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Living cells must control the reading out or “expression” of information encoded in their genomes,
and this regulation often is mediated by transcription factors—proteins that bind to DNA and
either enhance or repress the expression of nearby genes. But the expression of transcription factor
proteins is itself regulated, and many transcription factors regulate their own expression in addition
to responding to other input signals. Here we analyze the simplest of such self–regulatory circuits,
asking how parameters can be chosen to optimize information transmission from inputs to outputs
in the steady state. Some nonzero level of self–regulation is almost always optimal, with self–
activation dominant when transcription factor concentrations are low and self–repression dominant
when concentrations are high. In steady–state the optimal self–activation is never strong enough to
induce bistability, although there is a limit in which the optimal parameters are very close to the
critical point.

I. INTRODUCTION

In order to function and survive in the world, cells must
make decisions about the reading out or “expression” of
genetic information. This happens when a bacterium
makes more or less of an enzyme to exploit the varia-
tions in the availability of a particular type of sugar, and
when individual cells in a multicellular organism commit
to particular fates during the course of embryonic devel-
opment. In all such cases, the control of gene expression
involves the transmission of information from some in-
put signal to the output levels of the proteins encoded
by the regulated genes. Although the notion of informa-
tion transmission in these systems usually is left infor-
mal, the regulatory power that the system can achieve—
the number of reliably distinguishable output states that
can be accessed by varying the inputs—is measured, log-
arithmically, by the actual information transmitted, in
bits [1, 2]. Since relevant molecules often are present
at relatively low concentrations, or even small absolute
numbers, there are irreducible physical sources of noise
that will limit the capacity for information transmission.
Cells thus face a tradeoff between regulatory power (in
bits) and resources (in molecule numbers). What can
cells do to maximize their regulatory power at fixed ex-
penditure of resources? More precisely, what can they
do to maximize information transmission with bounded
concentrations of the relevant molecules?

We focus on the case of transcriptional regulation,
where proteins—called transcription factors (TFs)—bind
to sites along the DNA and modulate the rate at which
nearby genes are transcribed into messenger RNA. Be-
cause many of the regulated genes themselves code for
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TF proteins, regulatory interactions form a network. The
general problem of optimizing information flow through
such regulatory networks is quite hard, and we have tried
to break this problem into manageable pieces. Given
the signal and noise characteristics of the regulatory in-
teractions, cells can try to match the distribution of in-
put transcription factor concentrations to these features
of the regulatory network; even simple versions of this
matching problem make experimentally testable predic-
tions [3, 4]. Assuming that this matching occurs, some
regulatory networks still have more capacity to trans-
mit information, and we can search for these optimal
networks by varying both the topology of the network
connections and the strengths of the interactions along
each link in the network (the “numbers on the arrows”
[5]). We have addressed this problem first in simple net-
works where a single input transcription factor regulates
multiple non–interacting genes [6], and then in interact-
ing networks where the interactions have a feedforward
structure [7]. But real genetic regulatory networks have
loops, and our goal here is to study the simplest such
case, where a single input transcription factor controls a
single self–interacting gene. Does feedback increase the
capacity of this system to transmit information? Are
self–activating or self–repressing genes more informative?
Since networks with feedback can exhibit multistability
or oscillation, and hence a nontrivial phase diagram as
a function of the underlying parameters, where in this
phase diagram do we find the optimal networks?

Auto–regulation, both positive and negative, is one of
the simplest and most commonly observed motifs in ge-
netic regulatory networks [8–10], and has been the focus
of a number of experiments and modeling studies (see,
for example, Refs [11, 12]). A number of proposals have
been advanced to explain its ubiquitous presence. Nega-
tive feedback (self–repression) can speed up the response
of the genetic regulatory element [13], and can reduce
the steady state fluctuations in the output gene expres-
sion levels [14]. Positive feedback (self–activation), on the
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other hand, slows down the dynamics of gene expression
and sharpens the response of a regulated gene to its ex-
ternal input. Self–activating genes could thus threshold
graded inputs, transforming them into discrete, almost
“digital” outputs [15], allowing the cell to implement
binary logical functions [16]. If self–activation is very
strong, it can lead to multistability, or switch–like behav-
ior of the response, so that the genetic regulatory element
can store the information for long periods of time [17–19];
such elements will also exhibit hysteretic effects. Weak
self–activation, which does not cause multistability, has
been studied less extensively, but could play a role in al-
lowing the cell to implement a richer set of input/output
relations [10]. Alternatively, if the self–activating gene
product can diffuse into neighboring nuclei of a multi-
cellular organism, the sharpening effect of self–activation
can compensate for the “blurring” of responses due to
diffusion and hence open more possibilities for noise re-
duction through spatial averaging [20, 21].

Many of the ideas about the functional role of auto–
regulation are driven by considerations of noise reduc-
tion. The physical processes by which the regulatory
molecules find and bind to their regulatory sites on the
DNA, the operation of the transcriptional machinery, it-
self subject to thermal fluctuations, and the unavoidable
shot noise inherent in producing a small number of out-
put proteins all contribute towards the stochastic nature
of gene expression and thus place physical limits on the
reliability of biological computation [22–25]. In the past
decade the advance of experimental techniques has en-
abled us to measure the total noise in gene expression
and sometimes parse apart the contributions of various
molecular processes towards this “grand total” [26–34].
Progress has also been made in understanding that gene
regulatory mechanisms beyond simple binding / unbind-
ing of transcription factors, such as DNA looping, can
control the noise at the molecular level [35, 36]. With
the detailed knowledge about noise in gene expression
we can revisit the original question and ask: can both
forms of auto-regulation help mitigate the deleterious ef-
fects of noise on information flow through the regulatory
networks and if so, how?

All of our previous work in information transmission
in transcriptional regulation has been in the steady state
limit. A similar approach was taken in Ref [37], where the
authors analyze information flow in elementary circuits
including feedback, but with different model assumptions
about network topology and noise. More recently, de
Ronde and colleagues have systematically reexamined the
role of feedback regulation on the fidelity of signal trans-
mission for time varying, Gaussian signals in cases where
the (nonlinear) behavior of the genetic regulatory ele-
ment can be linearized around some operating point [38].
They found that auto–activation increases gain–to–noise
ratios for low frequency signals, whereas auto–repression
yields an improvement for high frequency signals. While
many of the functions of feedback involve dynamics, as
far as we know all analyses of information transmission

cg g g

feedback

input

gene Γ

FIG. 1: (Color online) A schematic diagram of a self–
regulating gene. The gene Γ is depicted by a thick black
line and a promoter start signal. Gene products g denoted as
blue circles can bind to the regulatory sites (one in this exam-
ple) that control the expression of Γ. Direct control over the
expression of Γ is exerted by molecules of the transcription
factor c (green diamonds, two binding sites).

with dynamical signals resort to linear approximations.
Here we return to the steady state limit, where we can
treat gene regulatory elements as fully nonlinear devices.
While we hope that our analysis of the self–regulated
gene is interesting in itself, we emphasize that our goal
is to build intuition for the analysis of more general net-
works with feedback.

II. FORMULATING THE PROBLEM

Figure 1 shows a schematic of the system that we will
analyze in this paper, a gene Γ that is controlled by two
regulators: directly by an external transcription factor,
as well as in a feedback fashion by its own gene prod-
ucts. We will refer to the transcription factor as the reg-
ulatory input ; its concentration in the relevant (cellular
or nuclear) volume Ω will be denoted by c. In addition,
the gene products of Γ, whose number in the relevant
volume Ω we denote by G and to which we refer to as
the output, can also bind to the regulatory region of Γ,
thereby activating or repressing the gene’s expression. As
we attempt to make our description of this system math-
ematically precise, the heart of our model will be the
regulatory function that maps the concentrations of the
two regulators at the promotor region of Γ to the rate at
which output molecules are synthesized.

We can write the equation for the dynamics of gene
expression from Γ by assuming that synthesis and degra-
dation of the gene products are single kinetic steps, in
which case we have

dG

dt
= rmaxf(c, γ)− 1

τ
G+ ξ; (1)

here, rmax is the maximum rate for production of G, τ is
the protein degradation time, and γ is the concentration
of the output molecules in the relevant volume Ω. To in-
clude the noise effects inherent in creating and degrading
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single molecules of G we introduce the Langevin force ξ,
and we will discuss the nature of this and other noise
sources in detail later. Importantly, departures from our
simplifying assumptions about the kinetics can, in part,
be captured by proper treatment of the noise terms, as
discussed below.

