
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Quantifying spatiotemporal chaos in Rayleigh-Bénard
convection

A. Karimi and M. R. Paul
Phys. Rev. E 85, 046201 — Published  2 April 2012

DOI: 10.1103/PhysRevE.85.046201

http://dx.doi.org/10.1103/PhysRevE.85.046201


EN10854

REVIE
W

 C
OPY

NOT F
OR D

IS
TRIB

UTIO
N

Quantifying Spatiotemporal Chaos in Rayleigh-Bénard Convection

A. Karimi
Department of Engineering Science and Mechanics,

Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061

M. R. Paul
Department of Mechanical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061

Using large-scale parallel numerical simulations we explore spatiotemporal chaos in Rayleigh-
Bénard convection in a cylindrical domain with experimentally relevant boundary conditions. We
use the variation of the spectrum of Lyapunov exponents and the leading order Lyapunov vector
with system parameters to quantify states of high-dimensional chaos in fluid convection. We explore
the relationship between the time dynamics of the spectrum of Lyapunov exponents and the pattern
dynamics. For chaotic dynamics we find that all of the Lyapunov exponents are positively correlated
with the leading order Lyapunov exponent and we quantify the details of their response to the
dynamics of defects. The leading order Lyapunov vector is used to identify topological features of
the fluid patterns that contribute significantly to the chaotic dynamics. Our results show a transition
from boundary dominated dynamics to bulk dominated dynamics as the system size is increased.
The spectrum of Lyapunov exponents is used to compute the variation of the fractal dimension with
system parameters to quantify how the underlying high-dimensional strange attractor accommodates
a range of different chaotic dynamics.

PACS numbers: 05.45.Jn, 47.54.-r, 47.20.Bp, 05.45.Pq

I. INTRODUCTION

At the core of many problems of scientific interest
is a spatially extended system that is driven far-from-
equilibrium to yield spatiotemporal chaos (aperiodic dy-
namics in both space and time) [1]. Examples include
the dynamics of the weather and climate [2]; fluid turbu-
lence [3]; the intricate patterns that occur for reacting,
diffusing and advecting chemicals [4]; and the transition
to chaos in excitable media such as cardiac tissue [5].
It is expected for systems such as these that the dimen-
sion describing the attractor of the dynamics will be very
large. As a result, the powerful ideas of chaotic time se-
ries analysis [6], as well as geometrical based approaches
for estimating the dimension [7], are difficult to apply
and are often ineffective.

However, with the advance and availability of sophisti-
cated parallel algorithms and supercomputing resources
these high-dimensional systems are accessible to Lya-
punov exponent and Lyapunov vector based diagnostics.
Using the standard approach [8] of simultaneously evolv-
ing the tangent space equations with frequent Gram-
Schmidt reorthonormalizations allows one to compute
the spectrum of Lyapunov exponents. With knowledge of
the Lyapunov exponents the fractal dimension can be es-
timated using the well known Kaplan-Yorke equation [9].

A powerful aspect of this approach is that very large
dimensions are now accessible with an algorithm that
scales readily to parallel computing resources. Using this
approach we discuss results for Rayleigh-Bénard convec-
tion which is the buoyancy driven fluid convection that
occurs in a shallow fluid layer that is heated uniformly
from below. Rayleigh-Bénard convection is a canoni-
cal system for the study of pattern formation in sys-

tems that are driven far-from-equilibrium [1, 10]. The
study of Rayleigh-Bénard convection continues to play
an important role in building our physical understanding
of the complex dynamics that occur in driven spatially-
extended systems.

The desire for a quantitative understanding of high-
dimensional spatiotemporal chaos for experimentally ac-
cessible systems is an important challenge. In this pa-
per we discuss results for experimentally accessible con-
ditions with fractal dimensions as large as 50. To the best
of our knowledge this represents the highest dimension
dynamics that have been explored using Lyapunov based
diagnostics for laboratory conditions. Knowledge of the
fractal dimension can be used to provide fundamental in-
sights into the underlying chaotic dynamics. The numeri-
cal value of the fractal dimension provides an estimate for
the number of chaotic degrees of freedom that are active
in the system [7]. Given the number of chaotic degrees
of freedom that describe the dynamics one can construct
estimates for the length scales of these degrees of free-
dom on average. In addition, the variation of the fractal
dimension with changing system parameters allows one
to probe quantitatively how the attractor accommodates
different dynamics.

