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Influence of Confinement on Dynamical Heterogeneities in Dense Colloidal Samples

Kazem V. Edmond,∗ Carolyn R. Nugent,† and Eric R. Weeks
Physics Department, Emory University, Atlanta, Georgia 30322, USA

We study a dense colloidal suspension confined between two quasiparallel glass plates as a model
system for a supercooled liquid in confined geometries. We directly observe the three-dimensional
Brownian motion of the colloidal particles using laser scanning confocal microscopy. The particles
form dense layers along the walls, but crystallization is avoided as we use a mixture of two particle
sizes. A normally liquid-like sample, when confined, exhibits slower diffusive motion. Particle
rearrangements are spatially heterogeneous, and the shapes of the rearranging regions are strongly
influenced by the layering. These rearranging regions become more planar upon confinement. The
wall-induced layers and changing character of the spatially heterogeneous dynamics appear strongly
connected to the confinement induced glassiness.

PACS numbers: 64.70.pv, 61.43.Fs, 82.70.Dd

I. INTRODUCTION

As a glass-forming liquid is cooled, its viscosity in-
creases smoothly but dramatically by many orders of
magnitude. The macroscopic divergence in viscosity is
related to the divergence in the microscopic structural re-
laxation time, or α-relaxation time. A conceptual expla-
nation is the Adams and Gibbs hypothesis, which states
that the flow in a supercooled liquid involves the cooper-
ative motion of molecules and that the structural arrest
at the glass transition is due to a divergence of the size
of these cooperatively rearranging regions (CRRs) [1].

Computer simulations and experiments have explored
the sizes and shapes of regions of cooperatively mov-
ing molecules as a liquid’s glass transition is approached
[2, 3]. A direct means of probing the dynamic length
scales of glass-forming liquids is by confining them to
smaller volumes, such as within thin films and nanopores.
Confinement can either increase, decrease or even main-
tain a material’s glass transition temperature TG [4, 5].
Both simulation and experiment suggest that the effect
on TG depends on the nature of the interaction between
the sample and its confining boundary [6–12]. Attrac-
tive interactions may result in an increase in TG whereas
repulsive interactions may result in a decrease [10, 13].
Frustration of structural ordering, via a rough surface for
example, can also play a key role, although this can ei-
ther cause slower or faster dynamics [7, 11, 14]. Whether
or not the restriction of the length scales accessible to
CRRs is responsible for the variation in TG remains to
be seen due to the inability to directly observe molecular
interactions within glass-forming liquids.

Instead of studying molecular glass-formers, we
use dense colloidal suspensions of sterically-stabilized
micrometer-sized spherical particles. Colloidal suspen-
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sions have often been used as experimental models of
a hard sphere glass [15, 16]. We confine our samples
within a planar volume formed by two quasi-parallel
solid surfaces [17], similar to confined colloids studied
by other groups [11, 18, 19]. We use high-speed con-
focal microscopy to rapidly visualize and acquire three-
dimensional images of the particle positions [20–23]. Sub-
sequent image analysis lets us track the individual par-
ticle trajectories, providing an accurate picture of the
cooperatively rearranging groups of particles. Near the
colloidal glass transition (φg ≈ 0.58 [15]), particles rear-
range in groups characterized by a length scale of ∼3-6
particle diameters [22, 24].

In this paper we further investigate our results from
prior experiments that studied confined samples, as pic-
tured in Fig. 1 [17]. Here we focus specifically on the na-
ture of cooperative rearrangements within the confined
sample and how they relate to the system’s increased
glassiness. In these experiments we found that confine-
ment induces glassy behavior at concentrations in which
the bulk behavior is still liquid-like. Here, we examine
rearranging groups of particles defined by (1) particles
making large displacements at some moment in time that
are also (2) nearest neighbors with at least one other par-
ticle within the group. We show that confining colloidal
liquids within a planar volume results in cooperatively
rearranging groups of particles that are similarly planar
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FIG. 1: (Color online) Sketch of sample chamber (not to
scale). The small particles are 1.18 µm in radius and are
shaded to indicate their fluorescent dye. The large particles
are 1.55 µm in radius and drawn in white to indicate their
lack of dye, making them invisible to the confocal microscope.
One of the boundaries is a coverslip, rather than a glass slide,
indicated by the thinner line.
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shaped. The flattening shapes of the cooperatively rear-
ranging groups are correlated with the overall slowing of
the dynamics, suggesting a connection between confine-
ment, wall-induced structure, and glassy behavior.

