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Abstract

Competitive adsorption of counterions of multiple species to charged surfaces is
studied by a size-effect included mean-field theory and Monte Carlo (MC) simula-
tions. The mean-field electrostatic free-energy functional of ionic concentrations,
constrained by Poisson’s equation, is numerically minimized by an augmented La-
grangian multiplier method. Unrestricted primitive models and canonical ensemble
MC simulations with the Metropolis criterion are used to predict the ionic distri-
butions around a charged surface. It is found that, for a low surface charge density,
the adsorption of ions with a higher valence is preferable, agreeing with existing
studies. For a highly charged surface, both of the mean-field theory and MC sim-
ulations demonstrate that the counterions bind tightly around the charged surface,
resulting in a stratification of counterions of different species. The competition be-
tween mixed entropy and electrostatic energetics leads to a compromise that the
ionic species with a higher valence-to-volume ratio has a larger probability to form
the first layer of stratification. In particular, the MC simulations confirm the cru-
cial role of ionic valence-to-volume ratios in the competitive adsorption to charged
surfaces that had been previously predicted by the mean-field theory. The charge
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inversion for ionic systems with salt is predicted by the MC simulations but not by
the mean-field theory. This work provides a better understanding of competitive
adsorption of counterions to charged surfaces and calls for further studies on the
ionic size effect with application to large-scale biomolecular modeling.

PACS: 82.70.Dd 87.10.Rt 82.60.Lf 87.15.ak

1 Introduction

Electrostatic interactions play an important role in many complex systems, such as bi-
ological processes, soft matter material, nanofluids, and electrochemical devices [1–8].
Accurate and efficient modeling and computations of such interactions have been chal-
lenging due to the inhomogeneity, complicated geometry, multiple scales, and the nature
of many-body interaction of an underlying charged system.

A common scenario of electrostatic interactions is a mixture of crowded mobile ions of
multiple species with different valences and sizes in an electrolyte surrounding an external
charged surface. Excluded-volume effects or size effects of such mobile ions, in particu-
lar effects of different ionic sizes, contribute significantly to the electrostatic free energy
and forces, which in turn determine the structure and stability of an underlying system.
For instance, the size of monovalent cations can influence the stability of RNA tertiary
structures [9]; and differences in ionic sizes can also affect how mobile ions bind to nucleic
acids [10, 11]. Concentrations of ions in an ion channel can reach as high as dozens of
mol/L (about 30 mol/L in calcium and sodium channels), and the ionic sizes can affect
the ion transport and channel selectivity [12]. Detailed density-functional theory calcula-
tions, Monte Carlo simulations, and integral equations calculations confirm some of these
experimentally observed properties due to the non-uniformity of ionic sizes [13–17].

Historically, many theoretical studies of electrostatic interactions have been based on
the classical, mean-field, Poisson–Boltzmann (PB) theory [18–21]. In particular, such
a theory has been successfully applied in biomolecular modeling and colloidal science;
see [1, 3, 8, 22, 23] and the references therein. In the PB theory, electrolytes are treated
as ideal ionic gases, and the ionic concentrations are related to the electrostatic potential
by the Boltzmann distributions. This theory, often very efficient, thus works well for
monovalent ions, low surface charge densities, and high solvent dielectric coefficients. The
mathematical form of the PB theory is the PB equation which is Poisson’s equation for the
electrostatic potential with the equilibrium ionic concentrations given by the Boltzmann
distributions via the potential. In a variational setting, such distributions result from
the equilibrium conditions for a mean-field electrostatic free-energy functional of ionic
concentrations where the potential is determined by Poisson’s equation [24–28]. Despite
its success in many applications, the classical PB theory is known to fail in capturing
the ion-ion correlations and ionic size effects, particularly for highly charged systems at
molecular scales [29,30].
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For years, attempts have been made to include ionic size effects, particularly nonuni-
form ionic size effects, into a PB-like efficient approach [26,31–37]. See also [38–45]. One
of the key ideas has been to introduce the local concentration of solvent molecules, in
addition to those of ions of multiple species, and to incorporate all the ionic and solvent
molecular volumes in the entropic part of a mean-field electrostatic free-energy functional.
If all linear sizes (including that of solvent molecules) are the same, such a free-energy
functional can be derived using a lattice-gas model [32,35,36]. Moreover, there are explicit
formulas, the generalized Boltzmann distributions, relating equilibrium ionic concentra-
tions and the corresponding electrostatic potential. These distributions, together with
Poisson’s equation, lead to the generalized PB equation for the case of a uniform ionic
size [26, 27, 46]. For a system of three ionic species with two different ionic sizes, Chu et
al. [34] derived a different size-modified PB equation from a similar lattice-gas model and
applied this equation to study the ionic size effect in the binding of ions to DNA. For
a general system, Tresset [36] derived an expression of the free energy with an effective
volume fraction of free space, under the assumption that the ionic excluded volumes are
dispersed from each other to a reasonable extent.

For the general case of multiple ionic species with different valences and sizes, Li [26]
proposed and analyzed a semi-phenomenological free-energy functional of ionic concen-
trations with Poisson’s equation as a constraint for the electrostatic potential. This func-
tional is obtained simply by using different individual ionic sizes instead of a uniform
size in the previous functional derived from a lattice-gas model. Equilibrium conditions
for the new and general free-energy functional are nonlinear algebraic equations for the
equilibrium concentrations. It is shown that such conditions determine completely the
dependence of equilibrium ionic concentrations on the corresponding electrostatic poten-
tial [26]. Explicit formulas of such dependence and hence Boltzmann-like distributions for
the equilibrium concentrations, however, seem unavailable. Therefore, there is no explicit
PB-like equation of the electrostatic potential in the general case.