In the literature there are a number of new insights
provided by the study of fluid convection using informa-
tion gained from computing Lyapunov based diagnostics.
Egolf et al. [11] demonstrated that Rayleigh-Bénard con-
vection exhibited extensive chaos for large periodic do-
mains with aspect ratios 48 ≤ Γ ≤ 64 where Γ = L/d,
L is the side length of the domain, and d is the depth
of the fluid layer. In this study the system parameters
were chosen to yield the spiral defect chaos state [12].
The spatiotemporal dynamics of the leading order Lya-
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punov vector was studied and was found to be largest in
regions where roll pinch-off events were occurring. It was
suggested that the dynamics of these local defects were
contributing significantly to the disorder as opposed to
the visually striking spiral structures.

Scheel and Cross [13] used the leading-order Lyapunov
exponent and Lyapunov vector to perform a careful study
of the time-periodic and chaotic dynamics that occur in
a small cylindrical convection layer with Γ = 5 (where
Γ = r0/d and r0 is the radius of the convection do-
main). They conclude that repeating local defect dynam-
ics involving roll pinch-off events contribute significantly
to the short-time Lyapunov exponent without affecting
the long-time Lyapunov exponent. Interestingly, they
find that the non-repeating roll pinch-off events are what
contribute significantly to the long-time Lyapunov expo-
nent. This raises several interesting questions. How does
the leading order Lyapunov exponent discern between
repeating and non-repeating events? How do the other
Lyapunov exponents in the Lyapunov spectrum respond
to these events? In this paper we will shed some further
insight upon these questions.

Paul et. al [14] computed the spectrum of Lyapunov
exponents for chaotic convection in cylindrical domains
for aspect ratios 4.72 . Γ ≤ 15. It was determined that
Rayleigh-Bénard convection was extensively chaotic for
Γ & 7. Jayaraman et al. [15] explored the leading-order
Lyapunov exponent and Lyapunov vector for the domain
chaos state that occurs for Rayleigh-Bénard convection
in a rotating domain. An interesting feature of domain
chaos is the presence of propagating fronts as well as lo-
calized defect structures. A careful study revealed that
not all defect structures contributed equally to the lead-
ing order Lyapunov exponent, a result that is in agree-
ment with the findings of Scheel and Cross [13] for the
spiral defect chaos state.

In this paper we present a detailed study of chaotic
Rayleigh-Bénard convection using diagnostics based on
the spectrum of Lyapunov exponents and Lyapunov vec-
tors for a range of experimentally relevant conditions. In
Section II we describe the numerical approach used to
compute the flow fields, Lyapunov exponents, and Lya-
punov vectors. In Section III we discuss the dynamics of
the Lyapunov exponents, the spatiotemporal features of
the leading order Lyapunov vector, and the variation of
the fractal dimension with system parameters. Lastly, in
Section IV we present our concluding remarks.

II. APPROACH

A. Rayleigh-Bénard Convection

Rayleigh-Bénard convection is the buoyancy-driven
motion that results when a thin layer of fluid is heated
uniformly from below. The fluid motion is described by

the Boussinesq equations,

σ−1 (∂t + u · ∇)u = −∇p+∇2
u+RT ẑ, (1)

(∂t + u · ∇)T = ∇2T, (2)

∇ · u = 0, (3)

where ẑ is a unit vector in the z-direction that opposes
gravity, σ is the Prandtl number, R is the Rayleigh num-
ber, u is the fluid velocity, p is the pressure, and T is
the temperature. The equations are nondimensionalized
using the layer depth d for the length scale, the vertical
diffusion time for heat d2/α where α is the thermal dif-
fusivity for the time scale, and the constant temperature
difference between the bottom and top plates ∆T as the
temperature scale.
The no-slip boundary condition is applied to all mate-

rial surfaces

u = 0 (4)

and the lateral side-walls of the cylindrical domain are
assumed to be perfectly conducting

T (z) = 1− z. (5)

