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We describe a method for the analysis of the distribution of displacements, i.e., 
the propagators, of single-particle tracking measurements for the case of 
obstructed subdiffusion in two dimensional membranes. The propagator for the 
percolation cluster is compared with a two-component mobility model against 
Monte Carlo simulations. To account for diffusion in the presence of obstacle 
concentrations below the percolation threshold, a propagator that includes the 
transient motion in finite percolation clusters and hopping between obstacle-
induced compartments is derived. Finally, these models are shown to be effective 
in the analysis of Kv2.1 channel diffusive measurements in the membrane of 
living mammalian cells.  

 

INTRODUCTION 

Membrane proteins exhibit complex dynamics, often accompanied by anomalous diffusion. The 
complexity in protein motion lies in the fact that the plasma membrane is a heterogeneous 
environment that exhibits microdomain organization, is densely packed with proteins, and is 
tethered to the cytoskeleton through different proteins and lipids [1].  The diffusion of membrane 
molecules is studied by a variety of methods that include fluorescence recovery after 
photobleaching (FRAP) [2], fluorescence correlation spectroscopy (FCS) [3-5], and single 
particle tracking (SPT) [6-8]. In particular, SPT enables the localization of an individual 
molecule with nanometer precision in real time, yielding detailed information on its molecular 
motion and the interactions between a protein or lipid with its environment. The diffusive 
transport of membrane proteins has vital biological implications related to many cellular 
processes. However, the analysis of anomalous diffusion in live cells is challenging because it 
can originate via different mechanisms: (a) Membrane proteins and lipids tethered to the 
cytoskeleton behave as immobile obstacles, hindering the free diffusive transport [9-17]. The 
resulting motion is termed obstructed diffusion. (b) Macromolecular crowding has been 
experimentally shown to induce anomalous subdiffusion in some systems [18-20], but the link 
between anomalous diffusion and crowding is still controversial [21]. It was proposed that 
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crowding gives rise to viscoelastic effects leading to long-time correlations in a particle 
trajectory [22, 23], which may be modeled by fractional Brownian motion (FBM) [24, 25].  
Nevertheless, the physical mechanism by which crowding can be modeled by FBM is not fully 
understood. (c) Transient immobilization achieved by temporary binding with a heavy tailed 
distribution of waiting times lead to subdiffusion and ergodicity breaking [26-28]. This process is 
modeled by a continuous time random walk (CTRW) [29]. In general, more than one single 
physical mechanism may be simultaneously responsible for anomalous diffusion in living cells. 
Recently, we demonstrated that the subdiffusion of Kv2.1 potassium channels in the plasma 
membrane of mammalian cells is best characterized as a CTRW coexisting with a fractional 
ergodic mechanism such as obstructed diffusion or FBM [30]. Interestingly, the dynamics of 
lipid granules in the cytoplasm of yeast have also recently been shown to be influenced by 
similar mechanisms [31]. 

Even though obstructed diffusion is not the sole cause for anomalous diffusion in the plasma 
membrane, it has long been recognized to be an important factor in the diffusion pattern of 
proteins and lipids. Comparison of diffusion in the axon initial segment (AIS) and blebs shows 
the relevance of obstruction. AIS: An unusually high local density of ankyrin-G and actin forms a 
region with a large number of immobile obstacles. This obstruction pattern hinders diffusion to 
such a point that long range motion is not observed and it effectively functions as a diffusion 
barrier, a phenomenon that is vital to neuronal polarization [32]. Blebs: These spherical 
protrusions that occur at the periphery of eukaryotic cells [33] lack cytoskeletal anchoring points 
and are, thus, practically free from immobile obstacles. The diffusion coefficient of proteins in 
blebs is observed to be dramatically higher than in the rest of the membrane linking the diffusion 
pattern to cytoskeleton-bound molecules [34]. 

