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Stochastic modeling of reaction-diffusion kinetics has emerged as a powerful theoretical tool in
the study of biochemical reaction networks. Two frequently employed models are the particle-
tracking Smoluchowski framework and the on-lattice Reaction-Diffusion Master Equation (RDME)
framework. As the mesh size goes from coarse to fine, the RDME initially becomes more accurate.
However, recent developments have shown that it will become increasingly inaccurate compared to
the Smoluchowski model as the lattice spacing becomes very fine. Here we give a new, general and
simple argument for why the RDME breaks down. Our analysis reveals a hard limit on the voxel
size for which no local RDME can agree with the Smoluchowski model and lets us quantify this
limit in 2D and 3D. In this light we review and discuss recent work in which the RDME has been
modified in different ways in order to better agree with the microscale model for very small voxel
sizes.

A prevalent view in molecular systems biology is that
the noise in cellular reaction networks, arising intrinsi-
cally from low copy numbers of macromolecules, can have
a substantial impact on function [1, 2]. Two frequently
used models for simulating stochastic reaction-diffusion
systems are the Reaction-Diffusion Master Equation
(RDME) [3, 4] and the Smoluchowski model [5], which we
will refer to as the mesoscopic and microscopic models,
respectively. In the RDME the computational domain
is divided into voxels. The RDME is attractive from a
computational perspective; it is the logical extension of
spatially homogenous simulations based on the Gillespie
algorithm [6], and keeps track of the location of molecules
only up to the resolution of the mesh, hence allowing for
coarse-graining.

On a finer modeling level, the Smoluchowski model
treats diffusion and reactions in continuous space, with
molecules explicitly represented as spheres with a certain
interaction radius. As such, it is an example of a model
commonly referred to as particle-tracking. Software for
simulations using the different modeling frameworks are
publicly available [7–14].

A well known property of the mesoscopic model is that
it converges to the classical reaction-diffusion partial dif-
ferential equation in the macroscopic limit. For a sys-
tem approaching the microscopic regime, it is tempting
to think of the RDME as a better and better approx-
imation to the Smoluchowski model for finer and finer
mesh resolutions. This picture is misleading, as it has
been shown that as the size of the voxels in an infinite
3D domain decreases, all bimolecular reactions are even-
tually lost in the mesoscopic model [15]. Recent work
has demonstrated that fast, microscopic rebinding events
can substantially affect the macroscopic properties of a
biochemical signal cascade when reactions are highly dif-
fusion limited [16]. To accurately simulate such systems
requires a fine spatial resolution. On these scales, the
conventional RDME may be too inaccurate to capture

even the qualitative behavior predicted by the micro-
scopic model [17].

The fact that the conventional mesoscopic model be-
comes inaccurate as we approach the microscopic level is
not surprising, as we are moving out of the domain of va-
lidity for which it was derived. However it can pose a real
practical problem, as it is hard to know a priori if a sim-
ulation with the RDME will yield useful or misleading re-
sults. This is especially true for biochemical models with
multiscale properties, which are frequently encountered
in molecular biology. Simply resorting to simulations on
the microscopic scale whenever in doubt is currently not
feasible in general due to the high computational cost
for systems with many particles. A natural approach to
remedy this problem is to try to extend the domain of
validity of the RDME as the mesh size tends to zero.
Isaacson [15] suggests that one way of doing this would
be to let the association rate constants depend explicitly
on the meshsize. Recently, approaches to make such cor-
rections to the RDME have been proposed [17, 18] based
on different optimization criteria. The corrected meso-
scopic association rate in 3D in [18] is derived based on
an ansatz about the steady-state distribution for a model
problem in the mesoscopic model and only works above
a certain critical size of the mesh. The association rate
in [17] is derived by matching the mesoscopic equilibra-
tion time for a reversible reaction to the microscopic one
and has no such property. Instead it is observed that for
small voxel sizes the RDME needs to be extended to a
non-local setting to give accurate results.

In this paper we add to the analysis of Isaacson [15]
and show, by a simple and intuitive argument, how and
when the RDME breaks down. Our results extends those
of Isaacson in that they are valid for finite domains in 2D
and 3D, and independent on the choice of the mesoscopic
association rates. In addition, we prove that below a cer-
tain critical size of the mesh it will be impossible to make
the local RDME consistent with the Smoluchowski model
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for any choice of the mesoscopic association rate. For a
simple model problem we derive optimal mesoscopic asso-
ciation rates in both 2D and 3D and compute the critical
size of the mesh, and show that it can be considerably
larger than the interaction radii of the molecules.