The Rayleigh number,

R =
gβ∆Td3

να
(6)

is the control parameter that is most often varied in ex-
periment. Small values of R correspond to simple, often
time-independent flows; intermediate values of R cor-
respond to complex chaotic flows as studied here; and
large values of R correspond to strongly driven turbu-
lent flows [16]. It will be convenient to use the reduced
Rayleigh number ǫ = (R−Rc)/Rc where Rc = 1707.76 is
the critical Rayleigh number for an infinite layer of fluid.
The Prandtl number,

σ =
ν

α
(7)

is the ratio of momentum and thermal diffusivities. The
magnitude of the Prandtl number is inversely related
to the strength of the mean flow [17]. The mean flow
is a weak but long-range flow field that originates from
the Reynolds stress term and is driven by roll curvature,
roll compression, and gradients in the convection ampli-
tude [18]. The mean flow is very difficult to measure
experimentally [19, 20] and has a dramatic effect upon
the linear stability of the convection rolls [21, 22]. Its
importance is not due to its strength, but because it is
a nonlocal effect acting over large distances (many roll
widths) and advects the pattern [23].
The aspect ratio of the domain Γ is a measure of the

spatial extent of the system. The dynamics of the flow
field depends strongly upon the aspect ratio of the fluid
layer [24]. For small domains the sidewalls tend to frus-
trate the dynamics due to the tendency of the convection
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rolls to approach a sidewall with the roll axis perpendic-
ular to the boundary. In cylindrical domains this leads
to the presence of wall foci which can penetrate several
roll wavelengths into the domain. As the aspect ratio
increases the influence of the sidewalls diminishes.

B. Computing the Lyapunov Exponents and

Lyapunov Vectors

We compute the spectrum of Lyapunov exponents
λk using the standard procedure described in detail in
Ref. [8]. For each exponent a set of equations linearized
about Eqs. (1)-(3) are evolved simultaneously to yield
the dynamics of perturbations arbitrarily close to the full
nonlinear system. These tangent space equations are:

σ−1
(

∂tδu
(k) + u · ∇δu(k) + δu(k) · ∇u

)

= −∇δp(k)

+∇2δu(k) +RδT (k)
ẑ, (8)

∂tδT
(k) + u · ∇δT (k) + δu(k) · ∇T = ∇2δT (k), (9)

∇ · δu(k) = 0. (10)

which can be written as,

dδH(k)

dt
= J [H(t)] δH(k), (11)

where H(t) = [u, T ] and δH(k)(t) =
[

δu(k)(t), δT (k)(t)
]

.
For incompressible fluid flow the pressure is implicitly
determined by the requirement of the conservation of
mass. As a result, the vectors H(t) and δH(k)(t) do
not include p and δp, respectively. In our notation,
J = dF/dH where J is the Jacobian of the flow that
results when rewriting Eqs. (1)-(3) as dH(t)/dt = F(H).
The boundary conditions for the perturbation equations
are δu(k) = 0 and δT(k) = 0 at all material walls.
The perturbations are reorthonormalized using a

Gram-Schmidt procedure after a time tN to yield the
magnitude of their growth ‖δH(k)(tN )‖ where the nor-
malization is defined over the interior volume V as,

‖δH(k)(t)‖ =

√

1

V

∫

V

[

δu(k)(t)2 + δT (k)(t)2
]

dV . (12)

Each reorthonormalization yields a value of the instan-
taneous Lyapunov exponent,

λ̃k =
1

tN
ln ‖δH(k)(tN )‖. (13)

This is repeated and the average value of λ̃k yields the
finite time Lyapunov exponent

λk =
1

Nt

Nt
∑

i=1

λ̃k (14)

where Nt is the number of reorthonormalizations per-
formed. The limit Nt → ∞ yields the infinite-time Lya-
punov exponent.

