasing with increasing system size. Thesdtses AG; = .
suggest that thermalization occurs in this regime. >k Omicro(k)

In order to further support the conclusions of the finite This allows us to determine, for each disorder realiza-
size scaling analysis we look at the actual diagonal and mition, the maximal difference within the microcanonical win
crocanonical expectation values of observables for severgow AO'® = Max|AQ;|ae as well as the averaghaoﬁ“’g =
?uenches.f rI?esults for(k = ?l) are showr;1 in Fig. 3, as a Iﬁ $iAO;. We then average both quantities over different
unction of the energy. In all regimes, the microcanonicaly; At sAOmaxy avo,
results can be seen to be almost independent of the energdy;ﬁgr?ﬁé r;i:rz]agggzltso i?]bt,gg&a" V%gsggpdi@%hm%ﬁ and
increase as: increases. Honce, creasinginorenses the (o ds S L fo diferent values ofr. ETH holds when

. y maxy . 1

difference between the infinite-time-average and the microéﬁ%g/’ tiwdig ;ﬁ;\%t i?a;obalrne:;%rznf e,:gfrzlieig’"xevﬁgan
canonical results, as well as increases the dependence of ey ingications that ETH fails, which can be understood as
infinite-time-average on the initial state selected. a result of localization induced by disorder [13]. A very sim

A natural question that follows is whether the absence ofj5r pehavior is observed in the insets of Fig. 4, which show
thermalization, as well as the sensitivity to the initialtstse- (A9 s and (AN29) 4is. I the regiona ~ 1, on the other
lected, for large, is related to the breakdown of ETH (as seenpang “our results are not conclusive. This is an interesting

in clean systems approaching an integrable point [10, Ir1]) 0prohlem for future works as, in the noninteracting linait= 1
corresponds to a metal-insulator transition charactérine

(6)

multifractal eigenstates. We speculate that fluctuatidradl a

04fare=0.6 (b)a=1.0 (c)a=1.4 scales associated with multifractality may lead to inténgs
’Ior behavior in the many-body properties of the system.
L oiganiairts s ||Lierbac e sae |[gteipii The robustness of the results f&O]"®) gis and(AO5 %) gis,
s — T ool as well as their clear correlation with the thermalizatiodii
0.3 : E}}!ff I i | cators in Fig. 2, allow us to conclude that: (i) the lack (oc-
R T B Ry S S N currence) of thermalization is directly related to the Uesl

E E E
FIG. 3. (Color online) Microcanonical and diagonal restftis

(validity) of ETH; and (ii) that ETH holds and thermalizatio
occurs only for values ofr < 1. Fora greater than, and not

n(k = 0) in 51 different quenches. The systems have 18 sites angng close to, one, the quantum system will not thermalize eve
6 particles, witha = 0.6, 1.0, and 14.

though the dynamic of the classical counterpart is chaotic.



4

values ofa and the two largest systems sizes that we can
study. Fora > 1, an extremely slow relaxation dynamics
can be observed, and the system may never reach the infinite
time-average prediction in any experimentally relevamieti
scale. For < 1, the relaxation dynamics seen in those plots
is quite unexpected. We find th&dn(t))qis and (ON(t))gis
exhibit a clear power-law decayl(t~Y). The region over
which the power-law decay is observed extends over a decade
and increases with increasing system size. As the value of
decreases (and localization effects decrease) the expgnen
of the power law increases. However, no typical time-scale
emerges during relaxation [22]. This indicates a new route t
thermal equilibrium in many-body quantum systems charac-
terized by a power-law rather than an exponential decay.

g After these results, it is natural to speculate whether such
a power-law behavior also occurs in clean systems. Theoreti-
5 = ‘ 3 = cally, it is well known that in the semiclassical limit cl&ss

10 10 t102 10 10 cal cantori [23], remnants of KAM tori, induce slow diffu-

sion in phase space and power-law localization of eigessstat

[see Eq. (7)] for differentr’s. Thick lines are for 18 sites and 6 @n the o_ne-bOQy problem [24]. Therefore, it is pIausib_I(_attha
particles. Thin solid lines are power-law fits to the datahédthin !n certain region of parameters_t_he approach to eq_UIIIbrlum
lines are the corresponding results for 15 sites and 5 festicAn  iN Systems controlled by cantori is also power-law like. In-

average over 8500 (1020) realizations has been carriedoouhé  terestingly, _indicati(_)ns of power-law relaxation havaaahly .
15-site (18-site) system. been seen in classical systems [25] and, experimentaly, in

strongly correlated one-dimensional Bose gas [26].
In conclusion, we have studied an interacting many-body

A fundamental problem that has not been addressed in prelisordered system that exhibits a transition between fieetal
vious computational studies — due to large fluctuationsadbat and insulating behavior. Remarkably, we have identified a re
cur during the time evolution in exact diagonalization s&gd  gion of parametersy( 2 1.2) in which, due to localization ef-
(because of finite size effects) and to the limited times sicce fects, ETH fails and thermalization does not take place &ven
sible in time-dependent density-matrix renormalizatioougp ~ the system is nonintegrable [14]. Far< 1, ETH is valid and
(t-DMRG) approaches [21] — is that of how observables apthermalization occurs. Furthermore, in the latter regime,
proach their thermal values during the relaxation dynamicshave found a novel route towards thermal equilibrium char-
The naive expectation is that the approach should be exponeacterized by power-law approach to the thermal expectation
tial as in classical systems, where a few collisions peiigart values and, hence, by the lack of a well defined equilibration
suffice for the system to relax to thermal equilibrium. How- time. The relevance of this scenario to experiments with ul-
ever, such a behavior has yet to be seen in the experimerirsicold gases, as well as clean strongly correlated sysisms
or numerical simulations of isolated systems in the quantuna topic that requires future exploration.
regime. Disordered systems provide a unique opportunity to
address this problem as the average over disorder realizati ACKNOWLEDGMENTS
reduces dramatically fluctuations due to finite size effelcts
what follows, we compute the time evolution of the differenc

FIG. 5. (Color online) Time evolution ofdn(t))qis and (ON(t))gis
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