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Based on the soliton solution on a continuous wave background for integrable Hirota equation,
the reduction mechanism and the characteristics of the Peregrine rogue wave in the propagation of
femtosecond pulses of optical fiber are discussed. The results show that there exist two processes of
the formation of the Peregrine rogue wave, one is the localized process of CW background, other is
the reduction process of the periodization of the bright soliton. The characteristics of the Peregrine
rogue wave is exhibited by strong temporal and spatial localization. Also, various initial excitations
of the Peregrine rogue wave are performed and the results show that the Peregrine rogue wave can
be excited by a small localized (single peak) perturbation pulse of the continuous wave background,
even for the nonintegrable case. The numerical simulations show that the Peregrine rogue wave
is unstable. Finally, through a realistic example, the influence of the self-frequency shift to the
dynamics of the Peregrine rogue wave is discussed. The results show that, in the absence of the
self-frequency shift, the Peregrine rogue wave can splits into several subpusles, however, when the
self-frequency shift is considered, the Peregrine rogue wave no longer splits, and exhibits mainly a
peak changing and increasing evolution property of the field amplitude.

PACS numbers: 42.65.Tg, 42.81.Dp, 42.79.Sz

I. INTRODUCTION

Rogue wave is an oceanic phenomenon with amplitude
much higher than the average wave crests around them
[1]. So far, this phenomenon has not been understood
completely due to the difficult and restricted observa-
tional conditions. Therefore, a great deal of attentions
have been paid to understand better their physical mech-
anisms, and suggested that the rogue waves appeared in
the ocean were mainly caused by the wave-wave non-
linear interaction, such as modulation instability of the
Benjamin-Feir-type [2–6]. Recently, the rogue waves have
been observed in optical fibers [7], in superfluid helium
[8], and in capillary waves [9], respectively. These dis-
coveries indicate that the rogue waves may be rather
universal. Certainly, we do not expect the occurrence
of the rogue waves in the ocean due to its enormous de-
structiveness. In optics, however, the optical rogue waves
produced in supercontinuum generation can be used to
generate highly energetic optical pulses [7, 10–13].

The deep waves in ocean and the wave propaga-
tion in optical fibers can be described by the nonlin-
ear Schrödinger (NLS) equation. Based on the model,
the rogue wave phenomenon have been extensively stud-
ied, including rational solutions and their interactions
[14–21], pulse splitting induced by higher-order modu-
lation instability and wave turbulence [22, 23]. A fun-
damental analytical solution on the rogue waves is Pere-
grine solution (PS) which was first presented by Pere-
grine [24]. PS is a localized solution in both time and
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space, and is a limiting case of Kuznetsov-Ma solitons
[25, 26] and Akhmediev breathers [27]. Recently, the
excitation conditions of PS have been demonstrated ex-
perimentally in optical fiber, and explicitly characterized
its two-dimensional localization [28, 29]. It should be
noted that the results are theoretically described by NLS
equation, which is valid for the picosecond pulses. When
describing the characteristics of PS in the femtosecond
regime, we must consider some higher-order effects, such
as third-order dispersion (TOD), self-steepening and self-
frequency shift and so on. In this case, we should consider
the higher-order nonlinear Schrödinger (HNLS) equation
in the form [30]

∂q

∂z
= i

(

α1
∂2q

∂t2
+ α2 |q|2 q

)

+ α3
∂3q

∂t3

+ α4
∂ |q|2 q
∂t

+ α5q
∂ |q|2
∂t

, (1)

where q(z, t) is the slowly varying envelope of the elec-
tric field, z and t denote normalized propagation dis-
tance and retarded temporal coordinate, respectively,
and the parameters α1, α2, α3, α4 and α5 are the real con-
stants related to the group velocity dispersion (GVD),
the self-phase modulation (SPM), the third-order disper-
sion (TOD), the self-steepening and the delayed nonlin-
ear response effect, respectively.
Generally, the HNLS equation (1) is not integrable.

To solve the equation (1), we first consider the special
parametric choice with α2 = 2µ2α1, α4 = 6µ2α3, α4 +
α5 = 0 so that Eq. (1) becomes [31]
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which is usually called the Hirota equation, where the
parameter µ is a real constant.
The equation was first presented by Hirota [31], and

subsequently many researchers analyzed this equation
from different points of view [32–39]. Recently, the rogue
waves and the rational solutions of the Hirota equation
have been discussed in the forms of the two lower-order
solutions by employing the Darboux transformation tech-
nique [40]. In this paper, based on the soliton solution
on a continuous wave (CW) background for integrable
Hirota equation (2), we discuss the formation mecha-
nism and the characteristics of the PS in the femtosecond
regime. The results show that the PS exhibits a feature
of temporal and spatial localization and can be excited
by a small localized (single peak) perturbation pulse of
CW background even for nonintegrable HNLS equation
(1). Based on the result, we discuss the dynamics of the
Peregrine rogue wave through a realistic example.
The paper is organized as follows. In Sec. II, we

present explicit process of the formation of the PS from
the Kuznetsov-Ma solitons and Akhmediev breathers
based on the soliton solution on a continuous wave (CW)
background for Hirota equation and discuss the charac-
teristics of the PS. Various initial excitations of the PS
are discussed in Sec. III. Subsequently, in Sec. IV, we
investigate the influence of the self-frequency shift to the
dynamics of the Peregrine rogue wave by employing a
realistic example. Our results are summarized in Sec.
IV.