Understanding the effects of confinement on the glass
transition may help us understand the glass transition in
the bulk. Perhaps more importantly, understanding the
properties of confined fluids also has direct relevance with
lubrication [25], the flow of liquids through microfluidic
devices [26, 27], and the kinetics of protein folding [28].

II. EXPERIMENTAL DETAILS

A. Colloidal samples and microscopy

We use spherical colloidal poly-methyl-methacrylate
(PMMA) particles that are sterically stabilized to pre-
vent interparticle attraction [15, 23]. The particles are
suspended in a mixture of solvents, cyclohexylbromide
and cis- and trans-decalin to match both their density
and index of refraction [23]. While our sample is simi-
lar to other types of colloidal suspensions that act like
hard spheres [15], the cyclohexylbromide in our solvent
mixture induces a slight charge on the surfaces of the
particles. Thus, the particles have a slightly soft repul-
sive interaction in addition to their hard sphere core. To
prevent crystallization, which would be readily induced
by the smooth walls in our thin planar geometry [29–
31], we use a binary mixture of particles with hydrody-
namic radii of asmall = 1.18 µm and alarge = 1.55 µm.
The number ratio is approximately NS/NL = 3.5, and
the individual volume fractions are approximately φS =
0.26, φL = 0.16, so the total overall volume fraction is
φ = 0.42 ± 0.05. The uncertainty of φ arises from the
difficulty in precisely determining the individual species’
particle size, the polydispersity of particle sizes (∼ 5%
for both species), and difficulties in determining the rel-
ative volume fractions of the two species [32]. A study of
a similar colloidal mixture found the glass transition for
bulk samples to be at φg ≈ 0.58 [33].

We use laser scanning confocal microscopy to view the
sample [23]. We can acquire a three-dimensional image of
the sample by scanning a 50× 50× 20 µm3 region (equal
to 256 × 256 × 100 pixels). We use Visitech’s “vt-Eye”
confocal system which can scan this volume in 2.0 sec-
onds. This is much faster than the time for particles to
diffuse their own diameter, which is ∼100 seconds in our
samples. We acquire sequences of three-dimensional (3D)
confocal images every 2.0 seconds for up to 45 minutes.
By scanning different locations, we observe the behavior
at different chamber thicknesses ranging from ∼6 µm to
∼19 µm in addition to the sample’s bulk. Data repre-
senting the ‘bulk’ of our sample is acquired from a 20 µm
thick subvolume in the thicker region of the sample cham-
ber that is over 15 µm away from the chamber’s walls to
avoid any boundary effects.

The small particles are dyed with Rhodamine dye [23]

and the larger ones are left undyed. Thus the data in our
results are for the smaller particles only. Each image is
post-processed to find particle positions with an accuracy
of 0.05 µm in x and y (parallel to the walls) and 0.1 µm
in z (perpendicular to the walls, and parallel to the opti-
cal axis of the microscope). Given that the particles do
not move much between images, we can link the particle
positions in time to get 3D trajectories of the particles’
motion throughout the sample volume [23, 34].

B. Sample chambers

Our goal is to study our sample with a range of confine-
ment thicknesses. Here we focus on “thin film like” con-
finement between two flat surfaces. We achieve this by
constructing a wedge shaped sample chamber, as shown
in Fig. 1. We build the chamber using a glass slide, a rect-
angular glass coverslip, and a narrow piece of a ∼60 µm
thick Mylar film, employing a method similar to the one
used by Refs. [35, 36]. Using UV-curing epoxy (Nor-
land 68) we attach the Mylar film near one end of one
side of the glass slide so that it runs perpendicular to
the slide’s length. Next, the glass coverslip is laid across
the slide so that one end is raised up by the Mylar film.
Meanwhile, the coverslip’s opposite end is clamped down,
ensuring the thinnest gap size possible. We seal the sam-
ple chamber shut with epoxy, except for two small air
holes; the sample is added via one while air escapes via
the other. After adding the sample, the two openings
are sealed with epoxy. The chamber’s shape is described
in Fig. 1: a very long chamber with a broad range of
thicknesses. Due to the Mylar film, the glass surfaces are
not parallel but very slightly angled at 0.4◦ relative to
one another. Within our field of view, the change in our
sample’s thickness due to our sample chamber’s slight
taper is less than 0.3 µm, which is negligible for all but
the thinnest regions. We do not see any influence of the
taper in any of our results, suggesting it is reasonable
to consider the two boundaries as locally quasi-parallel.
We define y as the direction along which the thickness H
varies.