We are interested in the information that the steady
state output of Γ provides about the input concentration
c. Following our previous work [6, 7], we address this
problem in stages. First we relate information transmis-
sion to the response properties and noise in the regula-
tory element, using a small noise approximation to allow
analytic progress (Section II A). Then we show how the
relevant noise variances can be computed from the model
in Eq (1), taking advantage of our understanding of the
physics underlying the essential sources of noise (Section
II B); this discussion is still quite general, independent
of the details of the regulation function. Then we ex-
plain our choice of the regulation function, adapted from
the Monod–Wyman–Changeux description of allosteric
interactions (Section II C). Because feedback allows for
bifurcations, we have to map the phase diagram of our
model (Section II D), and develop approximations for the
information transmission near the critical point (Section
II E) and in the bistable regime (Section II F). Our dis-
cussion reviews some earlier results, in the interest of
being self–contained, but the issues in Sections II D–II F
are all new to the case of networks with feedback.

A. Noise and information transmission

We are interested in computing the mutual informa-
tion between the input and the output of a regulatory
element, in steady state. We have agreed that the input
signal is the concentration c of the transcription factor,
and we will take the output to be the concentration g
of the gene products, which we colloquially call the ex-
pression level of the gene Γ. An important feature of the
information transmission is that its mathematical defini-
tion is independent of the units that we use in measuring
these concentrations, so when we later choose some natu-
ral set of units we won’t have to worry about substituting
into the formulae we derive here.

Following Shannon [1], the mutual information be-
tween c and g is defined by

I(c; g) =

∫
dc

∫
dg P (c, g) log2

[
P (c, g)

Pin(c)Pout(g)

]
bits,

(2)
where input concentrations c are drawn from the distri-
bution Pin(c), the output expression levels that we can
observe are drawn from the distribution Pout(g), and the
joint distribution of these two quantities is P (c, g). We
think of the expression level as responding to the inputs,
but this response will be noisy, so given the input c there

is a conditional distribution P (g|c). Then the symmetric
expression for the mutual information in Eq (2) can be
rewritten as a difference of entropies,

I(c; g) = S[Pout(g)]−
∫
dc Pin(c)S[P (g|c)], (3)

where the entropy of a distribution is defined, as usual,
by

S[P (x)] = −
∫
dxP (x) log2 P (x). (4)

Finally, we recall that

Pout(g) =

∫
dc Pin(c)P (g|c). (5)

Notice that the mutual information is a functional of
two probability distributions, Pin(c) and P (g|c). The lat-
ter distribution describes the response and noise char-
acteristics of the regulatory element, and is something
we will be able to calculate from Eq (1). Following
Refs [3, 4, 6, 7], we may then ask: given that P (g|c) is
determined by the biophysical properties of the genetic
regulatory element, what is the optimal choice of Pin(c)
that will maximize the mutual information I(c; g)? To
this end we have to solve the problem of extremizing

L[Pin(c)] = I(c; g)− Λ

∫
dc Pin(c), (6)

where the Lagrange multiplier Λ enforces the normaliza-
tion of Pin(c). Other “cost” terms are possible, such as
adding a term proportional to

∫
dc cPin(c), which would

penalize the average cost of input molecules c, although
here we take the simpler approach of fixing the maximum
possible value of c, which is almost equivalent [6]. If the
noise were truly zero, we could write the distribution of
outputs as

Pout(g) =

∫
dcPin(c)δ[g − ḡ(c)], (7)

where ḡ(c) is the average output as a function of the
input, i.e. the mean of the distribution P (g|c). Then if
the function ḡ(c) is invertible, we can write the entropy
of the output distribution as

S[Pout(g)] ≡ −
∫
dg Pout(g) log2 Pout(g)

→ −
∫
dcPin(c) log2

[
Pin(c)

∣∣∣∣dḡ(c)

dc

∣∣∣∣−1
]
,(8)

and we can think of this as the first term in an expansion
in powers of the noise level [3]. Keeping only this leading
term, we have
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L[Pin(c)] = −
∫
dcPin(c) log2

[
Pin(c)

∣∣∣∣dḡ(c)

dc

∣∣∣∣−1
]
−
∫
dcPin(c)S[P (g|c)]− Λ

∫
dc Pin(c), (9)

and one can then show that the extremum of L occurs at

P ∗in(c) =
1

Z
2−S[P (g|c)]

∣∣∣∣dḡ(c)

dc

∣∣∣∣ , (10)

where the entropy is measured in bits, as above, and the
normalization constant

Z =

∫
dc

∣∣∣∣dḡ(c)

dc

∣∣∣∣ 2−S[P (g|c)]. (11)

The maximal value of the mutual information is then
simply I∗ = log2 Z.

In the case where P (g|c) is Gaussian,

P (g|c) =
1√

2πσ2
g(c)

exp

[
− (g − ḡ(c))2

2σ2
g(c)

]
, (12)

the entropy is determined only by the variance σ2
g(c),

S[P (g|c)] =
1

2
log2

[
2πeσ2

g(c)
]
. (13)

It is useful to think about propagating this (output) noise
variance back through the input/output relation ḡ(c), to
define the effective noise at the input,

σ2
c (c) =

∣∣∣∣dḡ(c)

dc

∣∣∣∣−2

σ2
g . (14)

Then we can write

P ∗in(c) =
1

Z

1√
2πeσc(c)

. (15)

As before, Z is the normalization constant,

Z =

∫ C

0

dc

[
1

2πe

(
dḡ

dc

)2
1

σ2
g(c)

]1/2

, (16)

where C is the maximal value of the input concentration,
and again we have the information I∗(c; g) = log2 Z bits.

B. Noise variances

Equation (16) relates Z, and hence the information
transmission I∗ = log2 Z, to the steady state response
and noise in our simple regulatory element. These quan-
tities are calculable from the dynamical model in Eq (1)
using the Lagevin framework [39] and the Itō formulation
of stochastic calculus that we follow in this manuscript, if

we understand the sources of noise. There are two very
different kinds of noise that we need to include in our
analysis.

First, we are describing molecular events that syn-
thesize and degrade individual molecules, and individ-
ual molecules behave randomly. If we say that there is
synthesis of r̄ molecules per second on average, then if
the synthesis is limited by a single kinetic step, and if all
molecules behave independently, then the actual rate r(t)
will fluctuate with a correlation function 〈δr(t)δr(t′)〉 =
r̄δ(t− t′). Similarly, if on average there is degradation of
d̄ molecules per second, then the actual degradation rate
d(t) will fluctuate with 〈δd(t)δd(t′)〉 = d̄δ(t− t′). Thus if
we want to describe the time dependence of the number
of molecules N(t), we can write

dN

dt
= r(t)− d(t) = r̄ − d̄+ ξ(t), (17)

where

ξ(t) = δr(t)− δd(t). (18)

If we are close to the steady state, r̄ = d̄, and if synthesis
and degradation reactions are independent, we have

〈ξ(t)ξ(t′)〉 = 2d̄δ(t− t′). (19)

If some of the reactions involve multiple kinetic steps, or
if the molecules we are counting are amplified copies of
some other molecules, then the noise will be proportion-
ally larger or smaller, and we can take account of this by
introducing a “Fano factor” ν, so that

〈ξ(t)ξ(t′)〉 → 2νd̄δ(t− t′). (20)

The second irreducible source of noise is that the
synthesis reactions are regulated by transcription factor
binding to DNA, and these molecules arrive randomly at
their targets. One way to think about this is that the
concentrations of TFs which govern the synthesis rate
are not the bulk average concentrations over the whole
cell or nucleus, but rather concentrations in some small
“sensitive volume” determined by the linear size ` of the
targets themselves [22, 40, 41]. Concretely, if we write
the synthesis rate as

r = rmaxf(ĉ, γ), (21)

where ĉ is the local concentration of the input transcrip-
tion factor and γ is the concentration of the gene product
that feeds back to regulate itself, we should really think
of these concentrations as ĉ = c+ ξc and γ = G/Ω + ξg,
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where we separate the mean values and the local fluctu-
ations; note that the mean gene product concentration
is the ratio of the molecule number G to the relevant
volume Ω. The local concentration fluctuations are also
white, and the spectral densities are given accurately by
dimensional analysis [22, 40], so that

〈ξc(t)ξc(t′)〉 = (2c/D`)δ(t− t′) (22)

〈ξγ(t)ξγ(t′)〉 = (2G/ΩD`)δ(t− t′), (23)

where D is the diffusion constant of the transcription
factor molecules, which we assume is the same for the
input and output proteins.