II. THE PEREGRINE SOLUTION INDUCED BY

INTERACTION BETWEEN THE CONTINUOUS

WAVE BACKGROUND AND SOLITON

By employing Darboux transformation, one can con-
struct the soliton solution on a continuous wave back-
ground for Eq. (2) as follows [38, 39]

q(z, t) =

(

A+As
a cosh θ + cosϕ

cosh θ + a cosϕ

+iAs
b sinh θ + c sinϕ

cosh θ + a cosϕ

)

exp (iϕc) . (3)

Here

θ = MIT − (ν1MR + ν2MI)Z,

ϕ = MRT − (ν2MR − ν1MI)Z,

ϕc = ωT +
[

(2µ2A2 − ω2)α1 + ω(6µ2A2 − ω2)α3

]

Z,

with T = t− t0, Z = z − z0, and the coefficients are a =
−2µ2AAs/(µ

2A2
s + M2

R), b = −2µAMR/(µ
2A2

s + M2
R),

and c = MI/(µAs), which implies that MI = 0 as As =
0. And other coefficients ν1 = µAs[α1 + (ω + 2ωs)α3],
ν2 = (ω+ωs)α1+(ω2+ωωs+ω2

s−2µ2A2−µ2A2
s)α3, MR =

{[((ωs − ω)2 + 4µ2A2 − µ2A2
s)

2 + 4µ2A2
s(ωs − ω)2]1/2 +

((ωs −ω)2 +4µ2A2 − µ2A2
s)}1/2/

√
2, and MI = {[((ωs −

ω)2 + 4µ2A2 − µ2A2
s)

2 + 4µ2A2
s(ωs − ω)2]1/2 − ((ωs −

ω)2 + 4µ2A2 − µ2A2
s)}1/2/

√
2, and t0, z0, A, ω, As, and

ωs are the arbitrary real constants, and without loss of
generality we assume that A and As are non-negative
constants. The solution (3) includes two special cases.
One is that as the amplitude A vanishes, it reduces to
the solution qs(z, t) = Ase

iϕs sech θ, where θ = µAsT −
µAs[2ωsα1+(3ω2

s−µ2A2
s)α3]Z and ϕs = ϕc+ϕ = ωsT +

[
(

µ2A2
s − ω2

s

)

α1 + ωs(3µ
2A2

s − ω2
s)α3]Z, which describes

a bright soliton solution with the maximal amplitude As.
The other is that when the soliton amplitude As vanishes,
it reduces to the continuous wave (CW) light solution
qc(z, t) = Aeiϕc . Therefore, in general, the exact solution
q(z, t) in Eq. (3) describes a soliton solution embedded
in a CW light background with the group velocity Vsc =
(ν1MR + ν2MI)/MI [39]. Especially, when α3 = 0 and
taking α1 = −1, µ = 1, the solution (3) coincides with
the result given in Ref. [41], which is firstly derived from
NLS equation by N. Akhmediev and V. I. Korneev [27].
In the limit (As, ωs) → (2A,ω), Eq. (3) reduces to PS

as follows

qp(z, t) = Aeiϕc

[

4 + i8CZ

1 + 4C2Z2 + 4B2 (T −DZ)2
− 1

]

,

(4)
where B = µA, C = 2B2(α1 + 3ωα3) and D = 2ωα1 +
3(ω2 − 2B2)α3, which is a rational fraction solution, and
is firstly derived from Kuznetsov-Ma Breather (KMB) by
H. Peregrine [24–26] and so is called the Peregrine solu-
tion or the Peregrine rogue wave (note that it is regarded
as the Peregrine soliton in Refs. [28, 29]). Here (t0, z0)
presents the peak position of the PS. In order to un-
derstand the characteristics of the solution (3), Figure 1
presents the reduced process from the solutions (3) to the
PS (4) as (As, ωs) → (2A−, ω) and (As, ωs) → (2A+, ω),
respectively. From them one can see directly that the
solution (3) commonly exhibits a breather characteris-
tics, and the separation between adjacent peaks gradu-
ally increases as (As, ωs) → (2A,ω), eventually reduces
into the PS. The most impressive feature on the PS is
localized in both time and space. The peak position
of the PS is fixed at spatio-temporal position z = z0
and t = t0 during the reduction, and the peak power
|qp(z0, t0)|2 = (A + As)