The leading-order exponent λ1 describes the growth
of the line separating two trajectories in phase space,
λ1 + λ2 describes the growth of a two-dimensional area

of initial conditions, and
∑N

i=1 λi describes the growth
of an N -dimensional ball of initial conditions. The ex-
act number of exponents required for the sum to vanish
corresponds to the dimension of the ball of initial condi-
tions that will neither grow nor shrink under the dynam-
ics and is referred to as Lyapunov or fractal dimension
Dλ. Given only the Lyapunov exponents, Dλ can be
determined from the Kaplan-Yorke formula,

Dλ = K +
SK

|λK+1|
, (15)

where K is the largest n for which Sn =
∑n

i=1 λi >
0 [1, 9]. The value of Dλ is the minimum number of
active degrees of freedom that contribute to the chaotic
dynamics [7].
To solve the system of equations given by Eqs. (1)-

(3) and Eqs. (8)-(10) we used a highly efficient, parallel
spectral element code developed to solve the Boussinesq
equations. This code has been used in a number of nu-
merical explorations of Rayleigh-Bénard convection that
have been discussed in the literature (c.f. [13–15, 17, 25–
27]). The underlying numerical approach is discussed
in Refs. [28, 29] and a discussion of its application to
Rayleigh-Bénard convection can be found in Ref. [26].
In our numerical simulations, we begin from a small

random perturbation on the order of 10−3 to the linear
conduction temperature profile with zero velocity field.
The initial conditions for the tangent space equations
are zero perturbation velocity and a random temperature
perturbation with a magnitude on the order of 10−5. A
typical value of the numerical time step is ∆t = 10−3 and
we perform a Gram-Schmidt reorthonormalization every
10 time steps. Within each spectral element we have used
11th order polynomials to represent the field variables.
Over the course of this work we have performed nu-

merous tests by varying the numerical parameters used
in the code to ensure the validity of our numerical results.
In particular, we have performed simulations for varying
time steps and spatial discretizations to ensure that our
results for the Lyapunov-based diagnostics are accurate
and reproducible. For a typical numerical simulation we
integrate the equations for approximately 15 horizontal
diffusion times to allow for initial transients to decay. We
then use the numerical data from the latter half of the
simulation to compute the Lyapunov diagnostics that we
report here. Where possible we have included error bars
in our results to reflect the variation in the quantities
presented based upon our numerical results.

III. DISCUSSION

A typical chaotic flow field pattern from our numeri-
cal simulations is shown in Fig. 1. The contours of the
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FIG. 1: A spatiotemporally chaotic flow field for ǫ = 4.27,
σ = 1, and Γ = 10. Contours are shown of the temperature
field at a mid-plane slice where z = 1/2. Light regions are
hot rising fluid and dark regions are cool falling fluid. This
flow field image is at time t = 610.5.
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FIG. 2: The convergence of the fractal dimension Dλ in
time. Results are shown for 4 different values of the reduced
Rayleigh number ǫ where Γ = 10 and σ = 1. The time scale
has been normalized by the horizontal diffusion time for heat,
τH = Γ2. The convergence is quite slow and remains noisy
over the entire range shown.

temperature field are shown at mid-depth where light re-
gions are hot rising fluid and dark regions are cool falling
fluid. The fractal dimension Dλ of this flow field is ap-
proximately 50. The convergence of Dλ in time is shown
in Fig. 2 for a range of reduced Rayleigh numbers. To
emphasize the slow and noisy convergence the time axis
has been normalized by the nondimensional horizontal
diffusion time τH = Γ2 which represents the time re-
quired for heat to diffuse from the center of the domain
to the sidewall. Time scales on the order of the horizon-

tal diffusion time for heat and longer have been shown to
describe the duration required for large aspect ratio con-
vecting systems to reach dynamics that are independent
of initial transients [23].

A. The Dynamics of the Lyapunov Exponents

We are interested in understanding how the time dy-
namics of the Lyapunov exponents relate to the dynamics
of the flow field. Only the leading order Lyapunov vec-
tor is pointing in a physically relevant direction due to
the Gram-Schmidt reorthonormalizations that are used
in their computation. The magnitude of the Lyapunov
exponents are not affected by this and the variation of
their magnitude in time provides insight into the under-
lying dynamics. For example, it would be useful to know
if the different exponents exhibit different dynamics that
could be related to features of the pattern dynamics such
as roll pinch-off events, pattern rotation, and the effects
of weak long-range contributions such as the mean flow.
As either R or Γ increase the patterns become very

complex making it difficult to disentangle distinct fea-
tures in the pattern dynamics that correspond to the
variation in the magnitude of the Lyapunov exponents.
In light of this, we first explore a small cylindrical domain
that exhibits periodic dynamics in time. The specific pa-
rameters used are Γ = 5, σ = 1, and ǫ = 1.93. Flow field
images are shown in Fig. 3(a)-(b) and the variation of
the Nusselt number N is shown in Fig. 3(c).
Although N is a global measure of the heat transport