We can put all of these factors together if the noise
is small, so that it drives fluctuations which stay in the
linear regime of the dynamics. Then if the steady state
solution to Eq (1) in the absence of noise is denoted by
G = Ḡ(c), we can linearize in the fluctuations δG =
G− Ḡ:

dG

dt
= rmaxf(ĉ, γ)− 1

τ
G+ ξ

= rmaxf(c+ ξc, G/Ω + ξγ)− 1

τ
G+ ξ (24)

⇒ d(δG)

dt
=

[
rmax

Ω

∂f(c, γ)

∂γ

∣∣∣∣
γ=Ḡ/Ω

− 1

τ

]
δG+ ξeff(t), where (25)

〈ξeff(t)ξeff(t′)〉 = 2

ν Ḡ
τ

+

(
rmax

∂f(c, γ)

∂γ

∣∣∣∣
γ=Ḡ/Ω

)2
2Ḡ

ΩD`
+

(
rmax

∂f(c, Ḡ/Ω)

∂c

)2
2c

D`

 δ(t− t′). (26)

To solve this problem and compute the variance in the output number of molecules 〈(δG)2〉, it is useful to recall
the Langevin equation for the position x(t) of an overdamped mass tethered by a spring of stiffness κ, subject to a
drag force proportional to the velocity, Fdrag = −αv:

α
dx

dt
= −κx+ ζ(t) (27)

〈ζ(t)ζ(t′)〉 = 2kBTαδ(t− t′). (28)

From equipartition we know that these dynamics predict the variance 〈x2〉 = kBT/κ. Identifying terms with our
Langevin description of the synthesis and degradation reactions, we find

〈(δG)2〉 =
1

1
τ −

rmax

Ω
∂f
∂γ

[
ν
Ḡ

τ
+

(
rmax

∂f

∂γ

)2
Ḡ

ΩD`
+

(
rmax

∂f

∂c

)2
c

D`

]
, (29)

where we understand that the partial derivatives of f are to be evaluated at the steady state γ = Ḡ/Ω.
We have defined rmax as the maximum synthesis rate, so that the regulation function f is in the range 0 ≤ f ≤ 1,

and hence the maximum mean expression level is Ḡmax = rmaxτ . Thus it makes sense to work with a normalized
expression level g ≡ G/(rmaxτ), and to think of the regulation function f as depending on g rather than on the
absolute concentration γ. Then we have

〈(δg)2〉 ≡ σ2
g(c) =

1

1− (∂f/∂g)

[(
ν

rmaxτ

)
ḡ +

(
∂f

∂g

)2

ḡ
1

D`γmax
+

(
∂f

∂c

)2
c

D`

]
, (30)

where γmax is the maximal mean concentration of output molecules. As discussed previously [6], we can think of
Ng = rmaxτ/ν as the maximum number of independent output molecules, and this combines with the other parameters
in the problem to define a natural concentration scale, c0 = Ng/(D`τ). Once we choose units where c0 = 1, we have
a simpler expression,

σ2
g(c) =

1

Ng
· 1

1− (∂f/∂g)

[
ḡ +

(
∂f

∂g

)2
ḡ

γmax
+

(
∂f

∂c

)2

c

]
, (31)

where we notice that almost all the parameters have been eliminated by our choice of units.
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Finally, we need to use the variance to compute the information capacity of the system, I∗ = log2 Z, where from
Eq (16) we have

Z =

∫ C

0

dc

[
1

2πe

(
dḡ

dc

)2
1

σ2
g(c)

]1/2

=

[
Ng
2πe

]1/2

Z̃, (32)

Z̃ =

∫ C

0

dc

[(
dḡ

dc

)2
1− (∂f/∂g)

ḡ + (∂f/∂g)2(ḡ/γmax) + (∂f/∂c)2c

]1/2

; (33)

C is the maximum concentration of input transcrip-
tion factor molecules, in units of c0. Notice that the
parameter Ng just scales the noise and (in the small
noise approximation) thus adds to the information, I∗ =

log2 Z̃ + (1/2) log2(Ng/2πe); the problem of optimizing
information transmission thus is the problem of optimiz-
ing Z̃. Further, because

ḡ = f(c, ḡ), (34)

the total derivative dḡ/dc can be expressed though

dḡ

dc
=
∂f

∂c
+
∂f

∂g

dḡ

dc
. (35)

Putting all of these pieces together, we find

Z̃ =

∫ C

0

dc

∂f
∂c

(
1− ∂f

∂g

)− 1
2√

ḡ +
(
∂f
∂c

)2

c+
(
∂f
∂g

)2

ḡ/γmax

. (36)

In what follows we will start with the assumption that,
since both input and output molecules are transcrip-
tion factor proteins, their maximal concentrations are
the same, and hence γmax = C; we will return to this
assumption at the end of our discussion.

If a regulatory function f(c, g) is chosen from some
parametric family, Eq (36) allows us to compute the in-
formation transmission as a function of these parame-
ters and search for an optimum. Before embarking on
this path, however, we note that the integrand of Z̃ can
have a divergence if ∂f/∂g = 1. This is a condition for
the existence of a critical point, and in this simple sys-
tem the critical point or bifurcation separates the regime
of monostability from the regime of bistability. We ex-
pect that at this point the fluctuations around ḡ are no

longer Gaussian, and we need to compute higher order
moments. Thus, Eq (36), as is, can safely be used only
in the monostable regime away from the critical point;
in Section II E we compute the expression for the mutual
information near to and at the critical point for a par-
ticular choice of f . There are even more problems in the
bistable regime, since there are multiple solutions to Eq
(34), and in Section II F we discuss information in the
bistable regime.

C. MWC regulatory function

To continue, we must choose a regulatory function. In
Ref [7], where we analyzed genetic networks with feed-
forward interactions, we studied Hill–type regulation [42]
and Monod–Wyman–Changeaux–like (MWC) regulation
[43], and found that the MWC family encompasses a
broader set of functions than the Hill family; for a re-
lated discussion see Ref [44]. MWC functions also allow
for a natural introduction of convergent control, where
a node in a network is simultaneously regulated by sev-
eral types of regulatory molecules. Briefly, in the MWC
model one assumes that the molecule or supermolecular
complex being considered has two states, which we iden-
tify here with ON and OFF states of the promoter. The
binding of each different regulatory factor is always inde-
pendent, but the binding energies depend on whether the
complex is in an OFF or ON state, so that (by detailed
balance) binding shifts the equilibrium between these two
states.

In our case, we have two regulatory molecules, the in-
put transcription factor with concentration c and the
gene product with concentration g. If there are, re-
spectively, nc and ng identical binding sites for these
molecules then the probability of being in the ON state
is

f(c, g) =
(1 + c/Qon

c )nc(1 + g/Qon
g )ng

L(1 + c/Qoff
c )nc(1 + g/Qoff

g )ng + (1 + c/Qon
c )nc(1 + g/Qon

g )ng
, (37)

where Qon
c , Q

on
g are the binding constants in the ON state, and similarly Qoff

c , Qoff
g are the binding constants in
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the OFF state; L reflects the “bare” free energy difference
between the two states. If the binding of the regulatory
molecules has a strong activating effect, then we expect
Qon
c � Qoff

c , and similarly for Qg, which means that only
one binding constant is relevant for each molecule, and
we will refer to these as Kc and Kg. Then we can write

f(c, g) =
1

1 + e−F (c,g)
(38)

F (c, g) = nc ln

(
1 + c/Kc

1 + c1/2/Kc

)
+ ng ln

(
1 + g/Kg

1 + 1/(2Kg)