2 → 9A2 as As → 2A, which
means that the PS with peak power 9A2 can be gener-
ated by choosing an initial excitation properly.
It should be pointed out that in the reduction process

mentioned above, the physical mechanism for the for-
mation of the PS has some differences. Figs. 1(a−)-(e)
demonstrate a localized process of CW background along
the slope directionKϕ = MR/(ν2MR−ν1MI), while Figs.
1(a+)-(e) show a periodization process of bright soliton
along the slope direction Kθ = MI/(ν1MR + ν2MI).
Furthermore, Figure 2 presents the contour plots of Kθ

and Kϕ as a function of As and ωs for given A and
ω. Note that Kϕ is infinite as ν2MR − ν1MI = 0 ex-
cept for the point (2A,ω), which corresponds to the line
t = t0 and appears at the sixth curve in Fig. 2(b). When
(As, ωs) → (2A,ω), the limitations of Kϕ and Kθ do not
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exist, and at this point the solution is localized along
both slope directions Kϕ and Kθ, namely, the PS ap-
pears. Therefore, the PS should be a middle state in
the process of the localization of CW converting into the
periodization of the bright soliton, as shown in Ref. [17].
In order to understand better the reduction processes

of the PS, we consider a especial case for the solution
(3) with ωs = ω. In this case, the solution (3) has two
different expressions. When A2

s < 4A2, the solution (3)
can be written as

q(z, t) =

(

ΩR
ΩR cosh θ + iAs sinh θ

2A cosh θ −As cosϕ
−A

)

eiϕc , (5)

where θ = µ2AsΩR(α1 + 3ωα3)Z and ϕ = µΩRT −
µΩR[2ωα1 + (3ω2 − 2µ2A2 − µ2A2

s)α3]Z with ΩR =
√

4A2 − A2
s being a modulation frequency. Here Kθ = 0

andKϕ = 1/[2ωα1+(3ω2−2µ2A2−µ2A2
s)α3]. Therefore,

the solution (5) is periodic with period tper = 2π/(µΩR)
along the t axis and localized along the z axis, and is
usually called Akhmediev breather (AB), which can be
considered as a modulation instability process [42]. In
this case, the solution (5) can reduce to the CW back-
ground qc(z, t) as As → 0, and with the increasing of As

the CW background is gradually localized due to the in-
teraction with the soliton and forms a periodic breather
with period tper, i. e. Akhmediev breather (AB) [see Fig.
3(a)], eventually when As tends to 2A, the solution (5)
becomes the PS. This process represents the reduction
of CW→AB→PS. Also, it can be described by the ratio
between the period tper and the temporal width δt0 as
follows

tper
δt0

=
2π

cos−1
(

As

A − 2 A
As

) , (6)

where the temporal width δt0 is defined as the width
from zero-valued of intensity to adjacent peak [28]. Fig-
ure 3(b) presents the dependence of the ratio tper/δt0 on
As/A. From it, one can see that when As/A approaches
to 2, the ratio tper/δt0 tends to infinity, which implies
that the separation between peaks is more and more
larger, eventually results in the localization along the t
axis, and forms the PS. From the expression (6), one can
see that this process does not depend on the higher-order
parameter α3, which means that when the higher-order
effects with the conditions α2 = 2µ2α1, α4 = 6µ2α3, and
α4 + α5 = 0 simultaneously appear in optical fiber, they
do not influence the characteristics of the PS. It should
be emphasized that the Peregrine solution generated by
the process of the reduction of CW→AB→PS has been
already studied theoretically and experimentally in the
framework of NLS equation [14, 17, 26–29], here we pre-
sented the corresponding descriptions in the femtosecond
regime.
When A2

s > 4A2, the solution (3) can reduce to the
following form

q(z, t) =

(

ΩI
ΩI cosϕ+ iAs sinϕ

As cosh θ − 2A cosϕ
−A

)

eiϕc , (7)

where θ = µΩIT−µΩI [2ωα1+(3ω2−2µ2A2−µ2A2
s)α3]Z

and ϕ = µ2AsΩI(α1 + 3ωα3)Z with ΩI =
√

A2
s − 4A2.

Here Kθ = 1/[2ωα1+(3ω2−2µ2A2−µ2A2
s)α3] and Kϕ =

0. Especially as As ≫ 2A, namely ΩI ∼ As, the solution
(7) can be approximated as q(z, t) ≈ qs(z, t) − qc(z, t),
which is the superposition of a CW solution and a bright
soliton with the larger amplitude As. From the so-
lution (7), one can see that it is a periodic function
with period zper = 2π/µ2AsΩI(α1 + 3ωα3) along the
z axis and is localized along the t axis, and possesses
the periodic peaking property of the field amplitude like
Kuznetsov-Ma soliton (KMS) [25, 26, 38], and so is usu-
ally called Kuznetsov-Ma soliton, as shown in Fig. 3(c).
In this case, the solution (7) can reduce to the bright
soliton qs(z, t) as A → 0, and with the increasing of A,
the bright soliton is periodized due to the interaction
with CW background and forms a Kuznetsov-Ma soliton
(KMS), eventually reduces into the PS. This process rep-
resents the reduction of bright soliton→KMS→PS. Sim-
ilarly, this process can be described by the ratio between
the period zper = 2π/µ2AsΩI(α1 + 3ωα3) and δz0 in the
form

zper
δz0

=
π

cos−1
[

As(−7A2−2AAs+A2
s
)

