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Abstract:  Through a combination of theory, numerical simulation, and experiment, we 

investigate the motion of magnetic beads on the surface of a magnetic ratchet driven by multi-

frequency fields.  Here, we focus on the influence of static forcing terms, which were not included 

in previous models, and we derive analytical models that show why the static forcing terms are 

responsible for inducing beads of two different sizes to move in opposite directions on the same 

ratchet potential.  We begin our analysis with the simplest possible forcing model, and we show 

that the main effect of the static forcing terms is to delay the phase of flux reversal.  From there, 

we move onto the full analysis and theoretically derive the phase range for which opposite 

motion among two different bead types is achieved.  Based on these theoretical results, we 

conduct experimental investigations that explore the effects of bead size and static forcing 

coefficient on the direction of bead motion, which confirm most of the expected trends.  These 

results shed light both on past experimental work both by ourselves and others, as well as 

elucidate the more general multiplexing capabilities of ratchets.   
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1. Introduction 

 Brownian and deterministic ratchets have attracted considerable attention both as 

physical models for understanding biological mechanisms (e.g., molecular motors1, 2) and as 

tools for channeling the flow of material, energy, and information. The term “ratchet” was 

originally used to describe the mechanism by which a gear wheel guides another mobile 

component via geometric matching of the spatial features in two opposing surfaces (i.e. gear 

teeth).  In a more general sense, the “ratchet” can refer to any time modulated periodic potential 

energy landscape that is used to control various mobile components (particles) ranging from 

electrons3, spins4-7, atoms8-10, as well as molecules, colloidal particles11-20 and biological 

materials15, 17, 18, 20, 21. Time modulation of the landscape is typically accomplished with an 

external electric, optical, magnetic, acoustic, thermal, or fluidic source field and used to rectify 

one type of motion (e.g., external field rotation) into another type (e.g., particle translation)15.  A 

rich display of synchronization has been observed in these systems resulting from the interplay 

between the periodicities of the underlying landscape and the various modes of excitation 

(monochromatic, multi-chromatic, impulse functions, white noise, etc.). Rectified particle flux in 

spatially asymmetric landscapes has been observed in systems such as colloidal and molecular 

motion inside asymmetric pores13, 21 and above asymmetric electric potentials22, 23, electron and 

atom motion in quantum ratchets3, 8, 24, spin transport in superconductors,7 and many others. The 

ratchet effect has also been observed in landscapes that have time asymmetry instead of space 

asymmetry, such as spin vortex motion,4-6 cold atoms in optical ratchets,9, 10 colloidal particles in 

optical lattices,11, 25 and super-paramagnetic beads in magnetic lattices.14-16, 19 

 The work presented here was motivated by recent experimental observations19, 26, which 

have demonstrated the possibility of using multi-frequency driving fields to achieve differential 

motion among two different types of super-paramagnetic beads exposed to the same ratchet 

potential. In these experiments, it was shown that the phase difference between multi-frequency 

driving fields could be used as a tuning parameter both to control the direction of bead motion 

and also drive beads of two different sizes in opposite directions; however the reason why this 

multiplexing capability is possible was not known at the time.  In our first attempt to explain this 

experimental behavior, we derived theoretical models that could predict the phase-modulated 

flux reversal as well as the necessary conditions required to achieve open trajectories vs. closed 

trajectories; however we were unable to identify the origin of the particle separation behavior (i.e. 



how the flux reversal depends of the size of the bead and the phase difference between the two 

driving frequencies).26 We speculated that this anomalous behavior could have its origins in the 

static forcing terms that were omitted in our simplified theoretical models; however at that time 

these speculations were not grounded with a solid theoretical analysis. 

 In this article, we conduct a follow-on analysis which identifies that the role of the static 

forcing terms is to delay the phase at which beads experience flux reversal, and we further 

analyze how the flux reversal depends on the bead size, thereby opening up new insights into the 

design of more sensitive and multiplexed bead separation systems. In addition, we present 

experimental results which show the correct qualitative trends.  There are some experimental 

observations that cannot be explained by our analytical model, such as the presence of a zero 

velocity regime, which is based on a perturbation analysis.  In numerical simulations, on the 

other hand, a zero velocity region was found only for magnetic substrates that had spatial 

asymmetry in the magnetic pole distribution of the substrate.   The main conclusion of our work 

is that static forcing terms are a viable explanation for the origin of differential motion among 

different bead types on the same ratchet.  Thus, through the combination of theory, simulation, 

and experiment we show that it is possible to enable future improvements of magnetic separation 

systems.   