)
,

(39)

where c1/2 is the input concentration at which ḡ(c1/2) =
1/2. Notice that if binding of g strongly represses the
gene, then we have Qoff

g � Qon
g , but this can be simu-

lated by changing the sign of ng. Thus we should think
of the parameters nc and ng as being not just the num-
ber of binding sites, but also an index of activation vs.
repression. We will also treat these parameters as con-
tinuous, which is a bit counterintuitive but allows us to
describe, approximately, situations in which the multiple
binding sites are inequivalent, or in which Qon and Qoff

are not infinitely different.
From the discussion in the previous section, we will

need to evaluate the partial derivatives of f(c, g) with re-
spect to it arguments. For the MWC model, these deriva-
tives take simple forms:

∂f

∂c
= f(1− f)

nc
Kc + c

(40)

∂f

∂g
= f(1− f)

ng
Kg + g

. (41)

D. Phase diagram

Let us start by examining the stability properties of
Eq (34), which determines the steady state ḡ(c). Viewed
as a function of g, f(c, g) is sigmoidal, and so if we try
to solve g = f(c, g) graphically we are looking for the
intersection of a sigmoid with the diagonal, as a function
of g. In doing this we expect that, for some values of the
parameters, there will be exactly one solution, but that
as we change parameters (or the input c), there will be a
transition to multiple solutions. This transition happens
when f just touches the diagonal, that is, when for some
ḡ∗ it holds true that f(ḡ∗, c) = ḡ∗ and ∂f(ḡ, c)|ḡ∗/∂ḡ = 1.
Using Eq (41), these two conditions can be combined to
yield an equation for ḡ∗:

ḡ∗(1− ḡ∗) ng
Kg + ḡ∗

= 1 (42)

This is a quadratic in ḡ∗ for which no real solution on
ḡ∗ ∈ [0, 1] exists if either

Kg >
(ng − 1)2

4ng
(43)

or ng < 1. When either of these conditions are fulfilled,
the gene is in the monostable regime. At the critical
point, K∗g = (ng − 1)2/(4ng) and ḡ∗ = (ng − 1)/(2ng).
This is illustrated in Fig 2, as a function of the effective
input χ(c) = θ − nc ln(1 + c/Kc), where, from Eq (39),
θ = nc ln(1 + c1/2/Kc) + ng ln(1 + 1/(2Kg)).

For the special case of ng = 2 it is not hard to compute
the analytical approximations for the boundary of the
bistable domain. First, Eq (38) can be expanded for
large Kg, yielding a quadratic equation for ḡ that has
two solutions only when

χ < − ln 4− 2 lnKg. (44)

To get the lower bound, we expand Eq (38) for small
ḡ and retain terms up to the quadratic order in ḡ; the
resulting quadratic equation yields two solutions only if

χ > ln(4/Kg − 3). (45)

Both approximations are plotted as circles and crosses,
respectively, in Fig 2, and match the exact curves well.
For other values of ng we solve Eq (34) exactly, using a
bisection method to get all solutions for a given c and
we partition the range of c adaptively into a denser grid
where the derivative ḡ′(c) is large. For integer values of
ng when the equation can be rewritten as a polynomial
in ḡ, it is technically easier to find the roots of the poly-
nomial; alternatively one can solve for c given ḡ using a
simple bisection, because c(ḡ) is an injective function.

E. Information transmission near the critical point

In this section we will generalize the computation of
noise and information in the region close to the critical
point, where the Gaussian noise approximation breaks
down. We start by rewriting Eq’s (24–25) in our normal-
ized units,

τ
dg

dt
= f(c, g)− g + ζ (46)

〈ζ(t)ζ(t′)〉 = 2τT (g)δ(t− t′) (47)

T (g) =
1

Ng

[
g +

(
∂f

∂g

)2
g

γmax
+

(
∂f

∂c

)2

c

]
.(48)

This is equivalent to Brownian motion of the coordinate
g in a potential V (g, c) defined by

−dV (g, c)

dg
= f(c, g)− g, (49)

with an effective temperature T (g) that varies with posi-
tion. If we simulate this Langevin equation, we will draw
samples out of the distribution P (g|c), but we can con-
struct this distribution directly by solving the equivalent
diffusion or Fokker–Planck equation,

∂P (g, t)

∂t
=

∂

∂g
[V ′(g, c)P (g, t)] +

∂2

∂g2
[T (g)P (g, t)] ;

(50)
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FIG. 2: (Color online) Monostable, critical, and bistable
(green, red, blue lines, left to right, respectively) behavior
of the self-activating gene for ng = 2. A) The phase diagram
as a function of Kg and the input-dependent term. In the re-
gion between the black solid lines two solutions ḡ1,2 exist for
every value of the input c (y-axis). The corresponding critical
value is at K∗g = 1/8 (cusp of the black solid lines). Circles
and crosses represent analytical approximations to the exact
boundary of the bistable region for ng = 2 and large 1/Kg

(see text). For three choices of Kg denoted by vertical dashed
lines, the input / output relations ḡ(c) are plotted in B. B).
The critical solution (red) has an infinite total derivative ḡ′(c)
at θ−nc log(1 + c/Kc) = 3.29, ḡ = 0.25. The bistable system
(blue) has three solutions, two stable and one unstable, for a
range of inputs that can be read out from the plot in A.

the steady–state solution is then P (g|c), and this is

P (g|c) = P (0)
T (0)

T (g)
exp

[
−
∫ g

0

V ′(y, c)

T (y)
dy

]
. (51)

The “small noise approximation” in this extended
framework corresponds to expanding the integrand in
Eq (51) around the mean, g = ḡ(c) + δg. If we write
x = g − ḡ(c), we will find

P (g|c) ∝ exp
(
−a2x

2 − a3x
3 − a4x

4 − . . .
)
, (52)

where our previous approximations correspond to keep-
ing only a2. The critical point is where a2 = 0, and
we have to keep higher order terms. In principle the
expansion coefficients have contributions from the g–
dependence of the effective temperature, but we have
checked that these contributions are negligible near crit-
icality. Then we have

a2 =
1

2!

[
1− f ′

T

]
, (53)

a3 = − 1

3!

f ′′

T
,

a4 = − 1

4!

f ′′′

T
,

where primes denote derivatives with respect to g, and
all terms should be evaluated at g = ḡ(c).

For the Monod–Wyman–Changeaux regulatory function in Eq (38), all these derivatives can be evaluated explicitly:

f ′ =
∂f

∂g
= f(1− f)

ng/Kg

1 + g/Kg
(54)

f ′′ =
∂2f

∂g2
= f(1− f)

(
ng/Kg

1 + g/Kg

)2(
1− 2f − 1

ng

)
(55)

f ′′′ =
∂3f

∂g3
= f(1− f)

(
ng/Kg

1 + g/Kg

)3 [(
1− 2f − 1

ng

)(
1− 2f − 2

ng

)
− 2f(1− f)

]
(56)

From Eq (42), the critical point occurs at ḡ∗ = (ng −
1)/2ng when K∗g = (ng − 1)2/4ng, and at this point the

derivatives simplify:

f ′ = 1 (57)

f ′′ = 0 (58)
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f ′′′ = −
8n2

g

n2
g − 1

. (59)

Now we want to explore behavior in the vicinity of
the critical point; we will fix Kg to its critical value,
K∗g (ng), and compute the derivatives in Eqs (54-56) as
∂f/∂g → 1. Consider therefore a small positive ε such
that

∂f

∂g

∣∣∣∣
ḡ

= 1− ε. (60)

In a system with chosen Kg and ng that yield critical
behavior, the deviation from criticality above will happen
at ḡ = ḡ∗ + ∆. To find the relation between ε and ∆, we
evaluate the derivative in Eq (54) at ḡ to form a function
ψ(ḡ) = ḡ(1− ḡ)ng/(Kg + ḡ), which evaluates to 1 at ḡ∗.
This function can be expanded in Taylor series around
ḡ∗; the first order in ∆ vanishes and we find:

ng(Kg + 1)

(1 + ḡ∗/Kg)3
∆2 = ε. (61)

Therefore, the derivative deviates by ε from criticality
at 1 when ḡ deviates by ±∆ from the ḡ∗. We now per-
form similar expansions on the second- and third-order
derivatives in Eqs (55,56), and evaluate the factors at the
critical point:

∂f

∂g
= 1−

4n2
g

n2
g − 1

∆2 (62)

∂2f

∂g2
= −

8n2
g

n2
g − 1

∆ +
32n3

g

(n2
g − 1)2

∆2 (63)

∂3f

∂g3
= −

8n2
g

n2
g − 1

+
64n3

g

(n2
g − 1)2

∆ + (64)

+
128n4

g(n
2
g − 4)

(n2
g − 1)3

∆2.