The Reaction-Diffusion Master Equation. In the
mesoscopic model, the computational domain is divided
into non-overlapping voxels. Inside voxels, the molecules
react according to a pre-specified set of rules. In a small
time interval dt, a bimolecular reaction A + B → C, for
example, occurs with probability kaabdt/V , where ka is
the mesoscopic rate constant for the reaction, a and b
are the discrete copy numbers of A and B in that voxel,
and V is the volume of the voxel. Diffusion is modeled
as jumps between adjacent voxels. For a Cartesian mesh
with mesh spacing h, the rate for a diffusive jump is given
by D/h2, where D is the diffusion constant. The time
evolution of the system is described as a Markov process
and the probability density function (PDF) of the sys-
tem evolves according to the RDME [3, 4]. Realizations
of the process can be generated efficiently using kinetic
Monte Carlo methodology [19].

The Smoluchowski model. In the Smoluchowski
model two molecules A and B are assumed to move by
Brownian motion with diffusion constants DA and DB ,
and react with a certain probability at a distance de-
termined by the sum of their reaction radii, ρ. For two
molecules A and B, the probability of a bimolecular re-
action is governed by the Smoluchowski equation. Given
an initial relative position r0 at time t0, the equation for
the PDF p of the new relative position (in a spherical
coordinate system r = (r, θ, φ)), is given by ∂tp = D∆p
with initial condition p (r, t0) = δ (r− r0) and boundary
conditions

lim
|r|→∞

p (r, t) = 0, 4πρ2D
∂p

∂r

∣∣∣∣
r=ρ

= krp (r, t) |r=ρ

where D = DA + DB and kr is the microscopic associ-
ation rate. It can be shown that a weighted mean R of
the positions will be normally distributed [13], and by
sampling a new r and R we obtain the new positions of
the molecules at some time t.

An efficient method for simulating systems of
molecules is the Green’s Function Reaction Dynamics
(GFRD) [13, 14] method.

Breakdown of the mesoscopic model. Recent work has
demonstrated that the RDME breaks down in the limit of
infinitesimal voxels. Isaacson [15] shows that the proba-
bility for the occurrence of bimolecular reactions vanishes
with decreasing voxel size for molecules on a lattice in an
infinite 3D domain. The study is restricted to the case
where the mesoscopic reaction rates are not dependent
on the size of the voxels. Here we present a new and in-
tuitive way to understand the degeneration of the meso-
scopic model in finite domains in 2D and 3D, and with
mesoscopic reaction rates that depend explicitly on the
mesh. Our analysis will also provide additional insight
into why and when this breakdown occurs.

To see why the RDME model cannot work for very
small voxels, it is illustrative to consider the simple pro-

cess of bimolecular association A + B
ka−→ C. In 3D,

the conventional mesoscopic reaction rate ka is defined
by ka = (4πρDkr)/(4πρD + kr) =: kmeso [20, 21]. It is
valid for large enough voxels, and in 2D no analogous ex-
pression is well-defined. We will refer to the conventional
mesoscopic rate constant by kmeso and to any mesoscopic
rate constant by ka.

In a Cartesian coordinate system, consider one A
molecule and one B molecule. Without loss of gener-
ality we may assume that the A molecule is stationary
in some voxel VA and that the B molecule diffuses with
diffusion constant DB . Let the domain be a square or
a cube with side length L. We will restrict ourselves to
periodic boundary conditions. How to correctly choose
other boundary conditions on the meso- and microscale
is studied in [22].

Assume that the B molecule has a uniformly dis-
tributed initial position. Now let τmeso be the average
time until the two molecules react, let kj = 2dD/h2

(where d is the dimension) be the rate for a diffusive
jump and let ka be the mesoscopic reaction rate.

First assume that the molecules do not start in the
same voxel. Before the molecules can react they have
to diffuse to the same voxel. The average time for the
B molecule to diffuse to VA is denoted by τD. Now,
given that the two molecules are in the same voxel, the
average time until an event occurs is τe = (ka + kj)

−1.
With probability Pr = ka/(ka + kj) the next event will
be a reaction event, and if they do not react they will
diffuse apart one voxel. The average number of times
the molecules have to be in the same voxel before they
react is thus P−1r , and if we then define τ1D to be the
average time for the B molecule to diffuse to VA given
that it starts one voxel away, we obtain

τmeso = τD + (P−1r − 1)
(
τe + τ1D

)
+ τe

= τD + k−1a (1 +N1
steps) (1)

where N1
steps = kjτ

1
D. The following Theorem was proven

in [23, 24].