  The rest of this manuscript is organized as follows: In section II, we derive several 

theoretical models of increasing complexity, starting with the simplest model and moving to the 

most realistic one.  In section III, we present analytical and numerical simulation results which 

reveal the influence of the static forcing terms in delaying the phase of flux reversal. We describe 

the experimental methods in section IV, and present the experimental results in section V which 

show general agreement with the trends predicted by theory. We conclude with a short summary 

in section VI and identify open questions.  

 

II. Theoretical Model  

 Though some of this analysis has been presented in our prior works26, for the sake of 

completeness we summarize the key points that govern the equations of motion of a super-

paramagnetic bead in a time-modulated periodic potential energy landscape.  Through this 

discussion, we will highlight the origin of both the dynamic and static forcing terms, and show 

how their relative magnitude can be modulated.   



 Our experimental system consists of a square lattice of identical circular micro-magnets 

with diameter, dm, and period, d, which are uniformly magnetized along the x-direction. Square 

array patterns are chosen primarily for experimental convenience, since it allows for the direction 

of magnetization to be controlled more easily within the 2D plane.  The most accurate 

description of the substrate pole distribution would consist of treating each uniformly magnetized 

micro-magnet as having equivalent magnetic charges that vary sinusoidally around the micro-

magnet’s perimeter according to: θσ cosˆ MnM =⋅= , where σ  is the magnetic pole density, 

M  is the remanent magnetization, n̂  is the surface normal of thin magnetic disks, and θ  is the 

angle relative to the positive x-direction. For simplification, we can approximate each micro-

magnet as having its magnetic pole distribution concentrated at its poles.   Additionally, since we 

apply our external fields along the x- and z-directions, the symmetry along the y-direction allows 

us to further simplify this system, in which case we ignore the charge density variation along the 

y-direction.  Conceptually, this charge distribution would be consistent with an array of infinitely 

long magnetic bars that are magnetized along their minor axes, as shown in Figure 1.  Although 

this pole distribution is not exactly the same as a square lattice of circular micro-magnets, it 

allows for analytically tractable solutions to be obtained in 1D.   

 

 
Figure 1: (Color online) Schematic of the potential energy landscape of the bead exposed to a periodic array of 
micro-magnets (approximated as a 1D array of infinitely long bar magnets) and external time varying fields applied 
along the x- and z- directions. The bead is shown as a circle. The magnetization direction of the micro-magnets is 
along the short axis.   
  

 When represented in Fourier space, the line charge array has a pole distribution of: 
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where we use the short-hand notation: dxx πξ 2= , 2/ =mdd  in which the magnet diameter is 

half of the period length, and 0λ  is the magnetic line pole strength.  From equation (1), the 

magnetic scalar potential of the substrate can be solved through separation of variables in 

Cartesian coordinates, and the magnetic field distribution is determined by taking the negative 

gradient of the scalar potential, leading to: 

( ) ( ){ }∑
=

− +−=
oddn

xx
n

sub nznxeH z ξξλ ξ cosˆsinˆ0          (2) 

 In addition to the static fields of the substrate, we also apply time-varying external 

driving fields, given by:   

  ( ) ( ){ }φωω ++= tztxHH zxextext sinˆsinˆ                      (3) 

where xω  and zω  are the external driving frequencies along the x- and z-directions, respectively, 

and φ  is the t = 0  phase difference between the two driving fields.  

 Super-paramagnetic beads exposed to this potential energy landscape are modeled as 

point dipoles, which is a reasonable approximation when the field does not vary strongly across 

the particle’s volume.  The dipole moment of the bead is given by: 
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where V  is the bead’s volume, H  is the total field at the bead’s center, and pμ  and fμ  are the 

magnetic permeabilities of the bead and fluid, respectively.  Since the surrounding fluid is water, 

we assume 0μμ ≈f , whereas the bead’s permeability is given by: ( )χμμ += 10p  and χ  is the 

magnetic susceptibility, which depends on the bead’s material properties. Using these 

assumptions, the force on a point dipole exposed to the micro-magnetic ratchet and external time 

varying fields is determined to be the sum of terms that are space-time dependent, and terms that 

are only spatially dependent: 

( ) ( ) ( ) ( )xsxdtotx FtFHmtF ξξμξ +=∇⋅= ,, 0     (5) 

The space-time dependent terms arise from the external field’s contribution to magnetizing the 

bead, whereas the purely space dependent terms arise due to the substrate’s contribution both to 

magnetizing the bead and providing the force through its field gradient.    