These expressions have been evaluated for K∗g , but we
could have easily repeated the calculation by assuming
that Kg itself can deviate a bit from the critical value,
i.e. Kg = K∗g + δKg, which would yield somewhat more
complicated results that we don’t reproduce here.

Equations (62–64) can be used in Eq (53) to write down
the probability distribution P (g|c). Far away from the
critical point the Gaussian approximation is assumed to
hold, and a3, a4 can be set to 0. Close to the critical point
the higher order terms a3 and a4 need to be included. To
assess the range where this switchover occurs, we com-
pare in Eqs (62–64) the leading to the subdominant cor-
rection: we insist that the quadratic correction in Eq (63)
is always smaller than linear, and that the linear correc-
tion in Eq (64) is always smaller than constant (we drop
the quadratic correction there). We found empirically
that including the higher-order corrections yields good
results when the following conditions are simultaneously

satisfied:

|∆| <
n2
g − 1

16ng
(65)

|∆| < 0.25.

These conditions guarantee that the higher order terms,
which are evaluated around the critical point, are
nowhere evaluated too far from the critical point such
that the approximations would break down.

We can now put the pieces together by using the gen-
eral form of the optimal solution for P ∗(c) in Eq (10),
together with the quartic ansatz for P (g|c) in Eq (52).
For each c, we evaluate two entropies of the conditional
distribution P (g|c):

S2[P (g|c)] = log2

√
2πeσ2

g(c) (66)

S4[P (g|c)] = −
∫
dg P (g|c) log2 P (g|c). (67)

S4 is the noise entropy with higher-order terms included
whenever conditions Eq (65) are met, and S2 is the noise
entropy in the Gaussian approximation.

Equation (10) can be rewritten in a numerically stable
fashion by realizing that P ∗(c)|dḡ/dc|−1 = P ∗(ḡ), that
is, that the optimal distribution of mean output levels is
given by

P ∗(ḡ) = 2−S[P (g|ḡ)]/Z. (68)

To join the Gaussian and higher-order approximations
consistently in the regimes away and near the critical
point, the noise entropy in Eq (69) is chosen to be the
pointwise minimum of S4(ḡ) and S2(ḡ). Finally, the in-
formation is again I = log2 Z, with

Z =

∫ ḡ(C)

0

dḡ 2−S[P (g|ḡ)]. (69)

F. Information transmission in the bistable regime

We now discuss the information capacity in the
bistsable regime, away from the critical line. In this
regime, each value of the input c can give rise to mul-
tiple solutions of the steady state equation, Eq (34). In
the simplest case (which includes the MWC regulatory
functions), there will be two stable solutions, ḡ1(c) and
ḡ2(c), and a third solution, ḡ3(c), that is unstable. In
equilibrium, the system will be on the first branch with
weight w1(c) and on the second with weight w2(c). Here
we place upper bound on the information I(c; g), again in
the small noise approximation. This will be useful since,
as we will see, even this upper bound is always less than
the information which can be transmitted in the monos-
table or critical regime, and so we will be able to conclude
that the optimal parameters for which we are searching
are never in the bistable regime.
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In the bistable regime, the small noise approximation
(again, away from the critical line) means that the condi-
tional distributions are well approximated by a mixture
of Gaussians,

P (g|c) = w1(c)
1√

2πσ2
1(c)

e
− (g−ḡ1(c))2

2σ2
1(c)

+w2(c)
1√

2πσ2
2(c)

e
− (g−ḡ2(c))2

2σ2
2(c) . (70)

To compute the information we need two terms, the total
entropy and the conditional entropy. The conditional en-
tropy takes a simple form if we assume the noise is small
enough that the Gaussians don’t overlap. Then a direct
calculation shows that, as one might expect intuitively,
the conditional entropy is just the weighted sum of the
entropies of the Gaussian distributions, plus a term that
reflects the uncertainty about which branch the system
is on,

S[P (g|c)] =
1

2

2∑
i=1

wi(c) log2

[
2πeσ2

i (c)
]

−
2∑

i=1

wi(c) log2 wi(c). (71)

Implementing the small noise approximation for the
total entropy is a bit more subtle. We have, as usual,

P (g) ≡
∫
dcP (c)P (g|c)

=

∫
dcP (c)

w1(c)√
2πσ2

1(c)
exp

[
− (g − ḡ1(c))2

2σ2
1(c)

]
+

∫
dcP (c)

w2(c)√
2πσ2

2(c)
exp

[
− (g − ḡ2(c))2

2σ2
2(c)

]
.

(72)

If the noise is small, each of the two integrals is dominated
by values of c near the solution of the equation g = gi(c);
let’s call these solutions ĉi(g). Notice that these solutions
might not exist over the full range of g, depending on the
structure of the branches. Nonetheless we can write

P (g) ≈

[
w1(c)P (c)

∣∣∣∣dḡ1(c)

dc

∣∣∣∣−1
]
c=ĉ1(g)

+

[
w2(c)P (c)

∣∣∣∣dḡ2(c)

dc

∣∣∣∣−1
]
c=ĉ2(g)

, (73)

with the convention that if we try to evaluate wi(c) at
a non–existent value of ĉi, we get zero. Thus, the full
distribution P (g) is also a mixture,

P (g) = f1P1(g) + f2P2(g). (74)

The fractional contributions of the two distributions are

fi =

∫
i

dcP (c)wi(c), (75)

where
∫

i
dc · · · denotes an integral over the regions along

the c axis where the function ĉi(g) exists, and the (nor-
malized) component distributions are

Pi(g) =
1

fi

[
wi(c)P (c)

∣∣∣∣dḡi(c)

dc

∣∣∣∣−1
]
c=ĉi(g)

(76)

The entropy of a mixture is always less than the average
entropy of the components, so we have an upper bound

S[P (g)] ≤ −
2∑

i=1

fi

∫
dg Pi(g) log2 Pi(g) (77)

= −
2∑

i=1

∫
dg

[
wi(c)P (c)

∣∣∣∣dḡi(c)

dc

∣∣∣∣−1
]
c=ĉi(g)

log2

[
1

fi
wi(c)P (c)

∣∣∣∣dḡi(c)

dc

∣∣∣∣−1
]
c=ĉi(g)

(78)

= −
2∑

i=1

∫
i

dcP (c)wi(c) log2

[
1

fi
wi(c)P (c)

∣∣∣∣dḡi(c)

dc

∣∣∣∣−1
]
. (79)

An upper bound on the total entropy is useful because it allows us to bound the mutual information:

I(c; g) ≡ S[P (g)]−
∫
dcP (c)S[P (g|c)] (80)

≤ −
2∑

i=1

∫
i

dcP (c)wi(c) log2

[
1

fi
wi(c)P (c)

∣∣∣∣dḡi(c)

dc

∣∣∣∣−1
]
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−1

2

2∑
i=1

∫
dcP (c)wi(c) log2

[
2πeσ2

i (c)
]

+

2∑
i=1

∫
dcP (c)wi(c) log2 wi(c) (81)

= −
∫
dcP (c) log2 P (c) +

1

2

∫
dcP (c)

2∑
i=1

wi(c) log2

[∣∣∣∣dḡi(c)

dc

∣∣∣∣2 1

2πeσ2
i (c)

]
−

(
−

2∑
i=1

fi log2 fi

)
(82)

≤ −
∫
dcP (c) log2 P (c) +

1

2

∫
dcP (c)

2∑
i=1

wi(c) log2

[∣∣∣∣dḡi(c)

dc

∣∣∣∣2 1

2πeσ2
i (c)

]
, (83)

where in the last step we use the positivity of the entropy
associated with the mixture weights {fi}.