Several reports show via the use of actin depolymerization drugs that the cytoskeleton is 
implicated in restricting the diffusion of membrane proteins [10, 35]. Truncation of the 
cytoplasmic domain of membrane proteins was also shown to increase the diffusion coefficient 
[9, 36]. Recently, Andrews et al. provided evidence that actin forms a dynamic meshwork 
involved in forming barriers to free diffusion [12]. In contrast, the ectodomain of some proteins 
is the key determinant of their lateral diffusion suggesting that anomalous subdiffusion in the 
plasma membrane can be also induced by interactions with the extracellular matrix or the 
ectodomains of neighboring membrane proteins [36]. Kusumi’s lab has shown that lipids and 
proteins in the plasma membrane appear to be temporarily confined to microdomains 30 to 800 
nm in size. Temporal confinement seems to be widespread and it was observed in many different 
cell types including Chinese hamster ovary (CHO), mouse hepatoma (HEPA-OVA), rat 
kangaroo (PtK2), fetal rat skin keratinocyte (FRSK), human embryonic kidney (HEK), HeLa, 
T24, and normal rat kidney (NRK) cells [11]. Edidin and co-workers showed that vesicle 
trafficking to and from the plasma membrane in combination with barriers to lateral diffusion 
can maintain microdomains in the cell surface with characteristic lifetimes in the tens of seconds 
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[37, 38]. These observations can be explained by the existence of clusters of immobile proteins 
that behave as discontinued fences in the plasma membrane. In order for a walker to hop 
between compartments it needs to find a gap in the fence. Alternatively, this is achieved by 
fluctuations in the position of quasi-immobile obstacles. This mechanism has been referred to as 
the anchored-protein picket model [10]. Obstructions to diffusion in the cell membrane were also 
observed with optical tweezers. It was shown that as a molecule is dragged along the plasma 
membrane it encounters frequent obstacles in its path [39, 40]. Both elastic and inelastic barriers 
were found to be present in the cell membrane with the elastic ones being actin-cytoskeleton 
dependent [41].   

In SPT analysis, the mean square displacement (MSD) measures the apparent diffusion 
coefficient and provides the simplest type of classification of the diffusion pattern. Brownian 
motion yields a linear MSD, 2 ( ) 2r t dDt= where D is the diffusion coefficient and d is the 

substrate dimension ( 2d =  for a membrane). In contrast, anomalous subdiffusion is 
characterized by a sublinear MSD, 2 ( ) ~r t tα with 1α <  being the subdiffusive exponent [8]. 

When 1α > , the motion is termed superdiffusion. Experimental observations of anomalous 
diffusion with values of α  between 0.1 and 0.9 have been reported by different groups [6, 42, 
43]. Unfortunately, the information obtained from MSD analysis is very limited and, in practice, 
many anomalous subdiffusion models yield the same MSD power law. The problem is that the 
MSD analysis does not take advantage of the full probability of displacements P(r,t), viz., the 
propagator, which is naturally available in SPT measurements [44]. ( , )P r t dV gives the 
probability that a particle at the origin at time zero is found in an element of volume dV at r, at 
time t. The distribution of displacements for Brownian motion is Gaussian, 

2 /41( , )
4

r DtP r t e
Dtπ

−= .        (1) 

In order to take advantage of the probability of displacements analysis, without the need to 
impose bin sizes, the cumulative distribution function (CDF) is used [14, 28, 44, 45]. The CDF 
F(r2,t) can be interpreted as the probability that a particle at the origin at time zero is found 
within a circle of radius r at time t. In a two-dimensional (2D) space, rdrdV π2= , and thus, 

2

0

( , ) 2 ( ', ) ' '
r

F r t P r t r drπ= ∫ . This yields a monoexponential function,
22 /4( , ) 1 r DtF r t e−= − , for 

Brownian motion. A two-component mobility model is often used to distinguish between normal 
and anomalous diffusion by comparing the residuals from a monoexponential CDF fit and a 
biexponential fit [11, 14, 30, 46-48]. The two-component cumulative distribution becomes 

2 2 2 2
1 2/ /2( , ) 1 (1 )r rF r t we w eσ σ− −= − − − ,    (2) 



Page 4 of 23 

 

where  2
1σ  and 2

2σ  are the slow- and fast-mobility mean square displacements, respectively, i.e., 
2 4i iD tσ = , with weighting factor w.  