 The equations of motion for micron-sized colloidal particles (low Reynold’s number) can 



be approximated by over-damped first order dynamics, in which the friction coefficient is 

assumed to be Stoke’s drag on a sphere. Using dimensionless spatial coordinates, the velocity is 

given by:  
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where ( ) ηπβλχμω 922 2
000 extH=  is a characteristic frequency that depends on the external 

system and bead properties, and da=β  represents the ratio of the bead radius, a , relative to the 

lattice period, d .  Here, we assume that the bead’s vertical position remains one bead radius 

above the substrate, since the force in the z-direction is usually downwards (attractive towards 

the substrate) and thus the z-forces can be omitted, leading to 1D forcing model.  In the 

following analysis we replace xξ  with  ξ  since we are only concerned with the motion in 1D. 

Equation (6) indicates that the relative strength of the static forcing terms (time independent) can 

be modulated by controlling the ratio of the substrate magnetization relative to the external field, 

which is explored here numerically and experiments.   

 

III. Theoretical Results  

 Due to the complexity of equation (6), we begin by analyzing several limiting cases, and 

then build up to the complete analysis.  In the following discussion, we will analyze the flux 

reversal properties as a function of the phase difference, static forcing terms, bead properties, and 

external driving frequencies.   

Case I. 0 extHλ << .  

 This approximation implies that the static forcing terms are negligible and here we start 

by considering only the first dynamic term in equation (6), leading to the following simplified 

dynamic model: 

   ( ) ( ) ( ) ( ){ }*
0 cos sin sin sinx zt tξ ω ξ ω ξ ω ϕ= − +      (7) 

where πβωω 2
0

*
0

−= e .  When the external driving frequencies, xω  and zω  much smaller than the 

characteristic frequency *
0ω , the bead’s motion approaches the adiabatic limit, and a direct 

analytical relationship can be obtained for the bead’s velocity by setting equation (7) to equal 



zero26, leading to:  

( ) ( )
( )

sin
tan

sin
x

z

t
t
ω

ξ
ω ϕ

=
+

     (8)  

A comparison of the analytical result (8) with numerical simulations of equation (7) using high 

resolution finite time difference technique shows the validity of the adiabatic assumption (see 

Figure 2).  In the example simulation of  Figure 2, the driving frequencies are assumed to be an 

odd integer ratio (in this case, πω =x  and 3πω =z ), which is a necessary condition for an open 

trajectory.26  We also show that the direction of motion switches at phases that are integer 

multiples of 3π .   

 
Figure 2: (Color online) The comparison of numerical simulations black (dashed) black with analytically computed 
trajectories  red (solid) lines from equation (8) are shown to be in good agreement using initial phase differences of 
(a) πφ 3.0=  and (b) πφ 4.0= .  The direction of motion switches at 3/πφ = .  Parts (c) and (d) depict the bead 
motion of (a) and (b) respectively over one mutual time period.  Part (e) shows the bead motion is a closed trajectory 
at the phase transition point of  3/πφ = .  
 

 The first question we address is why flux reversal occurs when the initial phase is an 

integer multiple of xzn ωπω .  To answer this question, we first look at the system properties 

when xzn ωπωφ ≠ .  Let us consider the simulation conditions provided in Figure 2.  Since 

equation (8) is a periodic function, we can restrict our attention to one mutual time period, 

illustrated in Figure 2(c-e), from which it is clear there are 3 equal-length time segments of 

duration xT ωπ= . The function is single-valued everywhere except at the endpoints of each 

time segment, nTt = , where ξ  can assume the values of either 0 or π . By inspection of Figure 



2d (where 3/πφ < ) it is clear that the first two segments are closed (meaning that the bead 

returns to its original position after the time interval).  The closed intervals occur for Tt ...0∈ , 

and TTt 2...∈ .  The last segment is an open monotonically increasing trajectory, occurring in the 

interval of TTt 3...2∈ . This behavior can also be deduced mathematically from equation (8) by 

analyzing the solutions for ξ  in the limits of −+−+−+= TTTTTt 3,2,2,,,0 , where the superscripts 

(+,–) indicate that limits are taken from right or left side, respectively.  By contrast, an inspection 

of Figure 2d (where 3/πφ > ) reveals that the first and third intervals are closed, but the second 

interval is open and monotonically decreasing.  The direction of motion as a function of the 

initial phase can be determined by taking the time derivative of equation (8), yielding: 

                  ( ) ( ) ( ) ( )
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t t t t
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 As a simplifying example, we take the simulation conditions of Figure 2 ( πω =x , 

3πω =z ), and analyze the sign of the numerator of equation (9) during the open segment for the 

3/πφ <  and 3/πφ >  phases, respectively.  Here, we analyze just one time point near the left 

side of the open segment: 
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which shows the correct direction of motion for a given initial phase.  This analysis is also true 

for any time point within the interval, which reveals that the open segments are monotonically 

increasing (or decreasing).  When 3/πφ = , on the other hand, we observe the open and closed 

time segments merge together at a critical point satisfying ( )tan 0 0ξ = , and in this case the 

bead’s composite trajectory is now closed (See Figure 2e). This analysis can be conducted for the 

other initial phases, where it is observed that the position of the open segment and its direction of 

motion will alternate with each increasing phase multiples of 3/π . Furthermore, this analysis 

can be generalized to other frequency ratios.  