through the convection layer its variation with time di-
rectly corresponds with the topological features of the
pattern dynamics (c.f. [25]). Figure 3(c) shows one pe-
riod of the dynamics which occurs over a time of t ≈ 27
time units. The vertical dashed lines of Fig. 3(c) indicate
the times at which the flow fields in Fig. 3(a) and 3(b)
are shown. The dips in N(t) occur during roll pinch-off
events and the positive spikes occur during dislocation
annihilation events. Physically, this reflects that the heat
transport through the convection layer is less efficient in
the presence of the defects. The remaining smooth fea-
tures of N(t) correspond to climbing and gliding dynam-
ics.
The time variation of the three largest Lyapunov ex-

ponents are shown in Fig. 4. The exponents have been
normalized by the maximum value of λ1 over this time
window in order to compare them on a single plot. The
normalized exponents are denoted by λ̃. As expected,
the leading order Lyapunov exponent exhibits significant
variations at the roll pinch-off and annihilation events.
The dynamics of the second and third exponents tend to
follow with some interesting variations.
For example, a closer inspection of the time dynamics

near t ≈ 579 reveals that the dynamics of λ1 correspond
precisely with the dynamical events of the pattern. How-
ever, the first peak of λ2 is before the occurrence of the
roll annihilation and anticipates this feature. In addition,
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the roll pinch-off event that occurs at t ≈ 581 results in
a peak in λ2 while both λ1 and λ3 exhibit dips. The
dynamics of λ3 is much more sensitive to the event that
occurs near t ≈ 581 than the event near t ≈ 579.
In order to explore this further for chaotic dynamics we

performed a number of simulations for a larger cylindrical
domain with increased values of the Rayleigh number.
The specific parameters we used were Γ = 10, σ = 1 and
2.51 ≤ ǫ ≤ 4.27. An example flow field is shown in Fig. 1
for ǫ = 4.27. The dynamics of these patterns are quite
complex making it very difficult to relate features of the
flow field dynamics with the variation in the Lyapunov
exponents. In this regime there are typically multiple roll
pinch-off events occurring simultaneously.
In Fig. 5(a) we plot the spectrum of Lyapunov expo-

nents λk for a convection domain where Γ = 10, σ =
1, ǫ = 2.51. The dynamics is chaotic (λ1 > 0) and the
error bars represent the standard deviation of λk about
its mean value at long times.
Figure 5(b) shows the zero-time cross-correlation be-

tween λ̃1 and λ̃j where j = 2, . . . , Nλ, we have first sub-
tracted off the mean value of each of the Lyapunov ex-
ponents, and Nλ is the number of Lyapunov exponents
computed for that value of ǫ. We find a positive cross-
correlation for all of the exponents λ̃j . The first sev-

eral exponents have the largest cross-correlation with λ̃1

which is then followed by a rather uniform fall-off with
increasing j. These results suggest that all of the expo-
nents tend to exhibit variations together. In these pat-
terns the dynamics are dominated by roll pinch-off events
suggesting that all of the exponents are sensitive to these
events.

B. The Dynamics of the Leading Order Lyapunov

Vector

The spatial and temporal dynamics of the leading or-
der Lyapunov vector provides insight into regions of the
flow field experiencing the largest growth in the pertur-
bation equations. This has been used to identify non-
repeating roll pinch-off events as significant contribu-
tors to the overall disorder in a chaotic convection flow
field [13]. It has also been shown that Rayleigh-Bénard
convection exhibits extensive chaos for finite cylindrical
geometries using systems parameters that yield spiral
defect chaos. For the parameters used by Paul et al.,
ǫ = 2.51 and σ = 1, the onset of extensivity occurred for
a system size of Γ ≈ 7 [14]. It is expected that exten-
sive chaos occurs for convection layers that have reached
a large-system limit where the influence of the lateral
sidewalls have become reduced.
In order to explore this further we have performed very