Theorem 1. Assume that the molecule B has a uni-
formly distributed random starting position xB on the
lattice, xB not equal to xA, and that the molecules can
move to nearest neighbors only (as in the RDME). Then
the following holds:

Nsteps = π−1N log(N) + 0.1951N +O(1), (2D)

Nsteps = 1.5164N +O(N
1
2 ), (3D),

where Nsteps is the average number of steps until xB = xA
for the first time and N is the number of voxels in the
domain. Furthermore, N1

steps = N − 1 in 2D and 3D,

where N1
steps = kjτ

1
D is the average number of steps until

xB = xA given that A and B start one voxel apart.
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Corollary 1. Let τD be the time until A and B are in
the same voxel for the first time. Then

τD ∼
L2

2πD
log

(
L

h

)
+ 0.1951

L2

4D
as h→ 0 (2D),

τD ∼ 1.5164
L3

6Dh
as h→ 0 (3D).

where h is the voxel size.

This follows immediately from Theorem 1 and the fact
that τD = N−1

N Nstepsk
−1
j , where the factor (N − 1)/N is

due to the fact that the molecules start in the same voxel
with probability 1/N .

From Corollary 1 and Equation (1) we conclude that
for a sufficiently small voxel size in the discrete space
model, we will have τmeso > τD > τmicro (where
τmicro is the average time until two uniformly distributed
molecules react in the microscopic model), for any choice
of the mesoscopic rate constant, since k−1a (1+N1

steps) > 0
for all ka > 0. Eventually, as h→ 0, no bimolecular reac-
tions will occur since molecules can only react when they
are in the same voxel and τD →∞, hence τmeso →∞.

Note that the reason for this effect is not that the dif-
fusion process is inaccurately described at these length
scales but rather that molecules react only after having
diffused to the same voxel.

No local correction to the association rates can make
the RDME consistent with the microscopic model. Due
to the computational advantage of using the conventional
RDME over the microscopic model, it is natural to try to
modify the RDME to agree better with the Smoluchowski
model for fine lattice spacings. A natural approach is
to correct the mesoscopic association rate constants in
the RDME by letting them depend on the discretization.
This would preserve the local nature of the reactions and
the low computational cost. However, one immediate
consequence of the analysis in the previous section is that
below a certain mesh size h∗ no such local correction can
make the mean association rate between two molecules
agree with the microscopic model. In fact, for a given
domain and model, this happens precisely when τD >
τmicro. This is illustrated in Fig. 1 for the case of a
square with side length L = 250ρ and a cubic domain
with side length L = 100ρ, with kr →∞.

As long as τD < τmicro, that is h > h∗, it is possible to
modify the association rate, i.e. derive a discretization-
dependent rate constant that will give the same mean
association time as the microscopic model. To give the
correct binding times for as large a regime as possible,
a modified reaction propensity q(h) needs to have the
property q →∞ for τD → τmicro (and hence h→ h∗).

While our analysis does not preclude the possibility to
better match the mean association time by increasing D
and thus decreasing τD, this would make the effective
diffusion too fast and thus introduce another source of
error.

Discussion. Fig. 2 shows a schematic representation
of the RDME’s behavior as a function of the meshsize.
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FIG. 1: The expected time until the molecules are in the same
voxel for the first time, τD, is computed with the RDME on a
Cartesian grid on a square (a) and a cube (b) with reflective
boundary conditions. To the right of the vertical line we have
τD < τmicro. In that region the mesoscopic reaction rate can
be corrected so that the expected time until the molecules
react matches the expected time in the microscale model. To
the left of the vertical line we have τD > τmicro, and no such
correction is possible. We have used the parameters ρ = 2 ·
10−9m, D = 10−12m2s−1 (3D) and D = 10−14m2s−1 (2D).
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FIG. 2: Schematic representation of the RDME’s behavior
as a function of h. For h < h∗, no local correction to the
conventional mesoscopic reaction rates exists for the simple
problem of diffusion to a target.

For h < ρ, the RDME makes little sense and we cannot
expect the model to work in this regime. In the other ex-
treme, above hmax, discretization errors due to large vox-
els will be unacceptably high. For hmin < h < hmax the
conventional mesoscopic rate constants will work well,
but for h < hmin the RDME will become increasingly
inaccurate. For h∗ < h < hmin it is possible to derive
mesh and problem dependent reaction rates that make
the RDME agree better with the microscopic model. The
precise locations of the critical values hmin, hmax and h∗

are model and geometry dependent.
In [15, 25] the analytical solutions of the RDME and

the Smoluchowski equation for a single bimolecular as-
sociation reaction are expanded in a series and the three
leading terms in h are computed. It is shown that the
two first terms will converge to the same value as h tends
to zero, but that the difference between the third term
will diverge. There is an h that minimizes the difference
between the first terms of the expansion. This illustrates
that for some h < hmin the reaction rates will need to be
modified to make the mesoscopic model accurate. How-
ever, as we have shown here one will eventually reach
h∗ and the difference between the models will inevitably
increase, independent on the choice of ka.