Nevertheless, Zhou et al. [37] developed a robust numerical method for minimizing
such a functional to obtain the equilibrium ionic concentrations and the corresponding
electrostatic potential. The starting point there is to reformulate the variational prob-
lem as a constrained optimization problem [47, 48]. An augmented Lagrange multiplier
method is then constructed and implemented to solve this constrained optimization prob-
lem. Extensive numerical results reported in [37] demonstrate that the new mean-field,
size-effect included model can describe many detailed properties of ionic concentrations,
including the stratification of concentrations, that have been predicted by other refined
models but not by the classical PB theory; cf. [33, 36]. In particular, it is found that the
ionic valence-to-volume ratio is the key parameter in the stratification [37].

In this work, we study the ionic size or excluded volume effect to the structure of
electrical double layer in the vicinity of a highly charged surface, using both the mean-
field model and Monte Carlo (MC) simulations. Our goal is two-fold. First, we would like
to understand how counterions with different valences and sizes compete in the adsorption
to the charged surface, and how the ionic valence-to-volume ratio affect the ordering of
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ion packing near such a surface. Second, we would like to examine the validity of the
mean-field theory with nonuniform size effects by comparing it with the MC simulations.

The adsorption of counterions to a charged surface is determined by the competition
between the entropic and energetic contributions of an underlying system of electrolyte.
The ionic size effect is quite significant in such adsorption, since the excluded volume of
crowded ions reduces the mixed entropy, and thus increases the Helmholtz free energy of
the total system. Concentrations of counterions can reach maximal values at the charged
surface controlled by the ionic sizes. The competition of entropy and energy results in a
stratification of counterions of different species in the electrical double layer, as revealed in
both experimental investigations [49] and theoretical predictions [36,37,50,51]. For a low
surface charge density, the electrostatic interaction dominates and the ions with higher
valence are most likely to stay closest to the charged surface. For a highly charged surface,
smaller counterions are stronger in competition to form the first layer of the stratification
[16, 51]. Our mean-field numerical computations and MC simulations reproduce these
results. In particular, our MC simulations validate the prediction by the mean-field theory
of the role of ionic valence-to-volume ratios in the counterion stratification.

MC simulations treat an underlying system of electrolyte as a set of discrete particles
and provide equilibrium properties of the system with statistical averages [52, 53]. Such
simulations have been a standard tool in the study of structures of electrical double
layer, if the geometry of the charged surface is not too complicated [16,51,54,55]. In MC
simulations, ionic size and correlation effects are automatically included, and image charge
effects can also be included [56–60]. Therefore, the correlation-induced phenomena, such
as charge inversion and like-charge attraction, can be described by MC simulations [29,55].

Our simulation system consists of a spherical macroion immersed centrally in an elec-
trolyte system. There are counterions of multiple species in the electrolyte. The entire
system is assumed to be neutral in charge. The parameters of the system include the linear
size of the simulation box, the radius and constant surface charge density of the macroion,
and the valence, volume, and total number of each species of (micro) mobile ions. The
same set of parameters are used in our MC simulations and mean-field computations. We
use unrestrictive primitive models of ionic system, treating ions as hard spheres. Based
on such a model, we use canonical ensemble MC simulations with Metropolis criterion.
We plot the radial particle density function for each species of mobile ions. Such functions
are compared with the corresponding equilibrium ionic concentrations predicted by our
mean-field theory.

The rest of this paper is organized as follows: In Section 2, we introduce the mean-
field theory and numerical method for nonuniform ionic size effects. In Section 3, we
describe our method of Monte Carlo simulations. In Section 4, we present and discuss
the results of our MC simulations and mean-field computations. Finally, in Section 5, we
draw conclusions.
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2 Mean-Field Theory and Method

We consider an electrolyte with M species of ions. For each i (1 ≤ i ≤ M), we denote
by zi the valence and vi the volume of an ion of the ith species. We also denote by Ni

the total number of ions of the ith species. The total number of all ions is N =
∑M

i=1 Ni.
We assume that there is a spherical colloidal particle—a charged macroion—of radius
R inside the electrolyte solution and that its charge effect is described effectively by a
constant surface charge density, denoted σ. We assume the system charge neutrality

z e +
M

∑

i=1

Nizie = 0, (2.1)

where z = 4πR2σ/e is the valence of the macroion and e is the elementary charge.
We assume that the entire system occupies the cubical region (−L/2, L/2)3 with the

linear size L > 2R and that the macroion occupies the spherical region BR of radius R
centered at the origin. Therefore all the ions are in the region Ω = (−L/2, L/2)3 \ BR.
We denote by Γ = ∂BR the boundary of the sphere BR, i.e., the spherical surface of the
macroion.

2.1 A mean-field theory with nonuniform size effects

For each i (1 ≤ i ≤ M), we denote by ci(r) the local concentration at a spatial point r ∈ Ω
of ions of the ith species. The charge density of solution is then given by

∑M
i=1 zieci(r)

(r ∈ Ω). All the concentrations ci(r) are constrained by

∫

Ω

ci dV = Ni, i = 1, . . . ,M. (2.2)

We also denote by v0 the volume of a solvent molecule. The local concentration c0 = c0(r)
of the solvent molecules is defined by

c0(r) = v−1
0

[

1 −

M
∑

i=1

vici(r)

]

for all r ∈ Ω.

For a given set of ionic concentrations c = (c1, . . . , cM), a mean-field approximation of
the electrostatic free energy is given by

F [c] = Fpot[c] + Fent[c]. (2.3)

The first part Fpot[c] is the electrostatic potential energy, defined by

Fpot[c] =

∫

Ω

1

2

(

M
∑

i=1

zieci

)

Φ dV +

∫

Γ

1

2
σΦ dS, (2.4)
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where Φ is the electrostatic potential. It is determined by Poisson’s equation

∇ · εε0∇Φ = −
M

∑

i=1

zieci in Ω, (2.5)

together with the boundary condition

εε0
∂Φ

∂n
=

{

σ on Γ,

0 on Γbox,
(2.6)

where ε0 is the vacuum permittivity, ε is the relative permittivity or dielectric coefficient
of the solution, and n is the exterior unit normal at the boundary of Ω that consists of
the spherical surface Γ and the boundary, Γbox, of the box (−L/2, L/2)3. We shall assume
that ε is a constant in the entire solution region Ω. Notice that Φ is not an independent
variable of the functional F [c].