The propagators for a CTRW and FBM are well documented. The particle displacement of a 
CTRW is given by a Fox function [49-52] and that of FBM is a Gaussian distribution with a 
time-dependent diffusion coefficient [53]. However there is a great deal of confusion in the 
literature about the propagators for obstructed diffusion. Obstructed diffusion can be modeled as 
a percolation problem. Under the influence of constant thermal agitation, the motion of randomly 
wandering molecules is closely related to a random walk. Monte Carlo calculations are 
particularly suitable to simulate the effect of obstruction in the cell membrane because a random 
set of lattice sites can be directly blocked. Diffusion in a percolation cluster has been extensively 
studied near criticality [54, 55] and, in a series of seminal papers, Saxton has simulated diffusion 
in the presence of both mobile and immobile obstacles with a wide range of obstacle 
concentrations, elucidating many of the obstructed diffusion and crowding theoretical predictions 
[15, 56].  The work presented here builds on these reports. 

In this study, we report Monte Carlo simulations to characterize the motion of particles in the 
presence of immobile objects. We describe a method to analyze the particle trajectory based on 
the distribution of displacements taking into consideration the fractal dimension of the matrix 
and the fractal dimension of the walk. The dimension of the walk is found from the simulated 
trajectory. The dimension of the matrix describes the fractal on which the tracer performs a 
random walk. This matrix is naturally embedded in a 2D space. Because of the self-similarity 
properties of percolation clusters, obstructed diffusion bears a vast resemblance to FBM. We 
apply a recently developed method based on p-variation [57] to evaluate the underlying 
mechanism of anomalous diffusion and show that both FBM and obstructed diffusion give the 
same results. Finally, we compare simulation results to recently reported single-particle tracking 
measurements of Kv2.1 potassium channels in the membrane of living cells [30].  

  

MATERIALS and METHODS 

Obstructed diffusion simulations 

We implemented random walk simulations on a 2D square lattice to model obstructed diffusion. 
Obstacles were randomly distributed on the lattice at a concentration c. Obstructed diffusion 
simulations were implemented in MATLAB using a “blind ant” algorithm. First, we generated a 
lattice where each site was assigned a random number between 0 and 1. All sites with a number 
smaller than c are considered obstacles. A walker is placed in the center of the lattice and it is 
only allowed to move into vacancies, which are sites with assigned numbers bigger than c. The 
walker attempts to move to one of the four nearest-neighbor sites with equal probability. If the 
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chosen site is blocked, the walker remains at the original position. The clock ticks independent of 
the outcome of the attempted jump and the protocol is looped N times. The MATLAB built-in 
algorithm used for random number generation is based on the Mersenne twister algorithm [58]. 
The results returned are pseudorandom values drawn from a standard uniform distribution. 

All lattice generated were 2000×2000 sites and periodic boundary conditions were implemented 
on the random walks. We created three different lattices for each obstacle concentration and 
obtained three random walks of 2×106 steps, per lattice. Each of these nine random walks was 
then fit independently according to the text. All results presented here show the mean ± standard 
deviation of the distribution of fitting results.   

Single particle tracking in living cells 

We have recently reported single particle tracking measurements of Kv2.1 potassium channels in 
live cells [30]. In brief, HEK293 cells were transfected with Kv2.1 channels containing an 
extracellular biotin acceptor domain that is the substrate for BirA biotin ligase. The transfected 
cells were incubated with streptavidin-conjugated quantum dots (Qdot 655, Invitrogen, Carlsbad, 
CA), which bound to the biotinylated Kv2.1 channels. Quantum dots enabled us to track 
individual channels with nanometer accuracy. The basal membrane of the labeled cells was 
imaged using a home-built objective-type total internal reflection fluorescence microscope 
(TIRFM). Quantum dots were excited with a 473 nm laser line and the fluorescence was 
collected in a back-illuminated electron-multiplied charge coupled device (EMCCD) camera 
(Andor iXon DU-888). Both the stage (Bioptechs, Butler, PA) and the objective were maintained 
at 37°C.  Individual particles were localized and tracked by fitting the intensity image of an 
appropriate region of interest to a two dimensional Gaussian function [30, 59]. 