When we fill our slides with sample, a small fraction of
particles stick to the sample chamber’s walls. Typically
less than 20% of the walls’ area is coated with stuck par-
ticles [37]. The stuck particles are easy to identify as
their apparent motion, due to noise inherent to particle
tracking, is much less than the other particles. An image
showing the locations of some stuck particles is shown in
Fig. 2. Other observations confirm that both large and
small particles stick to the walls [37]. We find that the
particles stick to the surfaces of the glass slides only dur-
ing the initial loading of the sample chamber with colloid.
The stuck particles remain stuck indefinitely, through a
van der Waals attraction to the glass, and are a perma-
nent feature of the surface. The mobile particles do not
stick to the sample’s glass boundaries over time – during
the experiments they never are seen to stick, and over
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FIG. 2: Typical 2D confocal microscope image showing par-
ticles immediately adjacent to one of the chamber walls. The
circled particles are stuck to the glass, and the others move
freely. There are also undyed particles also stuck to the sur-
face, as well as undyed mobile particles, which are not visible
in this confocal image. The scale bar indicates 10 µm.

several months the amount of particles stuck to the glass
does not appear to change. In fact, the mobile parti-
cles are repelled from the glass boundaries by a relatively
weak Coulombic interaction; in other words, during the
course of the experiment, the only particle-wall interac-
tion is a weakly repulsive one. In a sample of dilute col-
loids, we observe that the concentration of particles is low
at the wall and approaches the bulk value quickly, within
0.5± 0.1 µm, suggesting that the Debye screening length
is ≈ 0.4 µm at most and more likely ≈ 0.2 − 0.3 µm, in
agreement with prior observations [38]. The stuck parti-
cles are expected to slightly slow adjacent particles [39],
which has been confirmed in our experimental data [37].

Particles do interact with the wall hydrodynamically.
In the same dilute suspension, we measure particle mobil-
ity near the glass walls, with measured diffusivity shown
in Fig. 3 as a function of the distance z from the wall. The
behavior (symbols) is in good agreement with Faxen’s
Law (dashed line) [40, 41] which quantifies the hydro-
dynamic influence of a planar boundary. Of course, the
hydrodynamic behavior is modified in confinement ap-
proaching quasi-two-dimensional situations, where the
sample chamber thickness H is comparable to the parti-
cle size 2a [42–44]. We do not consider experiments that
are this thin; our observations all have H & 6a. More sig-
nificantly, for the larger volume fractions we consider in
this work, the hydrodynamic interaction will be screened
by the other particles, and so will not depend so strongly
on the distance from the wall [44, 45].

III. RESULTS

A. Wall-induced structure

We use the positions of the stuck particles to measure
the local thickness of the sample chamber. To do this we
find the number density n(z) as a function of the distance
z between the walls, shown in Fig. 4 for (a) the mobile
particles and (b) the stuck particles. The maximum of
each peak in (b) corresponds to the approximate position
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FIG. 3: (Color online) Measurements of local diffusion con-
stants as a function of the distance z to the wall, normalized
by the particle radius a = 1.18 µm. The data are from a
monodisperse dilute suspension. The dashed line is Faxen’s
Law [40, 41]. Inset: sketch indicating that z = 0 corresponds
to the particle touching the wall.
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FIG. 4: (Color online) The number density n as a function of
the distance z between the walls, for the visible (small) parti-
cles. (a) All mobile particles. (b) All immobile particles. The
vertical lines in both indicate the position of the centers of the
visible particles stuck to the walls. For this data, the distance
between the two positions is H = 6.25 µm, the effective local
chamber thickness.
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FIG. 5: (Color online) Number density n as a function of the
distance z between the walls. The thickness H is as labeled
(in microns). The values of H in terms of asmall are 5.30, 5.62,
6.83, 6.86, 10.7, and 13.4. The curves are vertically offset for
clarity, where the offset is proportional to H. Where there is
an asymmetry in the height of the z ≈ 0 peak and the z ≈ H
peak, it is due to one wall having more stuck particles on it,
thus decreasing the room available for mobile particles.