The second part Fent[c] is the entropic contribution. It is given by [26,37]

Fent[c] = kBT
M

∑

i=0

∫

Ω

ci [log(vici) − 1] dV, (2.7)

where kB is the Boltzmann constant and T is the absolute temperature. Notice that the
summation index starts from i = 0. Notice also that in the variational approach to the
classical PB equation, the solvent entropy is not included and all the ionic linear sizes
v

1/3
i are replaced by the de Broglie wave length [24,25,27].

The set of equilibrium ionic concentrations c = (c1, . . . , cM) is defined to minimize the
free-energy functional (2.3), subject to the constraint (2.2). The equilibrium electrostatic
potential is determined by the corresponding equilibrium ionic concentrations through
Poisson’s equation (2.5) and the boundary condition (2.6).

Alternatively, we can introduce for each i the chemical potential µi for ions of the ith
species, and add the following term

−

M
∑

i=1

∫

Ω

µici dV (2.8)

to the free energy F [c] in (2.3). The chemical potentials µi (i = 1, . . . ,M) can be regarded
as Lagrange multipliers accounting for the constraint (2.2). With these chemical poten-
tials, one minimizes the new, total electrostatic free-energy functional that now consists
of all the integral terms in (2.4), (2.7), and (2.8), without the constraint (2.2).

Taking the variational derivative with respect to each concentration field ci(r) of the
new, total free energy and setting it to 0, we obtain with suitable boundary conditions
for Poisson’s equation (2.5) the conditions for equilibrium concentrations c1, . . . , cM [26]

vi

v0

log(v0c0(r))− log(vici(r)) =
1

kBT
[zieΦ(r) − µi] for all r ∈ Ω, i = 1, . . . ,M. (2.9)
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In the special case that v0 = v1 = · · · = vM , one can solve this system of nonlinear
algebraic equations to obtain explicit formulas of ci(r) = ci(Φ(r)) (i = 1, . . . ,M). These
are the generalized Boltzmann distributions. For the general case, it is known that the
conditions (2.9) determine uniquely ci(r) = ci(Φ(r)) (i = 1, . . . ,M); but explicit formulas
for such dependence seem unavailable. See [26,27].

2.2 A constrained optimization method

By integration by parts, Poisson’s equation (2.5), and the boundary conditions (2.6), we
can rewrite the free-energy functional (2.3), which is the sum of Fpot[c] given in (2.4) and
Fent[c] given in (2.7), as

F [Φ, c] =

∫

Ω

{

εε0

2
|∇Φ|2 + kBT

M
∑

i=0

ci [log(vici) − 1]

}

dV,

where Φ solves the boundary-value problem of Poisson’s equation (2.5) and (2.6). Notice
that the dependence of F on Φ is now explicitly indicated. One can verify mathematically
that the minimization of F [c] defined in (2.3) over all c subject to (2.2) is equivalent to
that of F [Φ, c] over all (Φ, c) subject to (2.2), (2.5), and (2.6).

Introduce the Bjerrum length lB = e2/(4πεε0kBT ). Define Φ′ = eΦ/(kBT ), c′i = 4πlBci

and v′
i = (4πlB)−1vi (0 ≤ i ≤ M), N ′

i = 4πlBNi (1 ≤ i ≤ M), σ′ = 4πlBσ/e, and
ω′ = (4πlB)−1/3ω for ω = Γ, Γbox, or Ω. Then F [Φ, c] = εε0(kBT/e)2F ′[Φ′, c′], where

F ′[Φ′, c′] =

∫

Ω′

{

1

2
|∇Φ′|2 +

M
∑

i=0

c′i [log(v′
ic

′
i) − 1]

}

dV, (2.10)

and c′0 is defined similarly using the primed quantities. The constraint (2.2), Poisson’s
equation (2.5), and the boundary condition (2.6) become now

∫

Ω′

c′i dV = N ′
i , (2.11)

∆Φ′ = −

M
∑

i=1

zic
′
i in Ω′, (2.12)

∂Φ′

∂n′
=

{

σ′ on Γ′,

0 on Γ′
box,

(2.13)

respectively, where n′ is the unit exterior normal at the boundary of Ω′.
For simplicity, we will drop all the primes in what follows.
We apply an augmented Lagrange multiplier method [61, 62] to numerically mini-

mize the functional F [Φ, c] defined in (2.10) subject to (2.11)–(2.13) (with all the primes
dropped). Our method is an improved version of that developed in our previous work [37]
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for minimizing numerically a similar functional formulated using (E, c) instead of (Φ, c),
where E = −∇Φ is the electric field. In the augmented Lagrange multiplier formulation,
we solve the corresponding saddle-point problem

min
(Φ,c)

max
(Ψ,Λ)

L̂(Φ, c, Ψ, Λ, s), (2.14)

where Λ = (λ1, . . . , λM) ∈ R
M , s = (s1, . . . , sM) ∈ R

M with each si ≥ 0, and

L̂(Φ, c, Ψ, Λ, s) = F [Φ, c] +

∫

Ω

Ψ

(

∆Φ +
M

∑

i=1

zici

)

dV

+
M

∑

i=1

λi

(
∫

Ω

ci dV − Ni

)

+
M

∑

i=1

si

2

(
∫

Ω

ci dV − Ni

)2

=

∫

Ω

{

1

2
|∇Φ|2 +

M
∑

i=0

ci [log(vici) − 1]

}

dV +

∫

Ω

Ψ

(

∆Φ +
M

∑

i=1

zici

)

dV

+
M

∑

i=1

λi

(
∫

Ω

ci dV − Ni

)

+
M

∑

i=1

si

2

(
∫

Ω

ci dV − Ni

)2

.