Recently, two different corrections to the mesoscopic
rate constant have been proposed [17, 18]. In the 3D
case with a cubic domain and a uniform, Cartesian dis-
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cretization, Erban and Chapman [18] consider the model

problem A + B
ka−→ B, ∅ k1−→ A. They derive a mesh-

dependent rate expression by matching the true steady-
state distribution (which can be obtained analytically for
this simple problem) to the distribution obtained using
a meshsize h. They arrive at

q(h) = Dka/(Dh
3 − βkah2). (2)

They also find a critical mesh size hcrit = β∞/(kaD)
under which no further correction can be made, where
β∞ ≈ 0.25272 is a unitless constant valid for L � h. q
satisfies the basic requirements of our analysis: the exis-
tence of a critical meshsize and the correct limiting be-
havior as the meshsize tends to that critical value. Sub-
stituting ka for the conventional expression kmeso and
taking kr →∞ we obtain hcrit ≈ πρ.

Fange et al. pursue a similar idea in [17]. They study a
reversible reaction, and derive mesoscopic reaction rates
such that the equilibration time of the system matches
the equilibration time in the Smoluchowski model. They
carry out this analysis in 2D and 3D and obtain

p(h) = kr/(1 + α ln(1 + 0.544(1− γ)/γ)) (2D)

p(h) = kr/(1 + α(1− γ)(1− 0.58γ)) (3D),

where γ = ρ/(ρ + `), ρ + ` is the radius of a disk
with area h2 in 2D and a sphere with volume h3 in 3D,
α = kr/(4πρD) in 3D and α = kr/(2πD) in 2D. These
expressions do not predict a critical mesh size, but have
the property p(h)→ kr as h→ 0 in both 2D and 3D.

Based on our analysis we obtain another correction in
both 2D and 3D. From Equation (1) it follows that ka =
N/(τmicro − τD) in order to have τmeso = τmicro (where
we have used that N1

steps = N − 1). For h sufficiently
small we can approximate τD in terms of L, h and D
using Corollary 1 and a reasonable choice of ka would
therefore be

r(L, h) =


(L/h)2

τmicro−[ L2

2πD log(Lh )+ 0.1951L2

4D ]
(2D)

(L/h)3

τmicro−1.5164L3/(6Dh) (3D).
(3)

From these expressions we obtain h∗ ≈√
π exp(0.1951π/2 + 3/4)ρ ≈ 5.1ρ (2D) and h∗ ≈ πρ

(3D). These values make the denominator zero if τmicro

is approximated by the analytical expressions for a disk
derived in [17]) (2D) or by (kmeso/L

3)−1 (3D), in good
agreement with the simulations in Fig. 1.

The corrections obtained by Erban and Chapman do
not coincide with the corrections obtained by Fange et
al., illustrating how the corrections are dependent on the
ansatz used to derive them. On the other hand, for h
small and the special case ka = kmeso and τmicro approxi-
mated by the value obtained from the conventional meso-
scopic expression (kmeso/L

3)−1, our corrections given by
(3) agree with Erban and Chapman’s in 3D, and predict

the same h∗. We emphasize that our formula (3) makes
the relationship of the critical meshsize and the micro-
scopic binding time explicit in contrast to (2), and can
in principle be used to obtain corrected rates and critical
voxel sizes for matching any microscopic model, as long as
an analytical or numerical method to approximate τmicro
is available. As can be seen in Fig. 3, our corrections
match the mean association time well in 2D (a) and all
corrections give better results than the conventional ex-
pression kmeso in 3D (b). Interestingly, Fange et al. find
experimentally for their example that they cannot match
the Smoluchowski model in [17, Fig. 3] perfectly using
the conventional RDME with the local corrections p(h)
even for h ≈ 5ρ. Instead they modify the lattice model
to allow for reactions between molecules in immediate
neighboring voxels. In doing so they match the models
all the way down to h = 2ρ. Our analysis explains why
the local corrections alone were not sufficient, and their
results demonstrate the possibility of better agreement
with the microscopic model by a generalization of the
conventional RDME to allow for neighbor-interactions.
Another approach that has potential to circumvent the
problem are hybrid methods [26, 27] where the micro-
scopic model is be applied locally in space or for certain
chemical species.
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FIG. 3: The average mesoscopic association time using differ-
ent reaction rates, compared to the average microscopic asso-
ciation time. The expressions for the discretization-dependent
mesocopic reaction rates from [17, 18] and those obtained here
all depend on the ansatz used to derive them. All expressions
produce more accurate results than the conventional expres-
sion for our model problem for h > h∗.

In conclusion, the conventional RDME cannot be made
consistent with the Smoluchowski model since there will
always be a meshsize for which no local correction to
the reaction rate can give the correct mean association
time. Above h∗ local corrections can extend the domain
where the RDME works well. However, the corrections
will inevitably be model and geometry dependent.
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