2A(A2−2AAs−A2
s
)

] , (8)

where δz0 is defined as the distance between two corre-
sponding locations of half of the peak intensity along the
slope direction Kθ. Figure 3(d) presents the dependence
of the ratio zper/δz0 on As/A. From it, one can see that
when As/A approaches to 2, the ratio zper/δz0 tends to
infinity, which means that the distance between peaks is
more and more larger, eventually results in the formation
of the PS. Similarly, the expression (8) does not depend
on the parameter α3.
Another feature of PS can be described by the z-

independent integral and the energy exchange between
the PS and the CW background. Indeed, by introducing
the light intensity against the CW background as follows

Ec(t, z) = |qp (t, z)|2 − |qp (±∞, z)|2

= A2 8 + 32C2Z2 − 32B2 (T −DZ)
2

[1 + 4C2Z2 + 4B2 (T −DZ)2]2
, (9)

it can be shown that it possesses the z-independent in-

tegral property, i. e.
∫ +∞

−∞
Ec(t, z)dt = 0. From the con-

dition Ec(t0 ± 1/2B, z0) = 0, one can define the width

of PS as 1/B, and have integrals
∫ +1/2B

−1/2B
Ec(t, z0)dt =

4A2/B and
∫ −1/2B

−∞
Ec(t, z0)dt +

∫∞

+1/2B
Ec(t, z0)dt =

−4A2/B. These results show that the energy of PS with
stronger intensity mainly concentrates in its central in-
terval (−1/2B, 1/2B), but as a result of z-independent
integral property, it loses the same energy in the back-
ground so that the relation S1+S2 = S3 hold, as shown in
Figs. 4(a)-4(c). It should be noted that because B = µA
is independence of the higher-order terms in Eq. (2), the
higher-order effects do not influence this property on the
PS.
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The energy exchange between the PS and the CW
background is of the form

Ee(z) =

∫ +∞

−∞

|qp (t, z)− qp (±∞, z)|2 dt

=
4A2π

B
√

1 + 4[2B2(α1 + 3ωα3)]Z2
. (10)

From the expression (10), one can see that Ee(z) is ape-
riodic function of z, which differs from the periodic ex-
change between the bright soliton and the CW back-
ground in Eq. (3) [39]. Also, one find that Ee(z) is
monotonously increasing as z < z0 and is monotonously
decreasing as z > z0, thus it takes maximal value at
z = z0, as shown in Fig. 4(d). This result shows that
at z = z0 the energy exchange between the PS and the
CW background reaches maximum. In order to under-
stand the influence of the higher-order effects on the PS,
Figure 4(d) presents the evolution plots of Ee(z) for dif-
ferent TOD parameter α3. From it, one can see that the
increase of the TOD parameter α3 can enhance the rate
of the energy exchange, as shown in Figs. 4(a) and 4(b).

III. INITIAL EXCITATIONS OF THE

PEREGRINE ROGUE WAVES

In this Section, we will discuss the initial excitations
of the Peregrine rogue wave. We start with considering
the excitation of the Peregrine rogue wave based on the
solutions (5) and (7). For the solution (5), linearizing its
initial expression, one find that the initial expression of
the solution (5) can be approximated by

q±(0, t) ≈ (ρ± + ǫ± cosϕ) eiϕc(0,t), (11)

where ρ± = (2A2 − A2
s ∓ iAsΩR)/(2A) with |ρ±| =

A, ǫ± = AsΩR(ΩR ∓ iAs)/(2A
2) exp[∓µ2As(α1 +

3ωα3)ΩRz0], and ϕ = µΩRT + µΩR[2ωα1 + (3ω2 −
2µ2A2 − µ2A2

s)α3]z0. Here the subscripts “+” and “−”
correspond to the case of α1+3ωα3 > 0 and α1+3ωα3 <
0, respectively. It can be shown that ǫ± → 0 as As → 2A.
Thus, the expression (11) can is regarded as an initial
condition with a small periodic perturbation of back-
ground with the period tper. The numerical simulations
show that the evolution of the exact solution (5) can be
well described by the initial approximation (11) (also see
Ref. [39]). Here one make use of the initial approxima-
tion (11) to excite the Peregrine rogue wave as As closes
to 2A.
Figure 5 presents the evolution plots of the numerical

solution of Eq. (2) with the initial condition (11) and
the comparisons of the intensity profile between numeri-
cal and exact Peregrine rogue waves at peak position for
α3 = 0 and α3 6= 0, respectively. From it, one can see
that when As approaches to 2A, the initial condition (11)
evolves into a string of near-ideal Peregrine rogue waves.
Although the theoretical results reveal that there only is

a Peregrine rogue wave in the limitation of As → 2A,
in practice, this can not implement due to ǫ± = 0 as
As = 2A. Furthermore, from Figs. 5(a) and 5(b), it
can be seen that the evolution for long distance shows
the breakup of the Peregrine rogue wave, which implies
that the Peregrine rogue wave is unstable. Also, from
Figs. 5(c) and 5(d), one can see that the presence of the
higher-order effects did not markedly influence the in-
tensity distribution of the Peregrine rogue wave at peak
position except for a displacement of the peak position,
but shorten the distance of energy exchange, as shown
in Figs. 5(a) and 5(b). This is agreement with that sug-
gested in Fig. 4(d).