 We note that the above analysis is only applicable in the adiabatic limit (i.e., when the 

characteristic frequency is sufficiently large or the driving frequencies are sufficiently small) 

such that the bead always remains at a local potential energy minima.  In order to characterize 

the deviation from the adiabatic limit, we plot the numerically calculated trajectory using the 



following driving frequencies: (i) *
001.0 ωω =x , (ii) *

01.0 ωω =x , and (iii) *
0ωω =x , from which it 

is clear that higher driving frequencies lead to an overall time delay in the transition from the 

closed segment to the open segment, or vice versa (Figure 3), however the general direction of 

motion does not change.  

 

 
Figure 3: (Color online) The black (solid) lines represent the numerically simulated trajectory for *

001.0 ωω =x , 
*
01.0 ωω =x , and *

0ωω =x , and is compared against the red (dashed) lines which represent the analytically 

solutions for the conditions (a) 3/πφ < , (b) 3/πφ = , and (c) 3/πφ > .  
 

Case II. ( )1/0 OH ext =λ   

 Returning to our original equation, we now include the first static forcing term leading to 



the result: 

( ) ( ) ( ) ( ) ( ){ }*
0 cos sin sin sin sin 2x zt tξ ω ξ ω ξ ω ϕ γ ξ= − + +                         (11) 

where extHe 0
62 λγ πβ−= is the static forcing coefficient.  Here, our goal is to employ a 

combination of numerical simulations and perturbation analysis to explore the effect of the static 

forcing coefficient, γ , on the bead’s trajectory.  Using similar parameters as in Case I 

(i.e., πω =x , 3πω =z , πφ 4.0= ), we present numerical simulations that reveal how the bead’s 

trajectory changes as a function of γ , shown in Figure 4.  For low values 3.0<γ , the shape of 

the trajectory changes but the overall direction of motion remains the same (solid black lines in 

Figure 4).  Conversely, for high value 3.0>γ , the open and closed segments switch locations, 

and the overall bead trajectory is now in the opposite direction (blue (dashed) lines in Figure 4).  

We also observe that the open segment is no longer monotonically increasing.  This phenomenon 

indicates that the presence of static forcing term can conceivably be used to induce two 

differential motions in two bead types (i.e., those that experience different static forcing terms on 

the same ratchet potential). 

 
Figure 4: (Color online) Numerically simulated bead trajectory as a function of increasing γ. The black (solid) lines 
show that for low values of γ the bead moves in the same direction as the γ=0 simulations of Figure 3, which is 
depicted as the red (thicker gray) line.  The blue (dashed) lines show that for high values of  γ, the open and closed 
segments switch and the bead now moves in an opposite direction, thereby demonstrating the influence of static 
forcing terms on the phase-dependent flux reversal.  
 
 A qualitative explanation of this flux reversal behavior can be obtained by inspection of 

the time-varying potential energy landscape, shown in Figure 5.  Since adiabatic conditions are 



assumed, the bead remains trapped at the local potential energy minima (indicated by the blue or 

black circles in Fig. 5).  Clearly, the bead with a large static forcing term ( )5.0=γ  remains 

trapped in a local potential energy minima at time t = 1.6π/ωx, which prevents it from escaping to 

the closest global energy minimum unlike the other bead with a smaller static forcing term 

(γ=0.2).  The local potential energy minima merges with a different global energy minima at a 

later time point, causing the bead with a larger static forcing term to move in the opposite 

direction of the bead with the smaller static forcing term.  This effect is clearly visualized in the 

animation provided in Supplementary Movie 228, which is presented for πφ 4.0= .  By contrast, 

we also present Supplementary Movie 127 and Supplementary Movie 329 (with πφ 3.0= and 

πφ 5.0= , respectively), in which case all the beads move in the same direction.   

 

 



Figure 5: (Color online) Bead motion in a time-varying potential energy landscape.  The blue (dashed) lines where  
γ=0.2, and the black (solid) lines where γ=0.5, depict the potential energy landscape for the timepoints: a) t=1.6π/ωx, 
b) t=1.8π/ωx, and c) t=2π/ωx, using the simulation parameters xω π= , / 3zω π= , πφ 4.0=  , *

0 50 xω ω= .  The 
blue (open) circle and the black (closed) circle represent the numerically simulated locations of the γ=0.5 and γ=0.2 
beads, respectively at these three timepoints.  The local potential energy barrier traps the bead with γ=0.5 at 
timepoint b) and causes it to move in the opposite direction of the bead with γ=0.2.   
 