We can now ask for the probability distribution P (c)
that maximizes the upper bound on I(c; g), and in this
way we can bound the capacity of the system. Happily,
the way in which the bound depends on P (c), in Eq (83),
is not so different from the dependencies that we have
seen in the monostable case [Eq (9)], so we can follow a
parallel calculation to show that

I(g; c) ≤ log2

[∫ C

0

dc e−φ(c)

]
(84)

φ(c) =
∑
i

wi(c) ln

[√
2πeσ2

gi(c)

∣∣∣∣dḡi(c)dc

∣∣∣∣−1
]
.(85)

Finally, to find the weights wi(c) we can numerically in-
tegrate the Fokker–Planck solution in Eq (51) to find

w1(c) =

∫ ḡ3(c)

0

dg′ P (g′|c), (86)

w2(c) =

∫ ∞
ḡ3(c)

dg′ P (g′|c). (87)

To summarize, we have derived an upper bound on
the information transmitted between the input and the
output. The tightness of the bound is related to the
applicability of the “no overlap” approximation, which
for MWC–like regulatory functions should hold very well,
as we have verified numerically. If only one of the weights
wi 6= 0, our results reduce to those in the monostable
case, as they should.

III. RESULTS

We begin by showing that the analytical calculations
presented in the previous section can be carried out nu-
merically in a stable fashion, both away from and in the
critical regime. We recall that the information transmis-
sion is determined by an integral Z̃ [Eq (36)], and that
because we are working in the small noise approximation
we have a choice of evaluating this as an integral over the
input concentration c or an integral over the mean out-
put concentrations ḡ. Figure 3 shows the behavior of the
integrands in these two equivalent formulations when we

have chosen parameters that are close to the critical point
in a self–activating gene. The key result is that, once
we include terms beyond the Gaussian approximation to
P (g|c) following the discussion in Section II E, we really
do have control over the calculation, and find smooth re-
sults as the parameter values approach criticality. Thus,
we can compute confidently, and search for parameters
of the regulatory function θ ≡ {c1/2,Kc, nc,Kg, ng} that
maximize information transmission.

We start the optimization by choosing the parameter
values θg ≡ {ng,Kg} which describe the self–interaction
term, and then holding these fixed while we optimize the
remaining ones, θc ≡ {c1/2, nc,Kc}. In all these opti-
mizations the parameter Kc is driven to zero, and in this
limit the MWC regulatory function of Eq (38) simplifies
to something more like the Hill function,

f(g, c) =
cnc

cnc + cnc1/2e
−F̃ (g)

(88)

F̃ (g) = ng ln

(
1 + g/Kg

1 + 1/(2Kg)

)
. (89)

Once we have optimized θc, we can explore the informa-
tion capacity as a function of θg, at varying values of the
remaining parameter in the problem, the maximal con-
centration C of transcription factors. Figure 4A maps
out the “capacity planes,” I∗(ng,Kg;C) at fixed C. In
detail, we show I∗(ng,Kg;C)− I∗max(C) for three choices
of our parameter C, where I∗max(C) is the information
obtained with the optimal choice of ng and Kg; the best
choice of parameters is depicted as a yellow circle in the
capacity plane.

For large values of C, C = 1, 10, the optimal solu-
tion is at ng → 0 or Kg → ∞ (magenta square in the
lower right corner), which drives the self–activation term
in Eq (38) to zero, towards a noninteracting solution. We
have checked that these solutions correspond to optimal
solutions for a single noninteracting gene found in our
previous work [7]. As C is decreased, however, the opti-
mal combination {ng,Kg} shifts towards the left in the
capacity plane (cyan square for C = 0.1), exhibiting a
shallow but distinct maximum in information transmis-
sion. If we examine the mean input/output relations in
Fig 4B, we find nothing dramatic: the critical (red) so-
lutions seem to have lower capacities (which we carefully
reexamine blow), while other quite distinct parameter
choices for {ng,Kg} nevertheless generate very similar
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FIG. 3: (Color online) Computing information transmission
close to the critical point. A) An input/output relation ḡ(c)
for ng = 2, C = 1 and Kg = K∗g (ng) + 0.004, showing a
self-activating gene with an almost critical value of Kg. B)
Noise in the input from Eq (14), which is the integrand in the
expression for information in Eq (36), shows an incipient di-
vergence between red vertical bars. Inset: zoom-in of the peak
shows that it can be sampled well by increasing the number
of bins. Different plot symbols indicate domain discretization
into 500 (black dots) and 5000 (red circles) bins. At the crit-
ical point the divergence is hard to control numerically. C)
An alternative way of computing the same information, by
integrating in the output domain as in Eq (69). Shown is the
integrand in the gaussian noise approximation [black, S2(ḡ)
from Eq (66)] and with quartic corrections [red / light gray,
S4(ḡ) from Eq (67)]. At the critical point higher order cor-
rections regularize the integrand, while away from the critical
point the integrand smoothly joins with the gaussian approx-
imation. This approach is stable numerically both away from
and in the critical regime. D) Information I = log2 Z̃ as a
function of Kg for ng = 2. Critical K∗g = 1/8 is denoted
by a dashed red line. Integration across ḡ in the output do-
main with quartic corrections (squares) agrees well with the
integration across c in the input domain (crosses) away from
K∗g , but also smoothly extends to the critical K∗g . This is a
cut across the capacity plane in Fig 4A (denoted by a dashed
yellow line) for C = 1.

mean input/output relations, because of the freedom to
optimally choose θc parameters. The behavior of effec-
tive noise in the input, σc(c), given by Eq (14) and shown
in Fig 4C, is more informative; recall that

∫
dc σ−1

c (c)
is proportional to the information transmission. Non-
interacting (magenta) solutions always have the lowest
amount of noise at high input concentrations (c ∼ C). As
the self–interaction turns on, the noise at high input in-
creases, but that increase can be traded off for a decrease
in noise at medium and low c. While for low C = 0.1

the critical (red) solution is never optimal, the solution
with some self–activation manages to deliver an addi-
tional ∼ 0.2 bits of information. We have verified that
for 10× smaller value of C = 0.01 the capacity plane is
qualitatively the same, exhibiting the peak at a nontriv-
ial (but still not critical) choice of {ng ≈ 0.51,Kg ≈ 0.11}
(not shown).

Intuitively, the self-activation parameters θg have three
direct effects on the information transmission: they
change the shape of the input/output curve, the self–
activation feeds some of the output noise back into the
input, and the time τ (protein lifetime) that averages
the input noise component gets renormalized to τ →
τ(1− ∂f/∂g)−1. The changes in the mean input/output
relation can be partially compensated for by the corre-
lated changes in the θc, as we observed in our optimal
solutions, suggesting that regardless of the underlying
microscopic parameters, it is the shape of ḡ(c) itself that
must be optimal. The increase in averaging time acts to
increase the information, thus favoring self–activation.
However, this will simultaneously increase the noise in
the output that feeds back, as well as drive ḡ(c) towards
infinite steepness at criticality, restricting the dynamic
range of the output. At low C there is a parameter regime
where increasing the integration time will help decrease
the (dominant) input noise enough to result in a net gain
of information. At high C, input noise is minimal and
thus this averaging effect loses its advantage; instead,
feedback simply acts to increase the total noise by rein-
jecting the output noise at the input, so that optimiz-
ing information transmission drives the self–interaction
to zero.