of the centers of the small particles stuck to the sample’s
walls. These positions are marked by the vertical dashed
lines in Fig. 4, whose separation indicate the effective
local chamber thickness H. Since only the small particles
are visible to the microscope, the actual thickness is H+
2asmall = H + 2.36 µm. The mean particle radii are
known only to within ±0.02 µm, while our uncertainty
in their z positions is 0.1 µm. By averaging over tens of
stuck particles we can determine H to within 0.01 µm.

Figure 4(a) shows layering of particles near the sam-
ple walls, which has been seen in both computer simula-
tions [6, 46] and experiments [11, 30, 35, 39]. Comparing
Fig. 4(a) to (b) we see that the boundary layers of the
mobile particles are offset from those of the stuck parti-
cles. The offset is due to Coulombic repulsion between
the glass walls and PMMA particles, and is about 0.4 µm
in all cases. Using differential interference contrast (DIC)
microscopy, we confirm that the large particles also form
layers, albeit in positions shifted due to their size. Our re-
sults are qualitatively in agreement with simulations that
studied layering of binary mixtures of particles near walls
[47, 48], and are fairly similar to observations of layering
in single-component colloidal samples [11, 30, 39].

Figure 5 displays the way layering changes with H.
The peaks of n(z) are tallest and thinnest next to the
walls. Subsequent layers are shorter and wider, pre-
sumably as the correlations between particle positions
become diluted through the presence of two particle
sizes [47]. Note that we do not see any “quantiza-
tion” effects for particular values of H [49]. For ex-
ample, some packing effects were seen in simulations at

H = 2masmall+2nalarge for integer values m,n, but these
effects are too subtle to be resolved given the relatively
few values of H for which we have experimental data [47].

B. Sample-averaged dynamics

Before we consider the specific influence of the particle
layers on the particle motion, we will quantify the average
motion of the sample. This is done by calculating the
mean square displacement (MSD) as

〈∆x2〉 = 〈[xi(t+ ∆t)− xi(t)]2〉i,t

where the average is taken over all particles i and all ini-
tial times t. Analogous formulas apply for 〈y2〉 and 〈z2〉.
Figure 6(a) shows that the motion parallel to the walls
slows dramatically with confinement (decreasing H, as
indicated). For values less than H ≈ 16 µm ≈ 14 asmall ≈
10 alarge we observe a systematic slowdown.

The change of shape of the curves in Fig. 6(a) suggest
that confinement induces caging dynamics. This is the
inhibited motion of a particle due to its “cage” of neigh-
boring particles [50–54]. At the earliest times (∆t < 1 s,
not shown), particle motion is diffusive as particles have
not moved far enough to encounter the cage formed by
the neighboring particles [55]. As the particle displace-
ment becomes larger, its motion is impeded by its neigh-
bors which form the cage, resulting in a greatly decreased
slope of 〈∆x2〉 for ∆t < 100 s. For smaller values of
H, the decreasing height of 〈∆x2〉 in this range suggests
that the cage size decreases in more confined samples.
This is likely due to the concentration of particles into
the layers (Fig. 5), which crowds them within the lay-
ers and reduces their cage sizes. Returning to Fig. 6(a),
the upturn at larger ∆t for 〈∆x2〉 is the result of cage
rearrangements [7, 22, 51, 53]. The neighbors rearrange
and this lets the caged particle move to a new position.
The motion of particles at longer lag times is diffusive
due to the uncorrelated cage rearrangements [53]; this is
not quite seen in our data sets here as the time scales for
this diffusive motion is longer than our observation times.
The results shown are for one volume fraction; our prior
work showed that for larger φ, the onset thickness H for
the confinement-induced slow-down increases [17].