 Following the same procedure as in Case I, we can under adiabatic assumptions derive 

an analytical relationship between the static forcing terms and the phase-induced flux reversal by 

setting equation (11) to equal zero, leading to the following expression:    

( ) ( ) ( ) ( ) ( )cos sin sin sin sin 2 0x zt tξ ω ξ ω ϕ γ ξ− + + =                             (12) 

 Due to the strong non-linearity of equation (12), it is not possible to derive a complete 

solution; however perturbation analysis can be used to analyze the system properties near the 

critical point where flux reversal takes place (i.e., 2≈t , 3/πφ ≈ , / 2ξ π≈ ).  Using the 

following change of variables, ϕπφ += 3/ , τ+= 2t , and εξξ += 0 ,  where ϕ , τ , and ε  are 

small perturbations that can be either positive or negative, we find after simplification:  

( ) ( ) ( ) ( ) 022sin
3

sinsinsincos 000 =++⎟
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⎛ ++++ εξγφπτεξπτεξ                      (13) 

 The position 2/0 πξ =  is analyzed because the bead must eventually transition through 

this point during the open segment, and the slope at this point indicates the direction of overall 

motion. Using the small angle approximation, we derive the following relationship:   

( ) 12
3

−+⎟
⎠
⎞

⎜
⎝
⎛ += πτγϕπτε                                                          (14) 

which indicates that the bead reaches the position 2/0 πξ =  at a delayed time of 3 /τ φ π= − .  

When we analyze the slope near this critical time, we find that:  

( )ϕγ
π

τ
ε

32
1

3 −
=

d
d                                                                  (15) 

which reveals that the slope will change based on the value of γ . When 23ϕγ < , the direction 

of motion is positive, whereas when 2/3ϕγ > , the direction of motion is negative. 

Thus, 2/3ϕγ =  represents a direct analytical relationship of a bifurcation in the direction of the 

bead’s motion.  In Figure 6, we provide a numerically computed phase diagram that compares 

the two cases (with and without static forcing terms) as a function of the phase, φ . The red 



(shaded) regions depict the conditions in which the bead with static forcing terms moves in the 

opposite direction of one with no static forcing terms, whereas in the white (unshaded) regions 

both beads (those with vs. without static forcing terms) move in the same direction.  Additionally, 

we show that our analytical result, 2/3ϕγ = , adequately predicts the boundary of the separation 

window, particularly for low values of γ , where the perturbation analysis is more accurate.   

 
Figure 6: (Color online) A separation window is presented to compare the direction of motion of a bead with and 
without static forcing terms.  The red (shaded) regions indicate the phase and forcing conditions in which a bead 
having static terms moves in the opposite direction of one that does not.  The white (unshaded) regions represent the 
conditions in which both beads move in the same direction. The black (solid) line is the analytically calculated 
separation boundary derived from equation (15).  
 

Case III.  Full Analysis 

 We now extend to the full analysis with the goal of determining how the phase-induced 

flux reversal depends on the relative bead size, β, and thereby determine the experimental 

conditions for which two different bead types can move in opposite directions on the same 

ratchet potential. From equation (6) it is clear that β has the effect of changing the relative 

magnitude of the higher order forcing terms (both dynamic and static terms). For smaller beads 

(i.e., smaller β), the higher order terms decay less slowly than for the larger beads, requiring the 

inclusion of more terms to accurately model the substrate potential and forces on the bead.  

Additionally, the ratio of the static terms will also change relative to the dynamic terms, since the 

first static term is proportional to 8e πβ− , whereas the first dynamic term is proportional to 2e πβ− .  

Thus, the static forcing terms are expected to have a more pronounced effect on small beads (i.e. 

small β). 



  Using the assumption of an adiabatic limit by setting equation (6) to equal zero, we use 

the same perturbation analysis as in Case II to solve for the location of the bead near the critical 

switching point.  The result yields:  

( )
CB

A
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πτ

ϕπτε 3                                                            (16) 

 where A, B and C are constants that depends on the bead size, β , given by: 
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where ( ) ( ) ( )πβπββ jjjf 4sinh4cosh, −= , and ( ) ( )( ) ( )( )πβπββ jnjnnjg −−−= 8sinh8cosh,, .  

 Like in Case II, the bead reaches the position 2/0 πξ =  at a delayed time of 3 /τ φ π= − .  