long-time numerical simulations for cylindrical geome-
tries over a range of aspect ratios 5 ≤ Γ ≤ 30 where
ǫ = 2.51 and σ = 1. In these simulations we have
computed the leading-order Lyapunov exponent and Lya-
punov vector. Figure 6 shows grey-scale contours of the
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FIG. 3: The flow field and the variation of the Nusselt number
N with time for periodic dynamics. The simulation param-
eters are Γ = 5, σ = 1, and ǫ = 1.93. (a) The flow field at
t = 579. (b) The flow field at t = 581. (c) The variation N(t)
for one period of the dynamics. The vertical lines represent
the instances of time of the two flow field images.
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FIG. 4: The time variation of the first three instantaneous
Lyapunov exponents λ̃ for time periodic dynamics. The sim-
ulation parameters are Γ = 5, σ = 1, and ǫ = 1.93. The
Lyapunov exponents have been normalized by the maximum
value of λ1 for ease of comparison. The values for λ̃1, λ̃2,
and λ̃3 are given by the solid, dashed, and dash-dot lines,
respectively.

leading order Lyapunov vector overlaid with solid black
lines indicating the convective roll pattern. The Lya-
punov vector is plotted using the value of the thermal
perturbation field at the horizontal mid-plane. In this
figure light regions indicate large positive values, dark
regions indicate large negative values, and grey regions
represent regions of small growth. The images of Fig. 6
suggest that the smaller domains are dominated by large
values of the perturbation at the lateral boundaries. This
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FIG. 5: (a) The spectrum of Lyapunov exponents λk. Also
shown are the error bars that are computed from the standard
deviation of λk about its mean value at long times. (b) The in-
stantaneous cross-correlation between the leading order Lya-
punov exponent and the remaining exponents in the spectra
λj for j = 2 . . . 30. The simulation parameters for both panels
are σ = 1, Γ = 10, and ǫ = 2.51.

transitions to dynamics with large perturbations in the
bulk of the domain away from the sidewalls for the larger
aspect ratio systems. The location of occurrence of the
largest perturbations also shows a transition. In small
domains, mostly bending rolls cause large perturbations;
but in large domains, they are associated with the dislo-
cation defects initiated by roll pinch-off events.
In order to investigate this further we have computed

the time average of the magnitude of the leading order
Lyapunov vector given by,

〈δT (x, y)〉t =
1

Ns

Ns
∑

i=1

|δT (1)(x, y, z = 0.5, ti)|, (16)

where ti is the time of the corresponding perturbation
field, Ns ≈ 103 is the total number of perturbation fields,
and the notation 〈·〉t is used to indicate the time-average.
The spatial distribution of the time-averaged perturba-
tion fields are shown in Fig. 7. In Fig. 7 red indicates
regions of large values of the magnitude (located primar-

(b)

(a)

(d)

FIG. 6: Overlay of a grey-scale contours of the midplane tem-
perature perturbation field with solid black lines representing
the convection roll boundaries for different aspect ratios: (a)
Γ = 5, (b) Γ = 10, (c) Γ = 15, and (d) Γ = 30. For Γ = 30 the
image is plotted at half scale to be able to fit on this figure.
The parameters are ǫ = 2.51 and σ = 1.

ily near the boundary for small domains and at the bulk
of the domain for large domains) and blue represents re-
gions of small values of the magnitude (located mainly
at the bulk of the domain for small domains and near
the boundary for large domains). The asymmetry in the
azimuthal direction of the averaged perturbation fields is
most likely a result of the finite time of the simulations
and the particular choice of random initial conditions.
These simulations are quite computationally expensive
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and we have not explored this aspect further. In or-
der to explore the variation with the radial coordinate
we have computed the azimuthal average of the time-
averaged perturbation fields using,

〈δT (r̄)〉t,θ =
1

Nθ

Nθ
∑

i=1

〈δT (r̄, θ)〉t , (17)

where the notation 〈·〉t,θ indicates time and azimuthal

averaging, r̄ = r/Γ is the normalized radial coordinate
whose origin is in the center of the domain, and Nθ = 400
is the number of points used in computing the azimuthal
average. The radial variation of 〈δT (r̄)〉t,θ is plotted in
Fig. 8. The transition from dynamics with significant
perturbations at the boundaries to dynamics with signif-
icant perturbations away from the walls is evident.