The function Ψ is the Lagrange multiplier for Poisson’s equation (2.5). It satisfies the
same boundary conditions as for Φ, cf. (2.13) (no primes). The numbers λ1, . . . , λM are
the Lagrange multipliers for the constraint (2.11) (no primes). The last summation term
is a penalty term. It is added to stabilize and accelerate our numerical iterations.

The solution (Φ, c, Ψ, Λ, s) to the saddle-point problem (2.14) is determined by the
following equations:

∂L̂

∂Φ
= −∆ (Φ − Ψ) = 0 in Ω, (2.15)

∂L̂

∂Ψ
= ∆Φ +

M
∑

i=1

zici = 0 in Ω, (2.16)

∂L̂

∂ci

= log (vici) −
vi

v0

log

(

v0

(

1 −
M

∑

j=1

vjcj

))

+ ziΨ + λi + si

(
∫

Ω

ci dV − Ni

)

= 0 in Ω, i = 1, . . . ,M, (2.17)

∂L̂

∂λi

=

∫

Ω

ci dV − Ni = 0, i = 1, . . . ,M. (2.18)

Since both Φ and Ψ satisfy the same boundary conditions, Eq. (2.15) implies that they
differ by an additive constant. We may choose this constant to be 0 and assume that
Ψ = Φ in Ω. Notice that Eq. (2.16) is Poisson’s equation (2.12) (no primes) and Eq. (2.18)
is the constraint (2.11) (no primes). As pointed out before, the nonlinear system of
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algebraic equations (2.17) has a unique solution c = (c1, . . . , cM) but its explicit solution
formulas seem unavailable [26].

The entire system of equations is equivalent now to the three sets of equations (2.16)–
(2.18) with Ψ in (2.17) replaced by Φ. We solve these equations by the following algorithm:

Algorithm.

Step 0. Distribute the total surface charge 4πR2σ uniformly on the spherical surface by

interpolation onto the nearest grids [37, 47]. Initialize Φ(0), c(0) =
(

c
(0)
1 , . . . , c

(0)
M

)

,

Λ(0) = (λ
(0)
1 , . . . , λ

(0)
M ), and s(0) = (s

(0)
1 , . . . , s

(0)
M ). Choose a parameter γ > 1. Set

l = 0.
Step 1. Solve Eq. (2.16) with ci replaced by c

(l)
i , together with the boundary condition

(2.13), to obtain the solution Φ(l+1).
Step 2. Use Newton’s method to solve Eq. (2.17) (where Ψ is replaced by Φ) with Φ, Λ,

and s replaced by Φ(l+1), Λ(l), and s(l), respectively, to obtain the solution c(l+1).
Step 3. Update the Lagrange multipliers

λ
(l+1)
i = λ

(l)
i + s

(l)
i

(
∫

Ω

c
(l+1)
i dV − Ni

)

, i = 1, . . . ,M.

Update the penalty parameters s
(l+1)
i = γs

(l)
i (i = 1, . . . ,M).

Step 4. Test convergence. If not, set l ← l + 1 and go to Step 1.

The parameter γ > 1 is used only for updating si (i = 1, . . . ,M). Various kinds of
approximations can be used to solve the boundary-value problem of Poisson’s equation.
For instance, we can use the periodic boundary condition instead, and apply the fast
Fourier transform. In this case, we have the linear complexity in terms of the number
of unknowns of resulting system of linear equations. We note that the matrix-vector
multiplication can be avoided in Newton’s iteration scheme for solving the system (2.17)
(with Ψ replaced by Φ), since the exact formula of the inverse of related Jacobian matrix
can be obtained. See [37] for more details.

3 Monte Carlo Simulations

We consider the same system described in the previous section: A macroion occupying the
sphere BR of radius R centered at the origin, with a constant surface charge density σ, is
immersed in an electrolyte in the box (−L/2, L/2)3. There are M species of (micro) ions
in the region Ω = (−L/2, L/2)3 \ BR. For each i (1 ≤ i ≤ M), an ion of the ith species
has valence zi and volume vi. The number of ions of the ith species is Ni; and the total
number of all (micro) ions is N =

∑M
i=1 Ni. We use an unrestricted primitive model for

our underlying electrolyte system; and apply the canonical ensemble Monte Carlo (MC)
simulations with the Metropolis criterion [50,52,63–66].

In a primitive model of electrolytes, the mobile ions are represented by charged hard
spheres and the solvent is modeled through its dielectric permittivity ε. We label all the
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(micro) ions by k = 1, . . . , N . We denote by ẑk and R̂k the valence and radius of the kth
ion. If the kth ion is of the ith type (1 ≤ i ≤ M), then its valence is ẑk = zi and its
volume is 4πR̂3

k/3 = vi. For convenience, we label the spherical macroion by 0 and denote
R̂0 = R, the radius of the macroion. We also denote its valence by ẑ0 = z = 4πR2σ/e.

For a given configuration of the system, the Hamiltonian is defined to be the work
needed to bring all the ions from infinity to their current positions. It is the sum of
all pairwise interaction energies between all the ions, including the macroion. We only
consider the hard-sphere contribution and the Coulomb interaction. Therefore, we define
the total potential energy of the system to be

U =
∑

0≤j<k≤N

ujk,

where

βujk =







lB ẑj ẑk

rjk

if rjk ≥ R̂j + R̂k,

∞ if rjk < R̂j + R̂k.

(3.1)

Here, β = (kBT )−1, lB = e2β/(4πεε0) is the Bjerrum length, and rjk is the center-center

distance between the jth and kth ions. Notice that, in the case rjk ≥ R̂j + R̂k, ujk is
just the Coulomb interaction energy between the jth and kth ions in the solvent with the
relative dielectric permittivity ε. We shall consider the water solvent at room-temperature
and thus take lB = 7 Å.