Thus, when we analyze the slope near this critical time point, we find that the bead velocity 

corresponds to the following relationship:  

BC
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d
d
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ϕ
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ε
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=                       (18) 

 We thus conclude that the bifurcation defining the boundary of the separation window is 

given by:  

B
C
3

=ϕ                                                                     (19) 

 Figure 7 presents the separation window for a range of bead sizes (here denoted by 

different values of β ) compared with a fictitious infinitely large bead whose static forcing terms 

are negligibly small.  The analytical and numerical solutions are in strong agreement. The 

inserted figure presents a comparison of the velocities of a 2.7(μm) bead vs. a 4.5(μm) bead 

(denoted by black (dotted) and black (dashed) lines, respectively), which are studied 

experimentally in Section IV. The results indicate that the prior experimental observations of 

opposite motion between two different bead types may have its origin in the influence of purely 

static forcing terms in the equations of motion.      

 



 
Figure 7: (Color online) A size dependent separation phase diagram is presented for λ0/Hext=1.  The red (shaded) 
regions indicate the conditions in which a bead will move in the opposite direction of an infinitely large bead (i.e. 
one that has no static forcing terms), whereas in the white (unshaded) regions the two beads will move in the same 
direction.  The shaded regions with β < 0.1 represent beads which are too small to move across the substrate and 
instead exhibit closed trajectories with zero time average velocity.  An inset is presented to show the velocity vs. 
phase behavior of the two 2.7(μm) and 4.5(μm) beads, which were tested experimentally, and are presented as dotted 
and dashed lines, respectively.  The black (solid) lines are analytically derived separation boundaries of equation 
(19).   

 

IV. Experimental Methods 

Substrate Fabrication: To create a permanent magnetization within the array, we developed 

high coercivity magnetic substrates, which are less susceptible to re-magnetization in fields 

above 20(Oe) than those used in our prior works. The fabricated magnetic thin film consists of a 

multilayer stack of 20 alternating layers of 9(Å) Pt and 8(Å) Co, with 50(Å) Ti base layer to 

improve adhesion, which is shown to resist re-magnetization in external fields exceeding 

100(Oe).30 The magnetic lattice was fabricated by conventional photolithographic lift-off 

technique using thin film deposition via Molecular Beam Epitaxy (MBE) at the MBE Thin Film 

Deposition Service Center at North Carolina State University. In all experiments, the diameter of 

the magnets were dM=5.0(μm) with lattice period d=8.0(μm).  

Magnetic Field Control:  The external field apparatus used to apply the multi-frequency fields 

is described in our prior works.14, 15 Briefly, two 6(cm) diameter solenoid coils with iron cores 

were arranged opposite of the chip to provide external uniform field along the x-direction.  An 

additional identical solenoid was place below the chip to provide external uniform field along the 

z-direction. An image of our experimental apparatus is provided in Figure 8.  In these 

experiments, the external magnetic fields were applied by passing electrical current through the 

solenoids.  The fields were measured with a handheld Gaussmeter (Mz-201, Ming Zhe Tech) and 



we verified that the field variation was only a few percent across the chip.  In all experiments, we 

applied a fixed frequency of 0.5(Hz) (where ωx = 2πfx) to the horizontal coils and a fixed 

frequency of 1.5(Hz) (where ωz = 2πfz) to the vertical coil.  The fields were controlled with a 

dual axis current controller (Cyberresearch card) and programmed with LabView®.  

Experimental System: Magnetic beads with a mean diameter of 2.7(μm) (Dynabeads® M-270) 

and 4.5(μm) (Dynabeads® M-450) were purchased from InvitrogenTM Inc.  The bead suspension 

is confined by Secure-Seal TM spacer (9(mm) in diameter and 0.12(mm) in depth, InvitrogenTM 

Inc.) that was attached onto the pre-patterned magnetic substrate. All the experiments are 

performed at room temperature and the stock bead solution was diluted 100 fold with de-ionized 

water, having a viscosity of η = 0.01 (Poise).  

 
Figure 8. (Color online) Experimental Setup. (a) The sample is placed beneath an objective and two solenoid coils 
are positioned on either side of the chip to provide uniform fields in the x-direction.  An additional vertically 
oriented solenoid is placed below the sample provides uniform field in the z-direction. Image (b) depicts the micro-
array substrate on a glass slide.  Image (c) depicts a microscopy image of a mixed suspension of 2.7(μm) and 4.5(μm)  
super-paramagnetic beads resting on the micro-array.  The scale bar is 40(μm).  
 

Video Tracking and Trajectory Analysis: A LEICA DM LM microscope (Leica Microsystems) 

with 40x objective in bright field mode was used to image the experimental system.  The 

experiments were recorded with a QIMAGING® Retiga 2000R fast camera, and SimplePCI 

software (Qcapture Pro) was employed to record the trajectory of multiple beads simultaneously. 