In the following, we discuss the initial excitation in-
duced by the solution (7). In this case, one find that the
solution (7) can take the following particular form

q(z1, t) = (−A+ iΩI sech θ) e
iϕc(z1,t)

= Aei[ϕc(z1,t)+π] +ΩI sech θe
i[ϕc(z1,t)+

π

2 ] (12)

at the location z1 = (2nπ+π/2)/[µ2AsΩI(α1+3ωα3)]+
z0, n = 0,±1,±2, · · · , where θ = µΩIT − [2ωα1+(3ω2−
2µ2A2 − µ2A2

s)α3](2nπ+ π/2)/[µAs(α1 + 3ωα3)]. With-
out loss of generality, here we take n = 0. The expres-
sion (12) is the superposition of a CW and an aperiodic
hyperbolic secant function, especially as As → 2A, ΩI

tends to zero. This means that the expression (12) can
be regarded as an initial condition with a small aperiodic
(simple peak) perturbation of background, which differs
from the superposition of a CW and a periodic pertur-
bation in the expression (11). Here we make use of the
expression (12) as an initial condition to investigate the
excitation of the Peregrine rogue wave. Similarly, the nu-
merical simulations show that the evolution of the exact
solution (7) can be well described by the initial condition
(12) except for a translation.

Figure 6 shows the evolutions of the numerical solution
of Eq. (2) with the initial condition (12) and the com-
parisons of the intensity profile of numerical and exact
Peregrine rogue waves at peak position for α3 = 0 and
α3 6= 0, respectively. From it, one can see that the initial
condition (12) evolves into a near-ideal Peregrine rogue
wave, which differs from that shown in Figs. 5(a) and
5(b). Similarly, Figs. 6(a) and 6(b) show the breakup of
the Peregrine rogue wave for long distance, which implies
that the Peregrine rogue wave is unstable.

Comparing results in Fig. 5 and Fig. 6, we find that
a small localized (single peak) perturbation pulse of CW
background can excite a Peregrine rogue wave. Indeed,
every peak in the initial expression (11) can excite a Pere-
grine rogue wave, thus a periodic perturbation of back-
ground resulted in the generation of a string of the Pere-
grine rogue waves, as shown in Figs. 5(a) and 5(b). So
we can suggest that the Peregrine rogue wave can be ex-
cited by the interaction between the CW and a small lo-
calized (single peak) perturbation pulse. As an example,
we consider a simple initial condition with Gaussian-type
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perturbation pulse as follows

q(0, t) = A+ ǫ exp(−σt2), (13)

where ǫ is a modulation amplitude and a small quantity.
The numerical simulations show that when the width of
the initial perturbation pulse is wider enough, i. e. the
parameter σ is smaller enough, the Peregrine rogue wave
can be excited by the initial condition (13) even for non-
integrable HNLS equation (1). Figure 7 shows the evolu-
tion plots of the numerical solution for Eq. (1) with the
initial condition (13), in which includes a numerical evo-
lution of the initial condition (13) under nonintegrable
case, as shown in Fig. 7(c). From Fig. 7(d), one can see
that the main characteristics of the Peregrine rogue wave
is kept. Certainly, the Peregrine rogue wave is unstable.
This result can be used to understand the extreme local-
ized events in ocean.

IV. THE INFLUENCE OF THE

SELF-FREQUENCY SHIFT TO THE DYNAMICS

OF THE PEREGRINE ROGUE WAVE

It should be noted that the equation (1) have not in-
cluded the self-frequency shift effect arising from stim-
ulated Raman scattering because the parameter α5 is a
real number. In the Section, we will discuss the influence
of the self-frequency shift effect to the dynamics of the
Peregrine rogue wave. In this case, the model governing
pulse propagation can be written as [43]

∂Q

∂ξ
= −i

β2

2

∂2Q

∂τ2
+ iγ|Q|2Q+

β3

6

∂3Q

∂τ3

− γ

ω0

∂|Q|2Q
∂τ

− iγTRQ
∂|Q|2
∂τ

, (14)

where τ and ξ represent the temporal coordinate and
the propagation distance, β2 is the group velocity disper-
sion, β3 is the third-order dispersion, γ is the nonlinear
coefficient of the fiber, and TR is the Raman time con-
stant. By introducing the dimensionless transformations
Q(ξ, τ) =

√
P0q(z, t), t = τ/T0, and z = ξ/LD with the

dispersion length LD = T 2
0 /|β2 |, Eq. (14) becomes the

form of Eq. (1) with the coefficients α1 = −β2/(2 |β2 |),
α2 = γLDP0, α3 = β3LD/(6T