To compare the mobility in the parallel and perpen-
dicular directions, in Fig. 6(c) we plot 〈∆x2〉, 〈∆y2〉,
and 〈∆z2〉 separately for several thicknesses. Not sur-
prisingly, the mobility is less in the z direction (perpen-
dicular to the wall). Furthermore, the upturn of the MSD
at large ∆t is barely beginning for the z data. The con-
trast between the parallel (x and y) and perpendicular
(z) motion suggests that cage rearrangements may favor
motions parallel to the walls.

The MSD curves show an overall slowing down due
to confinement, but obscure the influence of the density
layers on the motion. Figure 7(a) shows the number den-
sity for one data set. In panels (b) and (c) we plot the
components of the MSD for fixed values of ∆t. The dips
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FIG. 6: (Color online) (a) The mean square displacement
for our sample over a range of thicknesses [17]. The dashed
line has a slope of 1.0. (b) Plots of the corresponding non-
Gaussian parameter for each thickness. The x superscript of
αx
2 is to indicate that the non-Gaussian parameter is only cal-

culated using the x displacements (parallel to the wall, and
perpendicular to the slight gradient in H). The inset is a mag-
nification of the curves for H ≥ 15.8 µm, with each curve’s
local maxima labeled, corresponding with ∆t∗ for the data
at these thicknesses. (c) Components of the MSD curves.
Light gray (red) curves are the x- and y-components of mo-
tion (parallel to the walls) and the dark gray (blue) are the
z-component of motion (perpendicular).

in 〈z2〉 [Fig. 7(c)] coincide with the layers in panel (a)
and imply that particles within layers are in a preferred
structural configuration and are less likely to move else-
where [6, 11, 17, 46, 49]. Meanwhile, the parallel compo-
nent of motion shows no variation with z, even for long
time scales. Our observations differ from one prior ex-
periment by Eral et al. [11]. They found a decreased
parallel mobility near the walls but did not measure per-
pendicular mobility. One difference is that they stud-
ied a single-component sample with a polydispersity of
8%, whereas we study a binary sample. Another dif-
ference is that their experiment had a spatial gradient
in volume fraction due to non-density matched particles
(they have a density difference between solvent and par-
ticles of ∆ρ ≈ 800 kg/m3, much larger than our value
∆ρ ≈ 0.3 kg/m3).
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FIG. 7: (Color online) (a) Particle number-density nsmall(z)
as a function of distance z across the sample cell. Additional
particles are permanently stuck to the walls of the cell (not
shown) which have centers located at z = 0.00 µm and z =
H = 8.06 µm, indicated by the vertical dashed lines. These
data correspond to the H = 8.06 µm data in Fig. 6. (b) Mean
square displacement parallel to the walls ( 1

2
[〈∆x2〉+ 〈∆y2〉])

and (c) perpendicular to the walls (〈∆z2〉) as a function of the
particles’ initial positions z. The displacements are calculated
using a range of ∆t, as labeled. The dotted lines indicate the
position of the number density maximum of each layer in (a)
while the dashed lines correspond to the approximate position
of the centers of the particles stuck to the glass walls.

Intriguingly, our results shown in Figs. 5,7 look strik-
ingly similar to recent experiments by Wonder, Lin,
and Rice [44]. They studied a monodisperse quasi-two-
dimensional colloidal system, where particles were lim-
ited to one layer in z, and further constricted in y anal-
ogous to our confinement in z. They found that their
experimental short-time diffusion coefficients had a sim-
ilar qualitative behavior to what is shown in Fig. 7(b,c)
[44]. They did not study long-time diffusion coefficients.

Our observed reduced particle mobility perpendicular
to the walls is similar to the observations of Dullens and
Kegel, who studied the first layer of colloidal particles at
a smooth glass surface [30, 31]. In their work, quasi-two-
dimensional (q-2D) layers of particles formed along the
surface of a glass slide in a bulk polydisperse colloidal
suspension, just as we observe. Their wall-based parti-
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FIG. 8: (Color online) (a) Particle number-density nsmall(z)
as a function of distance z across the sample cell. Additional
particles are permanently stuck to the walls of the cell (not
shown) which have centers located at z = 0.00 µm and z =
H = 16.0 µm, indicated by the vertical dashed lines. These
data correspond to the H ≥ 15.8 µm data in Fig. 6. (b) Mean
square displacement parallel to the walls ( 1