Image-Pro® software (MediaCybernetics®) was used for the post-processing of the bead 

trajectories. We use a frame rate of 5 frames per second in order to capture the long time average 

of bead trajectories over a large area. This was sufficient for capturing the details of the bead’s 

motion, which had relatively small velocities, V0 = F0 / 6πηa ~ 10(μm/s). Videos of the bead 



trajectories were taken at different phases and different external field amplitudes. From the 

videos, we analyzed the mean velocity and standard deviation of all the beads in each video.  

Beads that were smoothly moving to the right or left were recorded as having a dimensionless 

velocity of +1 and -1, respectively. Near the phase-modulated transition point, the beads 

velocities were averaged and the results are provided in Figure 9.   

V. Experimental Results and Discussion 

Figure 9 presents the time-averaged velocity of the beads as a function of the phase 

difference between the two driving fields, and for the three field strengths, 25(Oe), 50(Oe) and 

100(Oe), respectively. The external field strength has the effect of change the ratio of λ0/Hext, 

thereby allowing the static forcing coefficients to be adjusted.  Figure 9a depicts the data for the 

2.7(μm) beads, and Figure 9b for the 4.5(μm) beads. The experiments revealed that the beads 

experienced flux reversal near the predicted phases of π/3, 2π/3, and π. Reference lines at the 

phases of 60o and 120o are provided to highlight the delay in the phase shift of flux reversal.   We 

observed that the phase delay of flux reversal increases as the field strength decreases, which is 

qualitatively consistent with the theoretical predictions on the influence of static forcing terms.  

Additionally, we verified that the phase delay was larger for the smaller beads, which again 

corresponds to the predicted theoretical trends. For example, the centers of the zero velocity for 

the 2.7(μm) beads were (d) φ=5o, 65o, 124.5o for extH = 100(Oe); (e) φ=9o, 69o, 129.5o, for extH = 

50(Oe); and (f) φ=12.5o, 72o, 132o for extH = 25(Oe).  The center of the zero velocity region for 

the 4.5(μm) beads was (a) φ=4o, 64.5o, 123.5o for extH = 100(Oe), (b) φ=8.5o, 68.5o, 128.5o for 

extH = 50(Oe), and (c) φ=11o, 71.5o, 131o, for extH = 25(Oe).   

 These results indicate that there is a region of approximately 1o where the two beads 

(2.7(μm) 4.5(μm) beads, respectively) will experience differential motion.  Supplementary 

Movie 431 and Supplementary Movie 532 show the two cases in which either the big bead moves 

at the expense of the small bead or vice versa.  The experimental window of separation was 

smaller than that predicted by theory in part due to the empirical discovery of a zero-velocity 

region that was not predicted in our perturbation analysis.  The lack of agreement between theory 

and experiment could have a number of origins, including: 1) oversimplification of the system as 

a 1D array of line poles, 2) the negligence of thermal motion, which may have prevented the 

beads from remaining in a local energy minima, or 3) oversimplification of the dipole forcing 



equation, since the beads are not in a region of uniform magnetic field where the dipole 

assumption is most accurate.    

 In order to explore these possible causes, we numerically simulated the motion of beads 

across several types of two-dimensional magnetic substrates, including: i) 2-D array of point 

poles, ii) 2-D array of square magnets, and iii) 2-D array of circular magnets.  First, we simulated 

the bead motion by including thermal fluctuations; however since the potential energy of the 

bead is many orders of magnitude larger than kBT, the thermal effects were negligible and did not 

explain the origin of the zero velocity region.  We found that regardless of the initial position, the 

beads moved towards the centerline of the magnets (y=0), which provides justification for the 

simplified 1D line pole model.    

 Interestingly, a zero velocity region was found in numerical simulations only when the 

substrate magnetization was spatially asymmetric.  For example, no zero velocity region was 

found for substrates i) and ii) with equally sized magnets and gaps (dm/d=0.5); however when the 

experimental parameters were simulated (5(μm) magnets on 8(μm) period), a zero velocity 

region was observed.  Due to the spatial asymmetry of the circular magnets, the zero velocity 

region was present in all simulated cases.  The width of the zero velocity region was independent 

of the driving frequency, which implies that this result occurs even in the adiabatic limit, and was 

found to predict the correct experimental trends with bead size and field strengths.  Although 

there were minor differences among the three cases, the basic dynamic behavior was 

approximately the same and is more or less independent of the curvature of the magnets.  Only 

spatial asymmetry was required to produce the correct results.  Thus, in Figure 9 we plot the 

numerical simulations obtained for a 2-D point pole array (shown by the blue (solid) line) using 

spatial asymmetry of a 5(μm) magnet on an 8(μm) period, wherein the fitting parameter 

(substrate magnetization, with λ0=7.5(Oe)) was chosen to best match the experimental data of the 

2.7(μm) beads.  Using perturbation, on the other hand, the zero-velocity was never observed 

even for spatially asymmetric substrates (shown for comparison as the black (dotted) line in 

Figure 9).  Interestingly, the phase shift from the perturbation analysis under-predicts the phase 

shift in numerical simulations. At present, we do not have a good explanation for why the 

perturbation analysis both fails to predict the presence of a zero-velocity region and under-

predicts the phase shift, though it is likely due to the limitations of the asymptotic analysis.  