3
0 ), α4 = −γLDP0/(ω0T0)

and α5 = −iγTRLDP0/T0, respectively. It should be
pointed out that here α5 is a complex number, which
describes the self-frequency shift effect arising from stim-
ulated Raman scattering.
As an example, here we use realistic parameters for a

highly nonlinear fiber at 1550nm with the group velocity
dispersion β2 = −8.85 × 10−1 ps2/km, the third-order
dispersion β3 = 1.331× 10−2 ps3/km, and the nonlinear
parameter γ = 10 W−1·km−1 [28]. Thus, for a given
initial power P0, the parameters α1, α2, α3, α4 and α5

can be determined. Note that in our simulations we take
α2 = 1 by choosing a temporal scale T0 = [|β2 |/(γP0)]

1/2,

and the Raman time constant TR = 5fs when the self-
frequency shift is considered. We still take Eq. (13) as
the initial condition, in which the realistic width of the
initial perturbation pulse is T1 ≡ T0/

√
2σ.

Figure 8 presents the numerical evolution plots of the
initial condition (13) with the initial perturbation pulse
width T1 = 2ps for the different initial power P0. From
Fig. 8, it can be seen that, in the absence of the self-
frequency shift effect (TR = 0), the Peregrine rogue wave
in turn splits into two subpulses, three subpulses and so
on, and can split into more subpulses for higher initial
power, as shown in Figs. 8(a) and 8(b). These results
are similar to the pulse splitting induced by higher-order
modulation instability based on NLS equation in Ref.
[22], but here the complex splitting dynamic evolutions
are excited by a linear superposition of the CW and a
small localized (single peak) perturbation pulse, and the
higher-order effects, such as the third-order dispersion
and the self-steepening, are included. However, when
the self-frequency shift effect is considered, such splitting
of the Peregrine rogue wave no longer appears, as shown
in Figs. 8(c) and 8(d). It is surprising that, in this case,
the dynamics of the Peregrine rogue wave mainly exhibits
a peak changing propagation characteristic of the field
amplitude except for some of small radiations, and has
an increasing in peaking value, as shown in Figs. 8(e)
and 8(f). This property can be used to the generation of
the higher peak power pulse.
Furthermore, the dependences of the peak position

ξpeak of the excited Peregrine rogue wave on the mod-
ulation amplitude ǫ are considered, as shown in Fig. 9.
From it one can see that for a given initial perturba-
tion pulse width T1 or initial power P0, the peak position
ξpeak of the excited Peregrine rogue wave is a decreasing
function of the modulation amplitude ǫ. Thus one can
control the position of the excited Peregrine rogue wave
by choosing suitably the initial perturbation pulse width
or the initial power. Also, we find that the self-frequency
shift effect do not influence the peak position ξpeak of the
excited Peregrine rogue wave.

V. CONCLUSIONS

In summary, based on the soliton solution on a CW
background for integrable Hirota equation, we have pre-
sented the reduction mechanism and the main charac-
teristics of the Peregrine rogue wave in the propaga-
tion of femtosecond pulses of optical fiber. The re-
sults have shown that there exist two processes of the
formation of the Peregrine rogue wave, one is the re-
duction of CW→AB→PS, which is the localized pro-
cess of CW background, other is the reduction of bright
soliton→KMS→PS, which is the reduction process of the
periodization of the bright soliton. The characteristics of
the Peregrine rogue wave has been exhibited by strong
temporal and spatial localization. Also, the initial exci-
tations of the Peregrine rogue wave have been discussed.
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The results have shown that a Peregrine rogue wave can
be excited by a small localized (single peak) perturba-
tion pulse of CW background, even for the nonintegrable
HNLS equation. This means that the Peregrine rogue
wave is a result of interaction between the continuous
wave background and soliton. Furthermore, the numer-
ical simulations have shown the Peregrine rogue wave
is unstable. Finally, through the study for a realistic
highly nonlinear fiber, it has been found that the self-
frequency shift influences the dynamics of the Peregrine

rogue wave. The results shown that, in the absence of the
self-frequency shift, the Peregrine rogue wave can splits
into several subpusles, however, when the self-frequency
shift is considered, the Peregrine rogue wave no longer
splits, and exhibits mainly a peak changing and increas-
ing propagation property.
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Shanxi Scholarship Council of China grant 2011-010.

[1] C. Kharif, E. Pelinovsky, and A. Slunyaev, Rogue Waves

in the Ocean, (Springer, Heidelberg, 2009).
[2] C. Kharif and E. Pelinovsky, Eur. J. Mech. BFluids 22,

603 (2003).
[3] A. Slunyaev, Eur. J. Mech. BFluids 25, 621 (2006).
[4] V. E. Zakharov, A. I. Dyachenko, and A. O. Prokofiev,

Eur. J. Mech. BFluids 25, 677 (2006).
[5] V. P. Ruban, Phys. Rev. Lett. 99, 044502 (2007).
[6] Andonowati, N. Karjanto, and E. van Groesen, App.