C. The Variation of the Fractal Dimension with

System Parameters

The variation of the fractal dimension with system pa-
rameters can provide insights into the nature and com-
position of the underlying high-dimensional attractor de-
scribing the chaotic dynamics. For Rayleigh-Bénard con-
vection Dλ = Dλ(ǫ, σ,Γ). Our approach is to compute
the variation of Dλ with one of the parameters while the
remaining two are held constant. This has allowed us to
quantitatively probe the underlying attractor for three
different limiting cases. By increasing the system size
while holding ǫ and σ constant we are able to quantify
the increase in the fractal dimension in the spatiotempo-
ral chaos limit [1]. When the driving ǫ is increased while
holding Γ and σ constant we are able to quantify the in-
crease in the fractal dimension with the addition of new
degrees of freedom as the system approaches the strong
driving limit. Lastly, the magnitude of the Prandtl num-
ber σ is inversely related to the magnitude of the mean
flow. By the varying σ while holding Γ and ǫ constant
we quantify the variation of the fractal dimension as the
system transitions from non-potential to potential dy-
namics.
The variation of the fractal dimension with system size

is expected to be extensive where

Dλ ∝ Γds (18)

in the large system limit and ds is the number of spa-
tially extended directions [30]. For Rayleigh-Bénard con-
vection in large shallow layers ds = 2. Extensive chaos
has been demonstrated in large periodic convection lay-
ers [11] and in finite cylindrical convection layers [14].
Deviations from extensive chaos for small changes in sys-
tem size has been proposed as a means to identify a
length scale associated with the fundamental structures
composing spatiotemporal chaos [31]. Deviations from
extensivity have been found using the complex Ginzburg-
Landau equation [31], the Lorenz-96 equations [32] and

systems of coupled map lattices [33]. However, microex-
tensivity has been found for the Kuramoto-Sivashinsky
equation [34]. For Rayleigh-Bénard convection we have
found that the slow and noisy convergence of Dλ (see
Fig. 2) precludes such an investigation using currently
available algorithms and computing resources.
The variation of Dλ with ǫ and σ is shown in Fig. 9.

Fig. 9(a) illustrates the variation of Dλ with ǫ where
σ = 1 and Γ = 10. A typical flow field pattern for the
largest value of the forcing ǫ = 4.27 is shown in Fig. 1.
The error bars represent the standard deviation of Dλ

about its mean value in the large-time limit. The solid
line through the data is a curve fit given by

Dλ = αǫ4 + β (19)

where α = 0.095 and β = 19.4. This relationship is only
useful for ǫ & 2.5. For smaller value of ǫ there must be
a transition not captured in our data that would yield
a vanishing value of the fractal dimension at some pos-
itive and finite value of ǫ. It is possible that our curve
fit remains valid for Rayleigh numbers larger than what
is shown, however without further evidence this remains
speculative. It is interesting to note that Sirovich and
Deane [35] found that the fractal dimension increases lin-
early with Rayleigh number from numerical simulations
of turbulent Rayleigh-Bénard convection (ǫ ≈ 70) in a
small periodic box with free-slip boundaries.
The fractal dimension can be used to provide an esti-

mate for a natural chaotic length scale [1],

ξδ ≡

(

Dλ

Γds

)

−1/ds

(20)

where a volume of size ξds

δ contains a single chaotic de-
gree of freedom on average. The variation of ξδ with
ǫ is shown in Fig. 10 where it decreases from approxi-
mately 2 to 1.5 over the range of ǫ explored. In order
to compare this with features of the spatial patterns we
have computed the time averaged value of the pattern
wavelength ξL from the structure factor [1]. The pattern
wavelength increases from approximately 3 to 4 over the
range explored. The ratio ξL/ξδ provides an estimate for
the number of chaotic degrees of freedom per wavelength
of the flow field pattern and is also shown on Fig. 10. This
indicates that the number of chaotic degrees of freedom
per wavelength of the pattern is increasing with increas-
ing ǫ. This is reflected by the occurrence of smaller scale
features in the pattern images.
The variation of the fractal dimension with Prandtl

number is shown in Fig. 9(b). The corresponding im-
ages of the flow field patterns are shown in Fig. 11. As
the Prandtl number increases the magnitude of the mean
flow decreases and eventually the spiral defect chaos state
vanishes and is replaced with a stationary pattern [17].
We find that the fractal dimension decreases rapidly with
increasing σ as shown by the solid line in Fig. 9(b). For
the range 1 6 σ . 2 the solid line is a curve fit given by