2
[〈∆x2〉+ 〈∆y2〉])

and (c) perpendicular to the walls (〈∆z2〉) as a function of the
particles’ initial positions z. The displacements are calculated
using a range of ∆t, as labeled. The dotted lines indicate the
position of the number density maximum of each layer in (a)
while the dashed lines correspond to the approximate position
of the centers of the particles stuck to the glass walls.

cles only intermittently exchanged with the bulk parti-
cles [31]. In their q-2D wall layer, particles exhibited
two-dimensional behavior that was fundamentally dis-
tinct from the dynamics of the particles further from the
wall. However, a primary reason for this was that the
particles were fairly monodisperse, and thus could form
ordered 2D phases [30, 31]. While we have pronounced
layers near the walls for small H experiments, our sam-
ples are binary. DIC microscopy confirms that our two
particle sizes remain well-mixed in these layers and do not
form ordered 2D phases. Also, Fig. 7 shows that slow-
ing is not restricted to these layers alone. Note that the
hydrodynamic interaction of particles with nearby walls
diminishes as the volume fraction is increased [45].

One explanation for the slower dynamics might be that
the volume fraction is larger in confinement. We first con-

sider an observation from our experiment: the pair corre-
lation function g(r) changes slightly upon confinement, as
shown in Fig. 9. This function indicates the likelihood of
finding a particle a distance r away from a reference parti-
cle at r = 0, and so the first peak position indicates a typ-
ical spacing between nearest neighbor particles. For ideal
hard spheres this first peak position is always at contact
(rmax = 2asmall). Our particles are slightly charged, so
the first peak shifts to larger values. The peak is addi-
tionally rounded by our finite resolution and the particle
polydispersity [33]. Given the particle charges, an ap-
proximate expectation is that φ ∼ r−3max. The inset to
Fig. 9 shows that confinement causes rmax to shift to
lower values, which would correspond in an increase of φ
from 0.42 to 0.49. One explanation for this is that, given
the layering of particles, the local volume fraction within
a layer is higher than 0.42, and g(r) is reflecting this local
volume fraction [which would be more heavily weighted
in the average used to calculate g(r)]. Another possi-
ble explanation is that the sample chamber is effectively
thinner than we believe, due to the interactions between
the particles and the walls. As noted above, the particle
concentration is diminished within 0.4 µm of the walls.
At the thinnest regions we study, H ≈ 6 µm; if the true
value is ≈ 5.2 µm, this would correspond to an increase
of φ from 0.42 to 0.42 × (6/5.2) ≈ 0.48, consistent with
the estimate from the g(r) data. However, an effective
volume fraction increase from 0.42 to 0.49 seems unable
to explain all of the dramatic slowing of the dynamics
seen in Fig. 6(a). Consider the data at ∆t = 100 s:
〈∆x2〉 drops by a factor of ∼ 40 going from the bulk to
H = 6.25 µm. A study of an unconfined binary suspen-
sion similar to ours found a drop of ∼ 3.7 for a change of
φ from 0.42 to 0.49 [33]. Thus we are left with a factor of
ten in additional slowing which is not due to a possible
volume fraction change. This agrees with the conclusions
of Eral et al. [11].

C. Defining cooperatively rearranging regions

The features of our 〈∆x2〉 curves resemble those of
bulk supercooled colloidal liquids, where cage rearrange-
ments play a significant role in the material’s underlying
dynamics. The process of cage rearrangements leads to
a liquid’s overall structural relaxation [56, 57]. Adam
and Gibbs were the first to hypothesize the existence of
“cooperatively rearranging regions” (CRRs) as a super-
cooled liquid’s means of increasing its configurational en-
tropy [1]. Prior simulations [2, 58, 59] and experiments
[21, 22, 60] found cooperatively moving regions, defined
as groups of neighboring molecules or particles that col-
lectively rearrange their positions. The connection be-
tween these observations and the CRRs of Adam and
Gibbs is perhaps problematic [61]. Nonetheless, it is cer-
tainly intriguing that spatially heterogeneous dynamics
have been seen in a wide range of glass-forming systems
[3]. We wish to see how the character of spatially hetero-