Math. Mod 31, 1425 (2007).
[7] D. R. Solli, C. Ropers, P. Koonath, and B. Jalali, Nature

(London) 450, 1054 (2007).
[8] A. N. Ganshin, V. B. Efimov, G.V. Kolmakov, L. P.

Mezhov-Deglin, and P.V. E. McClintock, Phys. Rev.
Lett. 101, 065303 (2008).

[9] M. Shats, H. Punzmann, and H. Xia, Phys. Rev. Lett.
104, 104503 (2010).

[10] J. Dudley, G. Genty, and B. Eggelton, Opt. Express 16,
3644 (2008).

[11] D. R. Solli, C. Ropers, and B. Jalali, Phys. Rev. Lett.
101, 233902 (2008).

[12] A. Mussot, A. Kudlinski, M. Kolobov, E. Louvergneaux,
M. Douay and M. Taki, Opt. Express 17, 17010 (2010).

[13] M. Taki, A. Mussot, A. Kudlinski, E. Louvergneaux, M.
Kolobov, and M. Douay, Phys. Lett. A 374, 691 (2010).

[14] A. R. Osborne, M. Onorato, and M. Serio, Phys. Lett. A
275, 386 (2000).

[15] A. R. Osborne, Mar. Struct. 14, 275 (2001).
[16] N. Akhmediev, A. Ankiewicz, and M. Taki, Phys. Lett.

A 373, 675 (2009).
[17] N. Akhmediev, J. M.Soto-Crespo, and A. Ankiewicz,

Phys. Lett. A 373, 2137 (2009).
[18] A. Ankiewicz, N. Devine, and N. Akhmediev, Phys. Lett.

A 373, 3997 (2009).
[19] N. Akhmediev, J. M. Soto-Crespo, and A. Ankiewicz,

Phys. Rev. A 80, 043818 (2009).
[20] N. Akhmediev, A. Ankiewicz, and J. M. Soto-Crespo,

Phys. Rev. E 80, 026601 (2009).
[21] Zhenya Yan, Phys. Lett. A 374, 672 (2010).
[22] M. Erkintalo, K. Hammani, B. Kibler, Ch. Finot, N.

Akhmediev, J. M. Dudley, and G. Genty, Phys. Rev. Lett.
107, 253901 (2011).

[23] B. Kibler, K. Hammani, C. Michel, Ch. Finot, A. Picozzi,
Phys. Lett. A 375, 3149 (2011).

[24] D. H. Peregrine, J. Austral. Math. Soc. Ser. B25, 16
(1983).

[25] E. A. Kuznetsov, Sov. Phys. Dokl. 22, 507 (1977).
[26] Ya. C. Ma, Stud. Appl. Math. 60, 43 (1979).
[27] N. Akhmediev and V. I. Korneev, Theor. Math. Phys.

69, 1089 (1986).
[28] B. Kibler, J. Fatome, C. Finot, G. Millot, F. Dias, G.

Genty, N. Akhmediev, and J. M. Dudley, Nature Physics
6, 790 (2010).

[29] K. Hammani, B. Kibler, C. Finot, Ph. Morin, J. Fatome,
J. M. Dudley, and G. Millot, Opt. Lett. 36, 112 (2011).

[30] Y. Kodama and A. Hasegawa, IEEE J. Quantum Elec-
tron. 23, 510 (1987).

[31] R. Hirota, J. Math. Phys. 14, 805 (1973) .
[32] M. Lakshmanan and S. Ganesan, J. Phys. Soc. Jpn. 52,

4031 (1983).
[33] D. Mihalache, L. Torner, F. Moldoveanu, N.-C. Panoiu,

and N. Truta, Phys. Rev. E 48, 4699 (1993).
[34] D. Mihalache, N.-C. Panoiu, F. Moldoveanu, and D.-M.

Baboiu, J. Phys. A: Math. Gen. 27, 6177 (1994).
[35] K. Porsezian and K. Nakkeeran, Phys. Rev. Lett. 76,

3955 (1996).
[36] D. Mihalache, N. Truta, and L. C. Crasovan, Phys. Rev.

E 56, 1064 (1997).
[37] L. Li, Z. H. Li, Z. Y. Xu, G. S. Zhou, and K. H.

Spatscheck, Phys. Rev. E 66, 046616 (2002).
[38] Z. Y. Xu, L. Li, Z. H. Li, and G. S. Zhou, Phys. Rev. E

67, 026603 (2003).
[39] S. Q. Li, L. Li, Z. H. Li, and G. S. Zhou, J. Opt. Soc.

Am. B 21, 2089 (2004).
[40] A. Ankiewicz, J. M. Soto-Crespo, and N. Akhmediev,

Phys. Rev. E 81, 046602 (2010).
[41] Q. H. Park and H. J. Shin, Phys. Rev. Lett. 82, 4432

(1999).
[42] M. J. Ablowitz, and P. A. Clarkson, Soliton, Nonlinear

Evolution Equations and Inverse Scattering (University
Press, Cambridge, 1991).

[43] G. P. Agrawal, Nonlinear Fiber Optics (Academic Press,
New York, 1995).