Our MC simulations consist of a sequence of single-particle moves with the periodical
boundary condition. In each move, we randomly select an individual particle (i.e., mobile
ion). Let us assume that the selected particle is centered at p. We then randomly generate
a positive number, denoted a, from the interval [0, ∆max] for some parameter ∆max > 0.
We finally place the (center of) selected particle randomly on the sphere of radius a
centered at p. We use the L-periodical boundary condition in each direction, so that all
the ions remain in the region Ω of electrolyte. The parameter ∆max can change during
the MC moves. The acceptance or rejection of the move is determined by the Metropolis
criterion. We calculate the difference ∆U = Unew − Uold of the energies of the previous
(old) and current (new) configurations. If ∆U ≤ 0, the move is accepted. Otherwise, it
is accepted if exp (−β∆U) is greater than a randomly generated number in [0, 1].

The entire sequence of our MC moves are divided into three parts: acceleration, equi-
libration, and statistics. Typically, our simulation system consists of M = 3 or 4 ionic
species; and the number of ions in each of these species can vary from 25 to 50 and to
200. With these parameters, we usually perform 12 × 105N MC moves in total, with the
first 105N moves for acceleration, the next 105N moves for equilibrating the system, and
the last 106N moves for statistics, where N is the total number of mobile ions.

We introduce a parameter l̃B to replace lB in the definition of interaction (3.1), and
dynamically change l̃B in the first part of moves, a total of 105N of them, to speed up
the thermal equilibration of the crowded system of particles. We generate a geometrical
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sequence of 105N terms with the first and last terms being 1 and lB = 7 Å, respectively.
In the mth MC move with m ≤ 105N , the parameter l̃B is taken to be the mth term in
the geometrical sequence. After the first 105N moves, we fix l̃B = lB for all of the rest
MC moves. We run another 105N moves so that the system can reach an equilibrium.

Throughout the entire simulation, we keep the percentage of acceptance of MC moves
between 20% and 50% by adaptively adjusting the value of the maximum length ∆max.
Initially, we set ∆max = 2 Å. We then change it after every 100 moves. If the acceptance
rate is larger than 50% in current 100 moves, we increase ∆max by multiplying it by 1.05
but always keep the new value of ∆max to be less than or equal to l̃B. If the acceptance
rate is smaller than 20% in current 100 moves, we decease ∆max by multiplying it by 0.95,
and we keep the new ∆max to be greater than 0.001 l̃B.

In the last part of MC moves, a total of 106N of them, we derive the production
statistics and calculate the local radial particle density (RPD) for each ionic species. The
RPD of the ith ionic species is defined by

ρi(r) =
〈Ni(r, r + ∆r)〉

4
3
π[(r + ∆r)3 − r3]

, (3.2)

where Ni(r, r + ∆r) is the number of ions of the ith species whose centers are in the
spherical shell between r and r + ∆r, and the bracket 〈·〉 represents an ensemble average
over the shell. Notice that the denominator in the definition (3.2) is the volume of the
shell. We choose ∆r to be 1 Å. In our implementation, we approximate 〈Ni(r, r +∆r)〉 in
(3.2) by the total number of ions of the ith species that move (in the last part of moves
for statistics) into the shell between r and r + ∆r, multiplied by the total number Ni of
ions of ith species, divided by the total number of moves (in the last part of moves) in
which an ion of ith species is displaced.

We remark that the use of periodic boundary condition effectively introduces a spatial
cut-off of the underlying system region. In principle this can affect the accuracy of the
calculation of electrostatic interactions. However, we have tried simulations on boxes with
different linear sizes and found almost no differences in the results. In fact, we find that
averagely only in one out of 10, 000 moves an ion has to “leave” through one side of the
box and “come back” to the box through the opposite side. The reason for this is that
most of the ions are crowded around the charged sphere, away from the boundary of
simulation box.

In Figure 1, we display our typical MC simulations results for two systems: one without
salt and one with salt. Notice that the counterions with smaller valence-to-volume ratios
have less possibility to be adsorbed to the charged surface.

4 Results and Discussions

We set the linear size of our computational box (−L/2, L/2)3 to be L = 150 Å, and the
radius of the spherical colloidal particle (the macroion) to be R = 15 Å. The Bjerrum
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(a) (b)

Figure 1: (Color online) Typical MC simulations of ions surrounding a highly charged
macroion. (a) A salt free system composed of monovalent (black), divalent (red, or dark
gray in print version), and trivalent (green, or light gray in print version) counterions,
with radii 3 Å, 2.5 Å, and 3.5 Å, respectively. (b) A system of salt solvent with coions
(blue, or dark in print version), and counterions of valences and radii +1 and 2 Å (black),
+2 and 3 Å (red, or dark gray in print version), and +3 and 4 Å (green, or light gray in
print version), respectively.

length is set to be lB = 7 Å. The surface charge density σ ranges from −0.05 to −0.21

e/Å
2
. In our simulations, we investigate mixed solutions of three types of counterions,

with their valences (z1, z2, z3) = (+1, +2, +3). We choose their radii to range from 1 Å to
4 Å. These are within the interval of physical interest. For example, the hydrated radii
of monovalent hydrogen, sodium and potassium, divalent magnesium and calcium, and
trivalent aluminum ions are 4.5, 2.25, 1.5, 4.0, 3.0, and 4.5 Å, respectively [67]. For salt
electrolytes, we choose monovalent or divalent coions with radius 2 Å.