Next we examine in detail the behavior of information
transmission close to the critical region. Close to, but not
at, the critical point we perform very fine discretization
of the input range to evaluate the integral in Eq (36), as
reported in Fig 3B. To validate that the information in-
deed reaches a maximum at nontrivial values of {ng,Kg}
when C = 0.1, we cut through the capacity plane in
Fig 4A along the yellow line at ng = 2, and display the
resulting capacity values in Fig 5A (the results are nu-
merically stable when integrated on 104 or 103 points).
Unlike for C = 1 and C = 10, for C = 0.1 the maximum
is clearly achieved for a nontrivial value of Kg, but away
from the critical line, confirming our previous observa-
tions. We further examine the capacity directly on the
critical line, K∗g = (ng − 1)2/(4ng), as a function of ng
at C = 1 (denoted in Fig 4A with dashed red line). The
capacity in this case can be calculated using Eq (69) and
is shown in Fig 5B. The capacity that includes quartic
corrections is higher by ∼ 0.05−0.1 bits than in the gaus-
sian approximation, making the effect small but notice-
able. We also confirmed that the capacity at the critical
line joints smoothly with the capacity near the line, i.e.
that there is no jump in capacity exactly at criticality,
which presumably would be a sign of numerical errors.
Figure 5C finally validates that across the whole range
of ng for C = 1, small increases in Kg above the critical
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FIG. 4: (Color online) Information transmission as a function of self-activating parameters {ng,Kg} for three values of C;
C = 0.1 (left column), C = 1 (middle column), C = 10 (right column). For each value of {ng,Kg} the three remaining
parameters {c1/2, nc,Kc} are optimized to maximize information. A) The capacity planes showing the decrease in capacity
in bits (colormap) from the maximal value achieved for an optimal choice of all parameters; the optimal set of parameters is
denoted by a colored square on a yellow circle. The white upper left region of each capacity plane corresponds to the bistable
region. For low C = 0.1 the maximum is achieved in the interior of the domain (cyan square, [1]), while for C = 1, 10 ng is
driven to 0 (magenta squares, [2]), corresponding to the non-self-interacting solution. Red square [3] represents an example
critical system at ng = 2 and the green square [4] represents a self-interacting system with a high value for ng. The yellow
dashed line in C = 1 plane represents a cut shown in detail in Fig 3D. The yellow solid line in C = 0.1 plane represents a cut
shown in detail in Fig 5A. The red dashed boundary of the critical region in C = 1 plane is analyzed in detail in Figs 5B, 5C.
B) Input/output relations for 4 example systems denoted by colored squares in A. Despite substantially different values for
{ng,Kg}, the optimization of remaining parameters makes the input/output curves look very similar to the optimal solutions,
except for the critical (red) curves. C) The effective input noise σc(c) for the selected systems.

value K∗g (ng) always lead to an increase of information,
demonstrating that the maximum is not achieved on the
critical line.

We next turn to the joint optimization of all parame-
ters and plot the information transmission as a function
of C in Fig 6. As we have discussed, optimization drives
the strength of self–activation to zero for C > 1 (but
see below for self–repression), and at these high values
of C the result of full optimization coincides with the
non–interacting case. As C falls below one, the gain in
information due to self–activation is increased, reaching a
significant value of about a bit for C = 0.01. As we have
noted in Section II C, the self–activating effect of g on

its own expression can be changed into a self–repressing
effect by simply flipping the sign of the parameter ng. To
explore the optimization of such self–repressing genes, we
thus optimized the parameters as before, now constrain-
ing ng ≤ 0. Results in {ng,Kg} plane are shown in Fig
7, for C = 1 and C = 10.

We find that, for large C, the optimization process
drives both Kc and Kg toward zero, so that the effective
input/output relation is given by

f(g, c) =
cnc

cnc + cnc1/2 (2g)
−ng , (90)

with nonzero values of ng being optimal. Why is self–



14

10 100 101

Kg

lo
g 2(Z

)

0 5 10

0

ng

lo
g 2(Z

* )

quartic
gaussian

ln Kg g
* (ng)

n g

*(ng) for C=1
1
2
3
5

0

~ ~

A B C

n

FIG. 5: (Color online) Information transmission close to the critical line. A) A detailed scan of information for C = 0.1 as
the function of Kg for ng = 2 and optimal choice for θc for every Kg exhibits a peak for a nontrivial value of Kg. B) The
information transmission along the critical line for C = 1 as a function of ng indicates that while including quartic corrections
is important (upper line), the information at the critical line does not exhibit any large jumps (not shown). C) A detailed scan
of capacity close to the critical line for C = 1 as a function of ng (vertical axis). Shown in color is the increase in information
in bits compared to the value very close to the critical I∗(ng), as a function of the distance in Kg from the critical value
(horizontal axis). Across the range of ng, going from the critical axis into the monostable domain increases the information.

repression optimal at large C, when self–activation is
not? Self–repression suppresses noise at high concentra-
tions of the input (red vs magenta curves Fig 7C for
C = 10) and allows the mean input/output curve to be
more linear than in the non–interacting case (Fig 7B), ex-
tending the dynamic range of the response. Both these
effects serve to increase information transmission.

It is remarkable that when we put together the self–
activating and self–repressing solutions, we see that they
join smoothly at C = 1 (Fig 6): self–activation is optimal
for C < 1, and self–repression is optimal for C > 1, while
precisely at C = 1 the system that transmits the most
information is non–interacting.

All of this discussion has been in the limit where the
maximal concentration of output molecules, γmax, is the
same as the maximal concentration of input molecules,
C, so there is only one parameter that governs the struc-
ture of the optimal solution. This makes sense, at least
approximately, since both input and output molecules are
transcription factors, presumably with similar costs, but
nonetheless we would like to see what happens when we
relax this assumption. Intuitively, if we let γmax become
large, the system can achieve the advantages of feedback
while the impact of noise being fed back into the system
should be reduced.

If we look at Eq (36) for Z̃, which controls the infor-
mation capacity, we can take the limit γmax →∞ to find

Z̃ =

∫ C

0

dc

∂f
∂c

(
1− ∂f

∂g

)− 1
2√

ḡ +
(
∂f
∂c

)2

c

. (91)

Now the only place where feedback plays an explicit role

is in the term
(

1− ∂f
∂g

)− 1
2

, which comes from the length-

ening of the integration time, which in turn serves to av-
erage out the noise in the system. All other things being
equal (which may be hard to arrange), this suggests that
information transmission will be maximized if the system
approaches the critical point, where ∂f/∂g → 1. The dif-
ficulty is that the system can’t stay at the critical point
for all values of the input c, so there must be a tradeoff
between lengthening the integration time and using the
full dynamic range.

To explore more quantitatively, we treat γmax/C as
a parameter. When C is small, we know that self–
activation is important, and in this regime we see from
Fig 8 that changing γmax/C matters. On the other hand,
for large values of C we know that (at γmax/C = 1)
optimization drives self–activation to zero, so we expect
that there is less or no impact of allowing γmax/C 6=
1. We also see that, for a fixed small C, increasing
γmax/C drives the system closer towards the signatures
of criticality—nonmonotonic behavior in the noise and a
steepening of the input/output relation. In more detail,
we can plot the value of maxc(∂f/∂g) as a function of
C and γmax/C, that is, check for each of the solutions in
Fig 8A how close the partial derivative ∂f/∂g comes to 1,
which is a direct measure of criticality. We confirm that,
for the simultaneous choice of small C and large γmax/C,
we indeed have ∂f/∂g → 1. In the extreme, if we choose
C = 0.01 and γmax/C = 104, we find that the optimal Kc

and Kg are driven towards small values (but since c, C
are small Kc is not negligible); the optimal ng ≈ 1.0662.
With this value of ng, the corresponding critical value for
Kg would be K∗g (ng) = 0.001, and the numerically found
optimal value in our system is Kg = 0.0012. The critical
value for ḡ∗ would be ḡ∗(ng) = 0.031, and indeed at this
small value the optimal mean input/output relation has
a strong kink, the effective noise σc has a sharp dip and
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∂f/∂g at this point climbs to 0.9936. Numerically, there-
fore, we have all the expected indications of emerging
criticality at very large γmax. For less extreme values, we
expect the optimum to result from the interplay between
the input and transmitted noise contributions, which in
general need not be on the critical line.