RESULTS  

Diffusion in an infinite percolation cluster 

When the concentration of obstacles is low, small clusters of connected occupied sites, i.e., 
fences, are formed. Below a critical concentration threshold, the cluster size remains finite but as 
the concentration increases, so does the mean cluster size. At criticality, an infinite cluster of 
obstacles develops and the system undergoes a percolation transition.  Havlin et al. [55, 60] have 
shown that the propagator for an infinite percolation cluster can be described by 

1/( , ) ~ ( / )f wd d dP r t r f r t− , where dw is the fractal dimension of the walk, df the fractal dimension 

of the cluster, d the underlying dimension, and  ( )1.65
0( ) expf u K u= − . A percolation cluster in a 

membrane is characterized by a fractal dimension df =1.896, d = 2, and the subdiffusive exponent 
is given by dw: MSD ~ t2/dw.  In a percolation cluster, the propagator gives the probability density 
that a particle is found in an element of volume dV within a random fractal with dimension df , 
given by [61] 
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where Γ is the Gamma function, ∫
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where 1.65/( ) / wdK t a t= , 0.104fd d− = − , and B is the normalization factor. Integrating over the 

fractal volume, the cumulative distribution is 

  
( )

( )
1.65

2
γ 2 /1.65, ( )

( , )
2 /1.65

f

f

d d K t r
F r t

d d

⎡ ⎤−⎣ ⎦=
⎡ ⎤Γ −⎣ ⎦

,    (6) 

where γ(a,x) is the incomplete gamma function defined by 1

0
( , )

x t aa x e t dtγ − −= ∫ . Because df and d 

are known, the CDF is defined by a single parameter K(t).  

The critical obstacle concentration threshold in a square lattice is 40.7255±0.0002% [62]. Fig. 1a 
shows a CDF of a simulated trajectory for a walker in a square lattice at criticality. The fit to the 
percolation model (Eq. 6) is shown together with the fits to simple diffusion (Gaussian 
propagator) and to a two-component mobility model (Eq. 2). While both simple diffusion and an 
infinite percolation cluster model are characterized by a single parameter, the two-component 
mobility model is fit to three parameters. Both the two-component and the percolation cluster fits 
are of good quality, with the two-component model being slightly better. As discussed below, the 
percolation cluster fitting parameter reproduces well the predicted power law 1.65/( ) / wdK t a t= , 
with dw = 2.8. The same value is found from the MSD subdiffusive exponent. 

The cumulative distribution eliminates the dependence on bin size and it integrates out noise but 
the displacement probability is more informative from a qualitative perspective. In order to 
compute the displacement distribution P(r,t), the number of displacements, i.e., root of square 
displacements, between / 2r r− Δ and  / 2r r+ Δ  is counted and the occurrences are normalized 
by the bin volume, ΔV = 2πrΔr. However, this procedure introduces a large degree of error at 
small r values. This method also assumes a 2D underlying space, which is incorrect for diffusion 
on a fractal structure. A more suitable procedure involves computing the number of 
displacements and renormalizing the propagator in order to show P(r,t) ΔV. Fig. 1 B shows the 
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propagators using the results from the CDF fits. For diffusion in a percolation cluster, the 
normalization volume, as given by Eq. 3, is /2 12 / ( / 2)f fd d

df fV r r dπ −Δ = Δ Γ .  Fig. 1 C shows the 

distribution of displacements normalized to a 2D space. The comparison shows that the raw-
displacement occurrences (as shown in Fig. 1 B) provide better visual results. 

Diffusion in a deterministic fractal 

The percolation cluster at criticality can be described by a random fractal with dimension df. 
Thus, it is interesting to compare this motion with the propagator for diffusion in a deterministic 
fractal, which was derived by O’Shaugnessy and Procaccia [63], 

/

/2

( / 2) 1( , ) exp
2 ( / ) 4 4

f w
w

d d d
w f

df
f w F F

d d rP r t
d d D t D tπ

Γ ⎛ ⎞ ⎛ ⎞
= −⎜ ⎟ ⎜ ⎟Γ ⎝ ⎠ ⎝ ⎠

.    (7) 