One of the main objectives of our study is to understand the competitive adsorption of
counterions with different valences and sizes. Such property has been already investigated
previously; see [16, 17, 50, 51, 63, 64, 68] and the references therein. Most of these studies
found that the valence of counterion determines the competition in adsorption to a charged
surface with a low surface charge density and that smaller ions are stronger in such
competition for a high surface charge density. These conclusions result naturally from
the competition between electrostatic attraction and entropic repulsion expressed in the
free-energy functional (2.3), where the electrostatics dominates the free energy for the
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low surface charge density, and the entropy dominates otherwise. It has been recently
found in our previous work [37] using the mean-field model described in the last section
that the competition between different ions in adsorption to a charged surface can be in
fact characterized by the ionic valence-to-volume ratios. Here, we use MC simulations to
further explore this characterization and compare our results with those from mean-field
calculations. In particular, we study a system with a crowded ionic population near a
highly charged surface, as shown in Figure 1.

In what follows, for an ion of the ith species (1 ≤ i ≤ M), we denote by Ri its radius
and by

αi =
zi

vi

=
3zi

4πR3
i

its valence-to-volume ratio.

4.1 Crucial factors in the competition between counterions

We first study salt-free systems with monovalent, divalent and trivalent counterions: z1 =
+1, z2 = +2, and z3 = +3. We investigate three different groups of such counterions with
the following order of valence-to-volume ratios: α+2 > α+3 > α+1; α+3 > α+1 > α+2; and
α+1 > α+2 > α+3. Here and below, we use α+i to denote the valence-to-volume ratio of
the counterion with valence +i. We use the parameters:

Group 1: (R1, R2, R3) = (3.0, 2.5, 3.5) in Å, α+1 : α+2 : α+3 = 1 : 3.5 : 1.9;

Group 2: (R1, R2, R3) = (2.5, 3.5, 3.0) in Å, α+1 : α+2 : α+3 = 1.4 : 1 : 2.4;

Group 3: (R1, R2, R3) = (2.0, 3.0, 4.0) in Å, α+1 : α+2 : α+3 = 2.7 : 1.6 : 1.

For each group, we choose the same number of ions for each of the three different species:
N1 = N2 = N3. Moreover, we select three different surface charge densities by setting
N1 = N2 = N3 = 100, 50, and 25, respectively, and by using the charge neutrality (2.1).
The corresponding surface charge densities of the macroions are −0.212, −0.106, and

−0.053 e/Å
2
, all in the regime of strong surface charge.

To report our MC simulations, we use bar plots, with each bar representing the radial
density ρi(r) for the ith ionic species (1 ≤ i ≤ M) as defined in (3.2). We choose the
thickness of the spherical shell to be ∆r = 1 Å. We also convert the unites number/volume
to mol/L which is abbreviated M. To show our results of mean-field computations, we
plot smooth curves of radial densities ci(r) for the ith ionic species (1 ≤ i ≤ M) that are
just the ionic concentrations in the radial direction. For each i the two quantities ρi(r)
and ci(r) should be close to each other, in particular, if the shell size ∆r is very small.
However, since the solvent molecules are not explicitly included in our MC simulations
but the concentration of solvent molecules is included in our mean-field model, the two
quantities ρi(r) and ci(r) are not exactly the same.

The quantitative results of our MC simulations are illustrated in Figures 2–4, where
in Figure 2 we also show our results of mean-field computations for comparison. Results
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Figure 2: (Color online) The radial densities by MC simulations (a), (b), and (c), and
by mean-field computations (d), (e), and (f) of the three species of counterions in Group
1: (z1, z2, z3) = (+1, +2, +3), (R1, R2, R3) = (3.0, 2.5, 3.5) in Å, and α+1 : α+2 : α+3 =
1 : 3.5 : 1.9. All three species have the same number of ions. This number is 100 in (a)
and (d), 50 in (b) and (e), and 25 in (c) and (f), respectively. Hence the constant surface
charge density decreases from (a) and (d), to (b) and (e), and to (c) and (f).

in Figure 2 are obtained using Group 1 parameters, while those in Figure 3 and Figure 4
are obtained using Group 2 and Group 3 parameters, respectively. We observe clearly
that counterions are adsorbed tightly to the highly charged surface, and near the surface
layers of counterions of different species form, leading to the remarkable structure of
stratification. Moreover, we find that the order of layering depends on the valence-to-
volume ratio, instead of the valence or the size independently. Counterions with the
largest valence-to-volume ratio forms the first layer closest to the charged surface, those
with the second largest such ratio forms the second layer, and so on. When the surface
charge density σ becomes smaller, the role of valence is more important in determining
which ionic species form a layer closest to the surface. These results demonstrate that the
selective adsorption and layer ordering in the stratification depend on the competition
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between energetics and entropy, and that the valence-to-volume ratio is an important
parameter in such adsorption and layering for a highly charged surface.
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Figure 3: (Color online) The radial densities obtained by MC simulations of the
three species of counterions in Group 2: (z1, z2, z3) = (+1, +2, +3), (R1, R2, R3) =
(2.5, 3.5, 3.0) in Å, and α+1 : α+2 : α+3 = 1.4 : 1 : 2.4. All three species have the
same number of ions. This number is 100 (a), 50 (b), and 25 (c), respectively. Hence the
constant surface charge density decreases from (a) to (b) and to (c).
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Figure 4: (Color online) The radial densities obtained by MC simulations of the
three species of counterions in Group 3: (z1, z2, z3) = (+1, +2, +3), (R1, R2, R3) =
(2.0, 3.0, 4.0) in Å, and α+1 : α+2 : α+3 = 2.7 : 1.6 : 1. All three species have the same
number of ions. This number is 100 in (a), 50 in (b), and 25 in (c), respectively. Hence
the constant surface charge density decreases from (a) to (b) and to (c).

In Figure 2, we find a qualitative agreement of our size-effect included mean-field
theory with the MC simulations. We note that the peaks of ionic densities close to the
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surface predicted by the MC simulations have a larger magnitude and are closer to the
surface than those predicted by the mean-field theory.

We now investigate the sensitivity of the ionic sizes with respect to the ionic structure

in the vicinity of charged surface. We fix the surface charge density to be σ = −0.22e/Å
2
.