Dλ = ασ−β − γ (21)
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where α = 44.95, β = 1.06 and γ = 20.91. This curve
fit was determined using numerical results in the range
1 6 σ 6 1.8 and it predicts the zero of the fractal dimen-
sion to occur at σ = 2.06. From our numerical results
the fractal dimension vanishes to within the accuracy of
our calculations for σ > 2 and is represented by the hor-
izontal solid line. For σ > 2 the fluid patterns slowly
evolve to a time-independent stationary pattern as shown
in Fig. 11(b)-(d). Our results suggest that the fractal di-
mension is inversely proportional to the Prandtl number.
It is interesting to point out that this is similar to the
variation of the mean flow magnitude with the Prandtl
number as discussed by Chiam et al. [17].

IV. CONCLUSIONS

A fundamental understanding of high-dimensional
chaotic dynamics in spatially extended systems remains
a vast and important challenge. In this paper, we have
used large scale numerics to provide a quantitative link
between powerful ideas of dynamical systems theory and
a fluid system that can be explored in the laboratory.
We have gone to considerable computational effort to
perform simulations for the geometries, boundary con-
ditions, and system parameters that are of experimen-
tal relevance. Our computation of the Lyapunov based

diagnostics provide results that are currently not possi-
ble to obtain analytically or experimentally and we have
used these to provide new physical insights. Although the
Lyapunov based diagnostics we have quantified are not
directly accessible to experimental measurement, at least
not in any straightforward way that we can suggest, the
values we present are an important benchmark for com-
parison as further experimental and theoretical work is
conducted. For example, it may be possible to connect
our results with experimental measurements using ideas
based upon Lagrangian coherent structures [36, 37] or
computational homology [38]. From a theoretical point
of view, our work suggests that it would be interesting to
explore the dynamics of the spectrum of Lyapunov vec-

tors using the more recently suggested approach of char-
acteristic Lyapunov vectors that satisfy Oseledec split-
ting [39, 40]. Overall, we anticipate that our results will
be useful to those interested in controlling, predicting,
and modeling high-dimensional chaotic systems.
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(a)

(b)

(c)

(d)

FIG. 7: (Color online) The spatial variation of the
time-averaged magnitude of the thermal perturbation field
〈δT (x, y)〉t evaluated at the horizontal mid-plane. (a) Γ = 5,
(b) Γ = 10, (c) Γ = 15, and (d) Γ = 30. The simulation
parameters are ǫ = 2.51 and σ = 1. The image for Γ = 30 is
plotted at half scale to fit on this figure. In the color contour,
red regions (located primarily near the boundary for small
Γ and at the bulk of the domain for large Γ) correspond to
the large magnitude of the perturbation and blue regions (lo-
cated mainly at the bulk of the domain for small Γ and near
the boundary for large Γ) associate with the small magnitude
of the perturbation.
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FIG. 9: (a) The variation of the fractal dimension with
Rayleigh number for Γ = 10 and σ = 1. The circles are data
points from the simulations and the solid line is the curve fit
Dλ = 0.095ǫ4 + 19.4. (b) The variation of the fractal dimen-
sion with Prandtl number for Γ = 10 and ǫ = 2.51. The circles
are data points from the simulations and the solid line is a
power-law curve fit as Dλ = 44.95σ−1.06−20.91 for 1 6 σ < 2
and Dλ = 0 for σ > 2.
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FIG. 10: The variation of the natural chaotic length scale
(ξδ), the wavelength of the pattern (ξL), and the ratio of
ξL/ξδ with ǫ for Γ = 10 and σ = 1. The open squares show
ξδ, the open circles show ξL, the open triangles demonstrate
ξL/ξδ, and the solid lines illustrate curve fits for ξδ and ξL as
ξδ = 2.32 − 0.03ǫ2.4 and ξL = 5.07 − 4.75ǫ−0.99 and linear fit
for the ratio as ξL/ξδ = 0.73ǫ − 0.36.

FIG. 11: The flow field patterns for different Prandtl numbers.
In each case ǫ = 2.51 and Γ = 10. Panel (a) σ = 1, (b) σ = 3,
(c) σ = 5, (d) σ = 7.