Integrating over the fractal volume [14] given by Eq. 2 yields 

( )2( , ) γ / ,  / 4 / ( / )wd
f w F f wF r t d d r D t d d= Γ ,     (8) 

which includes three independent parameters, df, dw, and DF, that are constrained by the fractal 
structure: 1< df ≤2 and dw ≥2. This model has been successfully applied to obstructed diffusion 
experimental measurements in supported lipid bilayers [14]. We have modeled our simulations 
using this equation and found a best non-linear fit when dw = 2.05±0.05. This value disagrees 
with the value found from the MSD subdiffusive exponent (dw = 2.8). For comparison, the 
residuals for the deterministic fractal model with dw = 2 and dw = 2.8 are shown together with the 
two-component model in Fig. 2a.  Fitting Eq. 8 to the CDF of our simulation also yields a time-
dependent coefficient DF (Fig. 2b), which is not consistent with a deterministic fractal, indicating 
the failure of this model to describe obstructed diffusion. 

Obstructed diffusion below the percolation threshold 

For the analysis of obstructed diffusion in cellular environments, it is necessary to consider a 
wider obstacle concentration range than that close to the percolation threshold. At criticality, an 
infinite percolation cluster is formed and diffusion is anomalous on all time scales [54]. At 
concentrations below the percolation threshold, Saxton [15] has shown that diffusion is 
anomalous at short times and becomes normal at long times. The crossover time increases as the 
concentration of obstacles approaches the threshold. The transition from anomalous to normal 
diffusion can be observed in plots of log[< r2 >/t] as a function of log t. Normal diffusion yields a 
constant while subdiffusion yields a power law with an exponent ( )2 / 1wd −  [15]. This can be 

observed for concentrations below and at the percolation threshold in Fig. 3.  It has been shown 
[15] that when the data are presented as a function of c/cP, where c is the obstacle concentration 
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and cP the percolation threshold, the results do not depend on the lattice geometry or obstacle 
size.  For comparison of obstructed diffusion with fractional Brownian motion, we have applied 
a p-variation test (see Supplemental Material and Fig. S1 [64]) on our simulations [57]. 
However, the obstructed diffusion and fractional Brownian motion cannot be distinguished 
within this test.   

We have tested the percolation model on our simulations. The main result obtained from the 
percolation propagator is the parameter K(t) from Eqs. 4 and 6. Results are presented as a 
function of lag time in Fig. 4. K(t) clearly follows a power law 1.65/( ) / wdK t a t= . Note that while 
dw depends on the cluster size, df is universal [54] thus dw is the only parameter that varies with 
obstacle concentration. To obtain a single scalar statistic for the goodness of fit, it is reasonable 
to use an aggregate or mean squared residual. This statistic is common in several standard 
goodness-of-fit tests, including the chi-square [65] and Cramér–von Mises [66] tests. Comparing 
the mean squared errors of the percolation model to that of the two-component mobility fit (Fig. 
5), it is observed that at concentrations close to the percolation threshold, both models give 
similar results. However, for lower obstacle concentrations, the results from the two-component 
mobility are significantly better.  

The slope of log[K(t)] vs. log(t) in Fig. 4 is -1.65/dw, thus, by means of the percolation cluster 
model, the fractal dimension of the walk dw is obtained for each obstacle concentration. Fig. 6 
shows dw obtained in this manner for a wide range of obstacle concentrations. It is seen that dw 
increases smoothly from 2 to 2.8, reaching this value when the obstacle concentration equals the 
percolation threshold, i.e., c = cP. This result is not surprising and it is the same that is obtained 
by fitting the MSD [15]. However, when the form of the propagator is known, fitting the 
propagator bears the advantage that the whole distribution of displacements is used instead of 
only the second moment. Because the whole distribution is used and the fit has a single unknown 
parameter, the accuracy of the obtained dw values is fairly high as seen by the small error in dw at 
each concentration.  This reduces the need for averaging over many trajectories and also allows 
the study of shorter paths. 

As expected, the MSD of the fast mobility in the two-component mobility model follows a 
similar trend as the percolation model with 2/2

2 ~ wdtσ . Results of σi
2 versus lag time are 

presented in Fig. 7a showing that σ2
2 follows a power law. The time dependence of σ2

2 yields 
2/dw (shown in Fig. 7b). At concentrations close to criticality this empirical model gives robust 
results but it becomes very unreliable for lower concentrations. Thus for lower concentrations the 
error bars in 2/dw cover a large range from subdiffusion to superdiffusion rendering this model 
useless unless a very large amount of data is available.  