We consider three species of counterions with valences zi = +i (i = 1, 2, 3) and number of
ions N1 = N2 = N3 = 100. In Figure 5, we plot the ionic densities for various combinations
of the ionic radii R1, R2, and R3. The radius of the trivalent counterion is decreased from
4 Å in Figure 5 (a) to 3.5 Å in Figure 5 (b) so that the divalent and trivalent species have
almost the same valence-to-volume ratio. The radius of the monovalent ion is decreased
from 2 Å in Figure 5 (b) to 1.5 Å in Figure 5 (c). In both cases, the species with the
highest valence-to-volume ratio, i.e. the monovalent ionic species, remains the strongest
in the competition to form the first layer closest to the charged surface. This indicates
that the ionic competitive ability in adsorption is greatly improved by a slight decrease
of its radius, which weakens the ionic entropic repulsion. From Figure 5 (b), we also find
that when two species of counterions have close values of valence-to-volume ratios, the
species with a higher valence will have a stronger ability of adsorption.
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Figure 5: (Color online) MC simulations of the layering structure of ionic radial densities of
three counterion species with the valences z1 = 1, z2 = 2, and z3 = 3, and numbers of ions
in each species N1 = N2 = N3 = 100. The set of radii (R1, R2, R3) are different in the three
plots. The corresponding valence-to-volume ratios are: (a) α+1 : α+2 : α+3 = 2.7 : 1.6 : 1;
(b) α+1 : α+2 : α+3 = 1.8 : 1.1 : 1; (c) α+1 : α+2 : α+3 = 6.3 : 1.6 : 1.

Figure 5 (c) also illustrates an interesting phenomenon. With the decrease of the
radius of monovalent ions, the concentration of the divalent ions, which have the second
largest of the three valence-to-volume ratios, is increased. The trivalent ions which have
the smallest valence-to-volume ratio are depleted in the vicinity of the surface. This
can be interpreted that the more tightly binding of the monovalent ions to the surface
decreases more the electrostatic energy contributed by divalent and trivalent ions. The
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effect of the valence-to-volume ratio is strengthened in the competition between the latter
two species. This result demonstrates that the nonuniform ionic size effect plays a very
important role in determining the properties of electrolyte solutions.

We now fix the numbers of ions N1 = N2 = N3 = 100, the surface charge density

σ = −0.21e/Å
2
, the ratios of radii R1 : R2 : R3 = 2 : 3 : 4, and the order of valence-

to-volume ratios α+1 > α+2 > α+3. We vary simultaneously the ionic radii of the three
species of counterions by changing a common multiplier. We use three different sets with
the radii of monovalent ions being 1.2, 2.0, and 2.4 Å, respectively. We study how the
different ionic sizes affect the layering structure of counterions and how the competition
in ionic adsorption is changed with the change of entropy. The corresponding results are
plotted in Figure 6. It can be found that, with the increase of the ionic radii, the entropic
contribution to the electrostatic free energy is increased, leading to the enhancement of
the counterion repulsion. Moreover, the particle numbers of all the three ionic species
in the layers closest to the surface are diminished. In the meantime, when ionic sizes
are increased from small to large, the entropic contribution to the free energy becomes
more significant. Hence, the valence-to-volume ratios give a clear characterization of
stratification. In fact, the monovalent counterions, which has the smallest value of valence
but largest valence-to-volume ratio, always forms the first layer closest to the surface. It
is a further evidence that the competition between electrostatic energetics and entropy
leads to the following limits: at the limit of the electrostatics domination the valence is
the main indicator of the ordering of layers, while at the limit of the entropy domination
the valence-to-volume ratio is the main indicator of layer ordering.
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Figure 6: (Color online) MC simulations of radial densities of three species of counterions
with the valences z1 = 1, z2 = 2, and z3 = 3, and numbers of ions in each species
N1 = N2 = N3 = 100. The radii R1, R2, R3 in the three plots differ by a common factor.
(a) Small ionic radii. (b) Medium ionic radii. (c) Large ionic radii.
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4.2 Systems with the presence of coions

We now add coions in the system and study the effect of coions to the competitive ad-
sorption and order of packing of counterions, in comparison with the salt-free systems.
We consider two cases. In the first case, we add monovalent coions to the system. We
assume that the radius of such a coion is R4 = 2 Å and that the total number of coions
is N4 = 204. In the second case, we add divalent coions to the system. We assume
that the radius of such a divalent coion is R4 = 2 Å and that the total number of such
coions is N4 = 102. In both cases, we still have the monovalent, divalent, and trivalent
counterions, with now their radii 2, 3, and 4 Å, respectively, and their total numbers

N1 = N2 = N3 = 134. We also assume a high surface charge density σ = −0.21 e/Å
2
.

The charge neutrality (2.1) is now satisfied with M = 4 species of counterions and coions.
The system will have an averaged 100 mM concentration of monovalent coions in the first
case and 50 mM concentration of divalent coions in the second case.

For these two systems with coions, we plot the radial densities of counterions and
coions obtained by our MC simulations in Figure 7 and those obtained by our mean-
field numerical computations in Figure 8. In comparison with those salt free systems, we
find that the addition of coions slightly enhances the layering effect. The densities of all
three counterions are increased. This has a minor influence to their layering order. It is
clear that a qualitative agreement between mean-field calculations and MC simulations is
reached on the competition of counterion adsorption.

We observe from Figure 7 (b) and (d) that the coion density predicted by MC simula-
tions is non-monotonic, while from Figure 8 (b) and (d) that the coion density predicted
by the mean-field theory is monotonic. In Figure 9, we plot the total ionic charge density
for each of the two systems obtained by our MC simulations. We find the over-charging
of the system, i.e., the total charge density is above zero that corresponds to the charge
neutrality [29, 69]. Interestingly, the over-charging of the monovalent-coion system is
stronger than that in the divalent-coion system: the inverted charges of the monovalent-
coion system and divalent-coion system are 1.86 e and 0.15 e, respectively. This is mainly
due to the fact that it is easier to form anion-cation binding pairs in the divalent-coion
system than in the monovalent-coion system. Thus the density of free counterions is de-
creased. In contrast, the mean-field theory can only produce a monotonic profile of the
total charge density as proved mathematically in [26]. Therefore, the mean-field theory
with the nonuniform size effect still fails in predicting the charge inversion.