To complete our exploration of the optimization prob-
lem, we have to consider parameter values for which the
output has two locally stable values given a single input.
Quantitatively, in the bistable regime we have to solve
for both stable solutions ḡi(c), with i = 1, 2, and for the
unstable branch ḡ3(c). We can then evaluate the equilib-
rium probabilities wi(c) of being on either of the stable
branches using Eq (87), and use Eq (85) to compute the
capacity. As shown in an example in Fig 9A, we never
find the optimal solutions in the bistable region—the ca-
pacity starts decreasing after crossing the critical line.
Consistently with our argument that output and feed-
back noise must become negligible for the regime of small
C and large γmax/C, we find that optimization drives the
system towards achieving maximal transmission closer
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FIG. 6: (Color online) Information transmission in a sys-
tem where all parameters θ are optimized as a function of
the maximal input concentration C. The self-interacting
system (red, crosses and circles) allows for an arbitrary
MWC-like regulatory function [Eq (38)] with parameters
θ = {c1/2, nc,Kc, ng,Kg}. The noninteracting system (black,
dots) only has the MWC parameters nc,Kc and the leak L
(see Ref [7]) which can be reexpressed in terms of c1/2. Bright
red line with circles shows self-activating solutions which are
optimal for C < 1, while dark red line with crosses shows
self-repressing solutions, optimal for C > 1. Plotted on the
secondary vertical axis in green (smooth line) is the ratio be-
tween the self-interacting contribution to F , and the input
contribution to F in the expression for the MWC regulatory
function [Eq (38)]. For C ∼ 1 where the interacting and non-
interacting solution join, this term falls to 0, as expected.
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FIG. 7: (Color online) Information transmission as a function
of self-repressing parameters {ng,Kg} for C = 1 (left column)
and C = 10 (right column); plot conventions are the same
as in Fig 4. A) The capacity decrease from the maximum
value (achieved at the parameter choice indicated by a yellow
circle) as a function of {ng,Kg}. The maximum information
transmission is achieved for a non-interacting case (magenta,
[2]), for C = 1. In contrast, for C = 10, there is a non-trivial
optimum for small values of Kg and ng ≈ −2.5 (red, [3]). B)
The mean input/output solutions for three example systems
from A (cyan [1], magenta [2], red [3]). C) The effective noise
in the input, σc(c), for example solutions in A.

and closer the the critical line (which is approached from
the monostable side), as shown in Fig 9B.

IV. DISCUSSION

To summarize, we have analyzed in detail a single, self–
interacting genetic regulatory element. As in previous
work, we based our analysis on three assumptions: (i)
that the readout of the information I(c; g) between the
input and output happens in steady state, (ii) that noise
is small; and (iii) that the constraint limiting the infor-
mation flow is the finite number of signaling molecules.
In addressing a system with feedback, assumption (ii)
requires technical elaboration near the critical point, as
discussed above. But (i) requires a qualitatively new dis-
cussion for systems with feedback, because of the possi-
bility of multistability.

Our analysis, with the steady state assumption, shows
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parameters θ is shown as a function of γmax/C. Two special
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system has a higher transmission, a steeper activation curve
but a smaller dynamic range. C) The effective noise in the in-
put, σc(c), for the blue and green systems. The green system
is closer to critical at the point where the mean input/output
curve has the highest curvature and the noise exhibits a dip.

that truly bistable systems do not maximize the infor-
mation. Intuitively, this stems from the branch ambigu-
ity: for a given input concentration c a bistable system
can sit on either one of the stable branches with some
probability, and this uncertainty contributes to the noise
entropy, thereby reducing the transmitted information.
But reaching steady state involves waiting for two very
different processes. First, the system reaches a steady
distribution of fluctuations in the neighborhood of each
stable point, and then the populations of the two stable
states equilibrate with one another. As with Brownian
motion in a double well potential (or a chemical reac-
tion), these two processes can have time scales that are
separated by an exponentially large factor.

Alternatively, the timescales of real regulatory and
readout processes could be such that the system does not
have the time to equilibrate between the stable branches.
In that case, the history (initial condition) of the system
will matter, and the final value of the output g will be de-
termined jointly by the input c and the past state of the
output, g0. Such regulatory elements can be very useful,
because they retain memory of the past and are able to
integrate it with the new input; a much studied biologi-
cal example is that of a toggle switch. The information
measure we use here, I(c; g), will not properly capture
the abilities of such elements, unless we modify it to in-
clude the past state, e.g. into I({c, g0}; g): here both the
input and current state together determine the output.
Such computations are beyond the scope of this paper,
but could make precise our intuitions about switches with

memory.

Multistability also allows for qualitatively new effects
at higher noise levels. In our previous work we found that
full information flow optimization (without assuming
small noise) leads to higher capacities than a small–noise
calculation for an identical system and, moreover, that
as noise grows, the optimal solutions start resembling a
(noisy) binary switch where only the minimum and max-
imum states of input are populated in the optimal P ∗in(c)
[4]. At high noise, positive (even bistable) autoregulation
could stabilize these two states and make them more dis-
tinguishable. In this case the design constraint for the
genetic circuit is to use the smallest number of molecules
that will prevent spontaneous flipping between the two
branches on the relevant biological timescales [18]. In
this limit regulatory elements can operate at high noise,
with perhaps as few as tens of signaling molecules.

With these caveats in mind, our main results can be
summarized as follows. Except at C ∼ 1, the possibil-
ity of self–interaction always increases the capacity of
genetic regulatory elements. For C < 1, the optimal
strategy is self–activation, while for C > 1 it is self–
repression, as shown in Fig 6. Self–repression allows
the system to reduce the effective noise at high input
levels and straighten the input/output relation, packing
more “distinguishable” signaling levels into a fixed input
range. Self–activation for small C lengthens the effective
integration time over which the (dominant) input noise
contribution is averaged, thereby increasing information.
The optimal level of self–activation is never so strong
as to cause bistability, but does, for small C and large
γmax/C, push the optimal system towards the critical
state.
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FIG. 9: (Color online) Crossing the critical line (dashed red)
into the bistable region. A) Capacity as a function of ng at
fixed Kg = 0.05, with the optimal choice of {nc,Kc, c1/2} pa-
rameters, for three values of C (C = 0.1, 1, 10 dark to bright
red, respectively). Dots show capacity calculation using the
bistable code that can handle multiple branches using Eq (85),
solid line uses the monostable integration as in Eq (36). B)
Optimal capacity at very high ratios γmax/C = 103 for dif-
ferent value of C (C = 10−3, 10−2, 10−1, 1: circles, crosses,
squares, stars, respectively). The optimum is pushed towards
the critical line from the monostable side for γmax/C large
and C small. In all cases, information in the bistable regime
is smaller than in the monostable regime.
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An interesting observation about the nature of
the optimal solutions is that self–activation which is
strong enough to enhance information transmission may
nonetheless not result in a functional input/output re-
lation that looks very different from a system without
self–activation, albeit with different parameters. In such
cases, information transmission is enhanced primarily by
the longer integration time and reduced effective noise
level. This means that there need be no dramatic sig-
nature of self–activation, so that diagnosing this oper-
ating regime requires a detailed quantitative analysis.
More generally, this result emphasizes that the same phe-
nomenology can result from different parameter values,
or even networks with different topology—in this case,
with and without feedback.

The prevailing view of self–activation has been that
its utility stems from the possibility of creating a tog-
gle (or a flip-flop) switch. This explanation, however,
can only be true if self–activation is strong enough to
actually push the system into the bistable regime. De
Ronde and colleagues [38] have improved on this intu-
ition and have shown, in the linear response limit, that
weak self–activation will increase the signal to noise ra-
tio for dynamic signals, a function very different from
the switch. Here we show that in the fully nonlinear,
but steady state treatment, monostable self–activation
can be advantageous for information transmission. Fur-
thermore, we show that there is a single control param-
eter, the ratio C between the output and input noise
strengths, which determines whether self–activation or
self–repression is optimal. Since more and more quanti-
tative expression data is available, especially for bacteria
and yeast, one could try assessing how the use of both
motifs correlates with the concentrations of input and
output signaling molecules.

Stepping back from the detailed results, our goal in
this paper was to make progress on understanding the
optimization of information flow in systems with feed-
back by studying the simplest example. The hope is
that our results provide one building block for a the-

ory of real genetic networks, on the hypothesis that they
have been selected for maximizing information transmis-
sion. As discussed in previous work [3, 6, 7], a natu-
ral target for such analysis is the well studied gap gene
network in the early Drosophila embryo [45], although
we also hope to connect with a broader range of exam-
ples. Real systems, however, often use regulatory mech-
anisms that are more complex than the simplest setup
examined here which enables theoretical progress. One
of the important open questions is therefore how differ-
ent molecular schemes of transcriptional control impact
the information flow in transcriptional regulation. We
started with a phenomenologically-motivated MWC reg-
ulatory function and two major noise contributions in
the form of the input diffusive and output shot noise. In
fact, processes such as DNA looping [35], regulation of
the oligomeric state of the transcription factors [46, 47],
regulation of decay [48], and control through chromatin
state modification or the covalent modification of other
regulatory molecules, all potentially affect the mean in-
put/output relation and the noise. Nevertheless, our
hope is that if these quantities can be computed for
more complicated architectures, the overall information-
maximization framework should remain applicable. We
leave open for future work the question of generalizing
our results to more complicated molecular regulatory
mechanisms.
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