Derivation of a propagator for obstructed diffusion below the percolation threshold 
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The exact propagator of this problem combines percolation-like diffusion at short distances and 
normal diffusion at long distances. The difficulty in this model is that the two parts operate on 
different dimensions. Percolation-like short-distance diffusion acts on df dimensions but long-
range normal diffusion is performed in two dimensions. Thus, we cannot integrate this function 
in a straightforward way because both parts have different Jacobians, i.e., different differential 
volumes. If we allow a percolation part P1dV1 according to Eq. 3 and Eq. 4, and a normal 
diffusion part P2dV2 according to Eq. 1, we obtain 1 1 2 2( , ) (1 )P r t dV PdV P dVω ω= + − . Then, 

 ( ) ( )
2

2 /1.65 2 1 1.65
2 2
1 1

1.65 2( , ) ( ) exp ( ) (1 ) exp
2

1.65

f fd d d d

f

r rP r t dV K t r K t r dr
d d

ω ω
σ σ

− − −

⎡ ⎤
⎢ ⎥⎛ ⎞⎢ ⎥= − + − −⎜ ⎟⎢ ⎥−⎛ ⎞ ⎝ ⎠Γ⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦

,  (9) 

where ω, K(t), and σ1, are defined previously. All three parameters are time dependent.  The 
cumulative distribution function is 

  
( )

( ) ( )( )2 2
1

1.65
/2

γ 2 /1.65, ( )
( , ) 1 1

2 /1.65
f r

f

d d K t r
F r t e

d d
σω ω −

⎡ ⎤−⎣ ⎦= + − −
⎡ ⎤Γ −⎣ ⎦

.   (10) 

These equations give the accurate distribution of displacements for obstructed diffusion with any 
obstacle concentration below the percolation threshold. However, as in the two-mobility model 
they involve three different fitting parameters, which means that more data is needed to fit this 
function than the simple percolation approximation.   

Comparison to experimental data 

It is possible to use the percolation model to obtain information on the obstacle concentration for 
diffusion in an obstructed environment. Kv2.1 potassium channels are best modeled by a non-
ergodic CTRW on a percolation cluster [30]. However, when cells are treated with actin 
polymerization inhibitors, such as swinholide A, the CTRW is eliminated and ergodicity is 
recovered. After treatment with swinholide A, the diffusion is still anomalous over lag times of 
more than two decades (Fig. 8a). We have previously proposed [30] that the reason for this 
anomaly is the presence of immobile obstacles in the plasma membrane which obstruct the path 
of the Kv2.1 channels. While in three dimensions a particle easily finds a path to escape from 
obstacle-induced compartments, in 2D the confinement within finite percolation-like 
compartments is enhanced because there are fewer escape paths [67]. 

Fig. 8b shows the mean squared errors obtained from fitting the CDF of Kv2.1 channels in cells 
treated with swinholide A to a percolation cluster (Eq. 6), to a two-component mobility model 
(Eq. 2), and to the subcritical obstructed diffusion propagator derived in Eq. 10. The obstructed 



Page 10 of 23 

 

diffusion propagator gives the smallest mean squared errors over all lag times. These results 
correspond to the mean from 158 trajectories. A mixed propagator result is shown in Fig. S2 
together with the plots for 0ω =  and 1ω = [64]. The percolation cluster and the obstructed 
diffusion models yield values of K(t) that scale as a power law in the same fashion as the 
obstructed diffusion simulations (Fig. 8c). From these fits, the fractal dimension of the walk is 
obtained, dw = 2.12 ± 0.08. It is also observed in Fig. 8c that both models yield very similar 
values for dw. Using the empirical fit in Fig. 6, 

( ) ( )2 22 3.630 1.758 / 1 1.806 0.850wd x x x x= − + − + , where x = c/cP, we can calculate the relative 

obstacle concentration. A range between 0.62 and 0.79 is obtained for c/cP. Fig. 8d shows the 
results of the fast- and slow-mobility MSDs from the two-component model and the slow 
mobility (long-range) MSD from the obstructed diffusion model. The long-range MSDs for the 
two models match satisfactorily but the values obtained with the obstructed diffusion propagator 
are less prone to errors, particularly at large lag times. 