5 Conclusions

In this work, we study the competition of multiple counterions of different valences and
different sizes in binding to the surface of a spherical colloidal particle by both a mean-
field theory and Monte Carlo (MC) simulations. The parameters of the underlying system
of electrolyte include: the valences zi, radii Ri (or volumes vi), and numbers Ni of ions of
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Figure 7: (Color online) MC simulations of counterion and coion radial densities. (a) and
(b): systems with monovalent coions. (c) and (d): systems with divalent coions.

ith species with i = 1, . . . ,M , the radius R0 of a solvent molecule, the constant dielectric
coefficient ε of the electrolyte, and the surface charge density σ. The entire system is
assumed to be in charge neutrality. In the mean-field approach, we minimize a semi-
phenomenological electrostatic free-energy functional of ionic concentrations constrained
by Poisson’s equation. The electrostatic potential is not an independent variable of the
functional. The different ionic sizes are described through the entropic contributions of
ions and solvent molecules. The constrained free-energy minimization is realized numeri-
cally by an augmented Lagrange multiplier method. We also use an unrestricted primitive
model and canonical ensemble Monte Carlo (MC) simulations with the Metropolis crite-
rion to predict the ionic distributions around the charged surface.

Through our extensive MC simulations and mean-field computations, we have found
the following:
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Figure 8: (Color online) Counterion and coion radial densities from numerical computa-
tions based on the mean-field theory with the ionic size effect. (a) Radial densities of
counterions for the system with monovalent coions. (b) Radial density of coions for the
system with monovalent coions. (c) Radial densities of counterions for the system with
divalent coions. (d) Radial density of coions for the system with divalent coions.

(1) For a low surface charge density, the adsorption of counterions with a higher va-
lence is preferable. This agrees with previous studies in existing literature. For a
highly charged surface, both of the mean-field theory and MC simulations show that
the counterions bind tightly around the charged surface, forming stratification or
layering of counterions of different species.

(2) The ionic valence-to-volume ratios, instead of ionic valences alone, are the key pa-
rameters that determine the binding of counterions to the charged surface. Due to
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Figure 9: (Color online) MC simulations of the total charge density for the system with
monovalent coions (marked −1) and that with divalent coions (marked −2).

the ionic size effect, counterions with the largest valence-to-volume ratio form the
first layer of stratification, while those with the second largest valence-to-volume
ratio form the second layer, and so on. We shall call this the “criterion of valence-
to-volume rations” in ionic stratification. Our MC simulations confirm the validity
of this criterion that was discovered in our previous mean-field calculations [37].

(3) Our MC simulations predict the charge inversion for ionic systems with salt. More-
over, we find that the over-charging is more significant for a system with monovalent
coions than for a system with divalent coions. The mean-field theory, however, fails
in predicting the charge inversion, since it does not include the ion-ion correlation.

In our mean-field computations, we have never found a case where our criterion of
valence-to-volume ratios fails for the prediction of stratification of multiple counterions
for highly charged surfaces. For MC simulations, we sometimes find the criterion does not
work, when those ratios are too close and the surface charge is too low. In fact, the MC
simulation reported in Figure 6 (b) of [51] for a low surface charge density contradicts our
criterion.

While our mean-field theory and Monte Carlo simulations have both predicted the
stratification of counterions near a highly charged surface and the crucial role of the ionic
valence-to-volume ratios in such stratification, we have neglected several effects in our
theory and methods.

First, in our MC simulations, we treat ions as hard spheres to describe the short-range
repulsion in the van der Waals interactions between different kinds of ions of multiple
valences and different sizes, and between the ions and the charged macroion. We have
neglected the long-range attraction in such interactions that can contribute largely to
the ion-ion correlations. For a highly charged surfaces, counterions are crowded near the
surface; and the van der Waals attraction may not be as strong as the corresponding
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repulsion. While we have taken a rather common approach in MC simulations, we under-
stand that including the attraction part of the van der Waals interactions is practically
quite possible. We shall include such interaction in our subsequence works.

Second, in both of our mean-field treatment and MC simulations, we use a uniform
dielectric coefficient for the ionic solution. This is only an approximation in the description
of the dielectric properties of solvent, as the water in the proximity of a highly charged
surface is not expected to behave like bulk solvent. In fact, the dielectric coefficient
can depend on the ionic concentrations [13, 70, 71]. Such dependence is experimentally
known to be continuous and linear; cf. Eq. (1) and Table 1 in [72]. Near the charged
surface the dielectric coefficient is locally close to a constant; and the ion-ion interactions
in such a region can be still modeled well by our interaction energy (3.1) but with a
dielectric coefficient different from that in the bulk. We thus do not expect that this
will significantly affect the competition of different counterions in the stratification. To
further explore the detailed consequences of the concentration dependent dielectrics, we
are currently extending our work to such dielectric systems.

Third, the size effect of solvent molecules is not directly included in our MC simu-
lations. This makes our comparison between the mean-field theory and MC simulations
only qualitative. There is clearly a need to develop models and algorithms to include the
solvent molecular size effect in MC simulations of electrolyte systems.

We are currently working on to improve our theory and methods to include some of
these effects. In the future, it is desirable to apply our efficient theory and methods to
large-scale modeling of biomolecular systems in which nonuniform ionic size effects can be
sometimes very important. On the theoretical development, it is also necessary to derive
from statistical mechanics theory our mean-field, electrostatic free-energy functional that
includes the nonuniform ionic size effect.
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double layers with multivalent counterions: Ion size effect. J. Chem. Phys., 121:8618–
8626, 2004.
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