7

2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5
0

1

2

3

g
(r

)

r (µm)

6 8 10 12 14 16 18 20
2.65

2.70

2.75

2.80

2.85

 

r m
a
x
. (

µ
m

)
H (µm)

2.0 2.5 3.0 3.5 4.0 4.5

 r (units of a
small

)

FIG. 9: (Color online) The pair correlation function g(r) for
a range of H. Darker curves correspond with thinner samples.
The curves are from samples with thickness H equal to 6.25,
6.63, 8.09, 12.6, 15.8, and 18.9 µm, along with one curve
for the sample’s bulk (the lightest color curve). The inset
shows the position of the first peak as a function of H. The
red horizontal dashed line indicates rmax for the bulk sample,
while the diagonal dotted black line is a guide to the eye.

geneous motions changes upon confinement.
The precise definition of a cooperatively rearranging

region is open to interpretation. Our definition is de-
scribed below, and is comprised of three key elements:
(1) the time scale used to determine displacements, (2)
the threshold for considering a displacement to be a “re-
arrangement,” and (3) the definition of which particles
are adjacent, such that their motion is “cooperative.”

We first define the time scale of interest. Prior work
found that a good choice is based on the shape of
the probability distribution of displacements. Rearrang-
ing particles have displacements which are larger than
normal, and thus lie in the tails of the distribution
[21, 22, 60, 62, 63]. The size of the distribution tails
is quantified by the non-Gaussian parameter α2,

α2(∆t) =
〈∆x4〉

3〈∆x2〉2
− 1,

from Ref. [64]. The maximum of α2 defines the cage rear-
rangement time scale ∆t∗. We plot α2(∆t) in Fig. 6(b):
both the maximum value of α2 and the time scale ∆t∗

increase with decreasing H, similar to prior observa-
tions on a monodisperse sample [19]. For data from
H ≥ 15.8 µm, the levels of noise at low values of ∆t
manifest as a false increase of α2, so we ignore this peak.
For ∆t > 10 s there are secondary local maxima of α2

that we consider to be a better determinant of ∆t∗ [see
the inset plot of Fig. 6(b)]. We plot ∆t∗ versus H in
Fig. 10(a), which decays roughly exponentially with H
until H ≈ 20 µm, at which it reaches the bulk value.
Simply put, as H decreases the displacement distribu-
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FIG. 10: (Color online) (a) Values of ∆t∗ that maximize
α2 for a range of thicknesses H. The horizontal dashed line
indicates the value of ∆t∗ for the bulk sample. (b) Plot of
the mean number of particles within cooperatively rearrang-
ing regions, as a function of H. Only NC ≥ 3 are considered
to avoid trivial rearrangements that consist of 1 or 2 parti-
cles. The dashed line indicates 〈NC〉 for the sample’s bulk.
(c) Plot of the average extent of cooperatively rearranging
regions parallel (crosses and circles correspond to x and y,
respectively) and perpendicular (triangles, z) to the sample’s
walls. The difference between the x and y data is an indi-
cation of the amount of uncertainty in our data. The upper
and lower horizontal dashed lines indicate the mean horizon-
tal and perpendicular extent of data from the sample’s bulk,
respectively. In principle these should be the same (the be-
havior should be isotropic in the bulk); in practice the lines
may differ due to finite data or anisotropy in the imaging vol-
ume (50 µm in x and y but only 20 µm in z). (d) Value of the
mean square displacement 〈∆r2〉 at the time scale ∆t=100
seconds. The horizontal dashed line indicates the value of the
bulk sample. In panels (a), (c), and (d), the dotted lines are
guides to the eye.

tions become less Gaussian-like, and the time scale ∆t∗

for which the distributions are most extreme grows.