DISCUSSION 

Analysis of the CDF at different lag times provides important information. The simulations 
presented here show that, independent of the obstacle concentration, the CDF can be 
approximated to either a two-component mobility model or a percolation cluster. One could 
always argue that the two-component mobility model introduces two additional fitting 
parameters and thus the model fits better to the simulation in the trivial way, regardless of the 
actual process.  However, the two-component model actually approaches the propagator of 
obstructed diffusion because the obstacles form fences which in turn compartmentalize the cell 
membrane. Thus, for short distances, the particle moves according to a fast mobility within a 
single compartment. For long distances, the particle traverses several compartments and it 
resembles to be diffusing with a slow mobility. The reason this model is not exact is that at short 
distances the motion is performed within a finite percolation cluster, thus the substrate is a 
random fractal of dimension df, but at long distances the motion is normal according to a 
substrate with dimension d = 2.  

The percolation propagator gives excellent results close to the percolation threshold. At small 
obstacle concentrations, this model fits worse than the two-component mobility. The cause for 
the deterioration of the fit quality is that the percolation model does not account for the transition 
to normal diffusion. In spite of this shortcoming, the percolation model can be used to obtain 
information on the membrane structure without the need for extensive data. We observe that this 
model is more robust than the two component model. 

The analysis presented here suggests Kv2.1 channels in cells treated with swinholide A undergo 
anomalous diffusion due to an intermediate concentration of immobile obstacles leading to 
transient percolation-like motion. The presence of anchored proteins has been proposed by 
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Kusumi and co-workers to be partially responsible for the diffusion anomaly seen in the plasma 
membrane [68]. Complexity in cell membranes is also enhanced by the presence of slow and fast 
moving obstacles. Experimental evidence shows that the diffusion of streptavidin in solutions 
crowded with bovine serum albumin (BSA) is anomalous [18]. Diffusion of proteins in solutions 
of random-coil polymers at high concentrations is significantly more anomalous than in BSA 
solutions [18, 19]. It was proposed that subdiffusion induced by rapidly moving obstacles may be 
grounded in a FBM process [19]. Whether anomalous diffusion in the nucleus and cytoplasm is 
percolation-like or FBM is still under debate [69]. Scaling similarities between the two models 
further complicates the discrimination. In the plasma membrane of a living cell, it is likely that 
both mobile (fast- and slow-moving) and immobile obstacles are present and maybe both FBM 
and percolation are responsible for the diffusion anomaly. This problem may be addressed in the 
future by studying supported lipid bilayers under controlled conditions in order to discriminate 
between these two processes. Equations 9 and 10 derived here provide a good platform for the 
analysis of the obstructed diffusion component.   

 

CONCLUSIONS 

In conclusion, we have provided a method for the analysis of propagators of obstructed 
subdiffusion in single-particle tracking data. The propagator for the percolation cluster at 
criticality is explicitly given and is shown against Monte Carlo simulations, in order to eliminate 
confusion and disagreement commonly found in the literature. We have also derived the 
propagator for obstructed diffusion at obstacle concentrations below the percolation threshold by 
combining a percolation model with hop diffusion between obstacle-induced compartments. By 
analyzing the time dependence of the propagator, it is possible to obtain information on the 
concentration of immobile obstacles. Experimental data from Kv2.1 channels in live mammalian 
cells treated with an actin polymerization inhibitor were analyzed using the derived obstructed 
diffusion propagator. The obstructed diffusion propagator provided good agreement with the 
experimental data. The discrimination between percolation and fractional Brownian motion is 
shown to be highly complex, even with the use of advanced tests such as the p-variation method. 
The propagators of the two models are qualitatively different, but a non-Gaussian propagator as 
seen here is not enough to exclude the combination of both obstructed diffusion and FBM. 