 Though numerical simulations could explain the presence of the zero-velocity region, the 



empirical separation window was still much smaller than was predicted by simulations (See Fig. 

9).  Specifically, for the experimental comparison of 4.5(μm) beads with 2.7(μm) beads, the 

numerical simulations predict a 3-5o separation region whereas in experiments we only observed 

a 1o separation region.  One possible cause of this discrepancy is the oversimplification of the 

magnetic moment of the beads, which were assumed to be a point dipole defined by the field at 

the particle center.  Since the 4.5(μm) beads are roughly the same size as the magnets, the point 

dipole assumption breaks down when the field is highly non-uniform across the particle’s 

volume. In other words, the fields and field gradients at the particle center are likely to be 

substantially lower than the volume averaged fields of the 4.5(μm) beads.  This effect could have 

increased the static forcing terms of the 4.5(μm) beads and explain the smaller experimentally 

obtained separation window.   

 
Figure 9: (Color online) Experimental data is presented for the velocity of (a) 2.7(μm) beads and (b) 4.5(μm) beads 
as a function of the external driving field strength.  Parts (c) and (d) present a magnified view of (a) and (b) 
respectively, near the phase / 3π .  The blue (solid gray) line is the simulation curve of 2-D point pole and the black 
(dotted) line is the analytical curve derived from the perturbation analysis. The arrows in parts (c-d) are provided to 
indicate the phase center of the zero velocity region.  These results show a minor shift in the phase center between 
the two bead types, and a more pronounced shift as a function of the driving field strength.  



There could be several other reasons for the discrepancy between theory and experiment 

including: time-variation of the magnetization of the substrate, such as minor oscillation of the 

magnetization, adhesion and other static or kinetic friction terms of the beads relative to the 

substrate.  It is worth noting that the line pole model is a better description for experiments of 

bead motion on iron garnet films, in which the alternating up and down domains within the film 

are arranged in an array of parallel lines. In that case, opposite motion of two different bead types 

was observed.19   

Despite these challenges, the general experimental trends support the basic theoretical 

argument that static forcing terms can delay the phase at which beads experience flux reversal.  

The general scaling relationships for different bead sizes and fields strengths are also consistent 

with this theory. Finally, the numerical simulations suggest that the best separation resolution can 

be achieved in a spatially symmetric lattice, which suggests that future experimental 

improvements can be realized to achieve opposite motion of two bead types on an array of 

micro-magnets.    

 

VI. Conclusion 

Here, we use theory, simulation, and experiment to investigate the role of static forcing terms 

on the phase-induced flux reversal of beads in a multi-frequency ratchet.  Starting from the 

simplest theoretical model, we explore how flux reversal depends on the phase difference 

between two odd integer ratio driving frequencies, and we demonstrate that the addition of a 

static forcing term acts to delay the phase at which flux reversal is observed. We provide 

analytical results using perturbation analysis that captures the relationship between the static 

forcing terms and the phase of flux reversal, and we use the derived relationship to produce a 

theoretical separation window for two bead types that have different static forcing terms.  Next, 

we extend this analysis to a more realistic model that indicates the possibility of moving two 

different bead types in opposite directions of on the same ratchet. The perturbation analysis was 

able to qualitatively predict the correct trends of our experiments, including the scaling 

relationships with the bead size and the ratio between dynamic and static forcing terms.  

However, the perturbation analysis failed to explain the existence of a zero velocity region, 

which was discovered both in experiments and in numerical simulations.  The zero velocity 

region was observed in numerical simulations only when the magnetic substrate was spatially 



asymmetric.  Moreover, the scaling relationship of the width of the zero velocity region were 

correctly predicted by the numerical simulations (i.e., the width increased with decreasing bead 

size and decreasing external field strength). These results serve to explain the prior experimental 

work on the motion of beads above field modulated iron garnet films, and it also serves as a 

guide for future enhancements in our experimental system, including i) the use of more 

symmetric substrate potentials, and ii) smaller beads relative to the magnet size.  In conclusion, 

we have developed a new framework for studying particle motion in multi-frequency ratchets 

that shows the role of static forcing terms in the multiplexing capabilities of chip based magnetic 

separation systems.  These results may also lead to insights on general ratchet behavior in other 

fields of physics.  
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