Figures



7

FIG. 1: (Color online) The reduction process from the solu-
tion (3) to the Peregrine solution (4) as (As, ωs) → (2A∓, ω).
(a−) As = A, ωs = 0.6ω; (b−) As = 1.45A, ωs = 0.7ω;
(c−) As = 1.6A, ωs = 0.8ω; (d−) As = 1.99A, ωs = 0.85ω;
(a+) As = 3A, ωs = 1.4ω; (b+) As = 2.5A, ωs = 1.3ω; (c+)
As = 2.4A, ωs = 1.2ω; (d+) As = 2.01A, ωs = 1.15ω; and (e)
the Peregrine solution given by (4) with As = 2A and ωs = ω.
The slope of red dashed lines is Kϕ, and black solid lines is
Kθ. Here the parameters are A = 1, ω = 1, t0 = 0, z0 = 5,
µ = 1, α1 = 0.5, and α3 = 0.05.

FIG. 2: (Color online) The contour plots of (a) Kθ and (b)Kϕ

as a function of As and ωs, where the parameters are A = 1,
ω = 1, µ = 1, α1 = 0.5, and α3 = 0.05, and the contour
values (from left to right) are 0.02, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6,
0.7, 0.9, 1.1, 1.3 in (a), and the contour values are 1.1, 1.2,
1.4, 1.8, 3, −2.5, −0.9, −0.4, −0.2, −0.1 in (b), respectively.

FIG. 3: (Color online) (a) and (c) The evolution plots of
the solutions (5) and (7), respectively, where the parameters
are the same as in Fig. 1 except for As = 1.5A in (a) and
As = 2.5A in (c); (b) and (d) The dependences of the ratio
tper/δt0 and zper/δz0 on As/A, respectively.

FIG. 4: (Color online) The evolution plots of the Peregrine
solution given by Eq. (4) for α3 = 0 in (a) and α3 = 0.2 in
(b), respectively; (c) The distribution of the light intensity
against the CW background given by Eq. (9) at z = z0; (d)
The evolutions of the energy exchange between the PS and
the CW background for the different TOD parameters. Here
the parameters are A = 1, ω = 1, t0 = 0, z0 = 5, µ = 1, and
α1 = 0.5.

FIG. 5: (Color online) The evolution plots of the numerical
solution of Eq. (2) with the initial condition (11) and the
comparisons of the intensity profiles of numerical and exact
results at peak position, respectively. (a) and (c) α3 = 0, (b)
and (d) α3 = 0.2. Note that in (c) and (d), the blue dotted
curves are the exact results given by Eq. (4) at z = z0 and
the black solid curves are the numerical results at z = 5.9 in
(a) and z = 5.2 in (b) [the white dotted lines in (a) and (b)],
respectively. Here As = 1.95, and other parameters are the
same as in Fig. 4.

FIG. 6: (Color online) The evolution plots of the numeri-
cal solution of Eq. (2) with the initial condition (12) and the
comparisons of the corresponding intensity profile at peak po-
sition, respectively. (a) and (c) α3 = 0, (b) and (d) α3 = 0.2.
Note that in (c) and (d), the blue dotted curves are the exact
results given by Eq. (4) at z = z0 and the black solid curves
are the numerical results at z = 10.2 in (a) and z = 6.4 in
(b) [the white dotted lines in (a) and (b)], respectively. Here
As = 2.05, ω = 0.5, and other parameters are the same as in
Fig. 4.

FIG. 7: (Color online) The numerical evolution plots of the
initial condition (13). (a) for NLS equation with α3 = 0; (b)
for Hirota equation (2) with α3 = 0.1; (c) for HNLS equation
(1) with α3 = 0.05, α4 = 0.285 and α5 = −0.315, and (d)
the distributions of the intensity profile at z = 6.975 in (a),
z = 6.825 in (b) and z = 6.9 in (c). Here α1 = 0.5, A = 1,
ǫ = 0.05 and σ = 0.05.

FIG. 8: (Color online) The numerical evolution plots of the
initial condition (13) for the different initial power. Here (a)
and (b) the absence of self-frequency shift (TR = 0); (c) and
(d) the presence of self-frequency shift (TR = 5fs), and (e)
and (f) the corresponding power density distributions at the
different distance labeled by the white dotted lines in (b) and
(c), respectively. In (a), (c) and (e), the initial power P0 =
0.3W, and in (b), (d) and (f), the initial power P0 = 0.4W.
Here ǫ = 0.2 and A = 1.

FIG. 9: (Color online) The dependences of the peak position
ξpeak of the excited Peregrine rogue wave on the modulation
amplitude ǫ for (a) the different initial power and a given ini-
tial perturbation pulse width T1 = 2ps, and (b) the different
initial perturbation pulse width T1 and a given initial power
P0 = 0.4W. Here the solid, dashed and dotted curves corre-
spond to the results of TR = 0, and the open diamonds, circles
and triangles correpond to the results of TR = 5fs, and the
parameter A = 1.
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