This material is based upon work supported by the National Science Foundation under Grant No. 
0956714. 
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Fig. 1: (color online) Propagator analysis of diffusion of a representative trajectory in a 
percolation cluster close to criticality. The data were generated from the random walk 
simulations on a square lattice with an obstacle concentration of 41%, i.e. / 1.007Pc c =  (a) CDF 
at t = 10,000 with fits to percolation cluster as a dashed red line (Eq. 6), normal-diffusion as a 
solid blue line (Gaussian), and two-component mobility as a green line (light grey, Eq. 2). (b) 
Histogram of displacements. The continuous lines show the renormalized propagators 

( ),P r t VΔ , obtained from the fit to the CDF. Each Gaussian of the two-component mobility 

model is shown as a green line (light grey) independently for clarity and the sum of the two 
components is shown as a black dashed line. (c) Probability density function obtained by 
normalizing the distribution of displacements for t = 10,000. The distribution is normalized by 
the volume 2 2πDV r rΔ = Δ , where Δr is the bin size. The propagators of percolation-like- and 
normal-diffusion, as obtained from the fits to the CDF, are shown. Because the propagator of 
diffusion in a percolation cluster operates in df dimensions, the curve shown is 

2( , ) df DP r t V VΔ Δ , where dfVΔ  is the volume corresponding to a fractal dimension df, as in the 

text.  

 

Fig. 2: (color online) CDF of simulated obstructed diffusion with obstacle concentration 0.41c =  
at lag time t = 10,000. (a) The CDF of a representative trajectory is modeled by a deterministic 
fractal as given by Eq. 6. The best non-linear fit is found for dw = 2 and df = 1.6 (dashed red line). 
Note that the fit is constrained by dw ≥ 2. For comparison the biexponential fit (Eq. 2) and the fit 
using dw = 2.8 are also shown. (b) The diffusion coefficient DF is shown as found from fitting to 
the CDF at different lag times to a deterministic fractal model (Eq. 8). All the CDFs are 
described by dw = 2.  

 

Fig. 3: (color online) 2 /r t  as a function of t in a log-log scale for a tracer in the presence of 

immobile obstacles at different concentrations. 2r  is the mean square displacement and t the 

lag time. All nine simulated trajectories are shown together for each obstacle concentration. 

 

Fig. 4: (color online) Percolation fit parameter K(t) in Eq. 6 as a function of lag time at two 
moderate obstacle concentrations and close to criticality. The parameter exhibits a power law 

1.65/( ) / wdK t a t= . 
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Fig. 5: (color online) Mean squared errors of the fits to the obstructed diffusion simulations with 
different obstacle concentrations using the 2-component mobility and the percolation cluster 
models. 

 

Fig. 6: (color online) Fractal dimension of the walk dw as a function of relative obstacle 
concentration. dw is obtained from the fit to the percolation model as shown in Fig. 4. The red 
line is a least square fit to dw as performed in Ref. [15]: 

( ) ( )2 22 3.630 1.758 / 1 1.806 0.850wd x x x x= − + − + , x = c/cP, c is the obstacle concentration and 

cP the concentration at criticality.  

 

Fig. 7: (color online) Two-component mobility model. (a) MSD of each of the two mobilities. 
Full symbols: fast component. Hollow symbols: slow component. (b) Subdiffusion exponent as a 
function of relative obstacle concentration. The red line is the function found from the least 
square fit in FIGURE 6. 

  

Fig. 8: (color online) Analysis of experimental Kv2.1 single-particle tracking in the plasma 
membrane of living HEK cells. All error bars indicate standard error of the mean. (a) 2 /r t  as a 

function of t in a log-log scale. A negative slope between 0.1 and 20 s is evident indicating 
anomalous subdiffusion across this time scale. (b) Mean squared errors from fitting the CDF at 
different lag times to three different models as described in the text: 2-component mobility, 
percolation cluster, and obstructed diffusion. (c) K(t)-values as a function of t, obtained from 
fitting the experimental data to the percolation cluster and obstructed diffusion. A power law 
dependence is obtained from which dw is found. (d) Mean square displacements obtained by 
modeling the experimental data with 2-component mobility (σ1

2 and σ 22 in Eq. 2), and with 
obstructed diffusion (σ 12 in Eq. 15). The slow-mobility component MSDs from the two different 
models coincide. 
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