To define the length scale which separates a “rearrang-
ing” displacement from a “caged” displacement, we use
a mobility threshold ∆r∗. Both experiments [22, 65] and
simulations [66] have used a displacement threshold to
define mobility such that over time, some percentage of
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the particles have displacements |∆~r| ≥ ∆r∗ [2, 66], al-
though at any given time the fraction may not be exactly
this percentage. Thresholds of the top 5th percentile
[22, 66], 8th percentile [53], 10th percentile [65], and 20th

percentile [67] have all been used to define ∆r∗. From ex-
amining distributions of ∆x and ∆y for our data for each
H, we find that the slowest 90% of the displacements are
well described by a Gaussian distribution, whereas the
top 10% are more probable than a Gaussian distribution
would predict. Thus, we define our mobility threshold as
the top 10% of the most mobile particles. Displacements
in the z-direction, however, vary significantly with H,
making their inclusion in the calculation of our threshold
impractical. As is the case with prior studies [2, 22], our
choice of ∆r∗ is somewhat arbitrary and our results are
robust to some variation of ∆r∗.

To complete our identification of CRRs we must iden-
tify which highly mobile particles are simultaneously
nearest neighbors. Similar to other work, we define neigh-
bors as those particles whose separation is less than a
cutoff distance set by the first minimum of the pair cor-
relation function g(r) [53]. Our distributions of g(r) do
not vary substantially with H, as shown in Fig. 9. We
use the average position of the first minimum (3.87 µm)
to define particles which are nearest neighbors.

One problem we face is the selective visibility of the
colloidal particles. As discussed earlier, only the smaller
particles of our binary suspension are fluorescent mean-
ing that the larger species of particles are not visible to
our confocal microscope. Despite this limitation we can
still draw some reasonable conclusions. For example, in
a study of a binary colloidal suspension similar to the
one studied here, Lynch et al. showed that the coopera-
tive dynamics of one species were similar to that of the
other [67]. Mobile particles of one species were usually
near mobile particles of the other species. Therefore, it
is reasonable to draw some conclusions about coopera-
tive motion from the small particles alone. One other
related limitation is that small rearranging particles may
not be nearest neighbors, but may be part of the same
CRR, connected by unseen large particles. This may sim-
ply limit the apparent sizes of CRRs without otherwise
changing their character.

D. Shapes of Cooperatively Rearranging Regions

We first visualize these CRRs to develop a qualitative
understanding of their nature. Figure 11 depicts clusters
of mobile particles in a samples with H = 15.8 µm and
6.63 µm (panels (a,b) and (c,d) respectively). For clarity,
bonds have been drawn between particles that are near-
est neighbors, i.e. within a cluster. Groups of mobile
particles can be seen for both thicknesses. The size of
these mobile clusters in the unconfined sample is small,
as expected for this low volume fraction (φ = 0.42) [22].
Despite their small size, these mobile clusters are the
primary means for particle rearrangements in the sam-

ple. The sample can be considered as composed of the
slowest 90% particles which are caged at a given mo-
ment, and the rearranging fastest 10%. If the nature of
the fastest 10% changes in confinement – for example,
if those rearrangements occur less frequently – then the
overall sample diffusivity will decrease.

Confinement induces slower dynamics, and in the bulk
slower dynamics are associated with larger CRRs [21, 22].
Perhaps confinement induces a similar larger size of
CRRs [19]; but at first glance, comparing Fig. 11 pan-
els (a) and (c) might suggest that the cluster sizes are
smaller upon confinement. However, recall that the par-
ticles shown are the most mobile 10%; the thinner sample
has fewer particles in the imaged volume, and thus 10%
of this smaller number results in fewer mobile particles
to show without necessarily implying that the CRRs are
smaller. To quantify the size of CRRs we calculate the
mean number of particles in a CRR NC as a function of
H, plotted in Fig. 10(b). Figure 10(b) shows that CRRs
involve roughly the same number of particles, regardless
of thickness. The mean CRR size is between 3 and 4
particles, but this is only slightly larger than the mini-
mum size of 3 particles. The small size may be because
the bulk sample, with φ = 0.42, is liquid-like and only
has small CRRs [22]. Alternatively, as noted above, we
cannot see the large particles which are almost certainly
part of CRRs [67]. With the data of Fig. 10(b), we can-
not say clearly if the CRRs are larger or smaller upon
confinement. There is a very slight downward trend in
〈NC〉 with decreasing H, but this could be due to poor
statistics. It is possible that the influence of confinement
on the size of CRRs would be clearer in a sample with a
larger value of φ, although such samples are very difficult
to load into our thin sample chambers (as has been noted
by others [68, 69]). Likely some of the difficulty in loading
the samples is due to their increasing glassiness in con-
fined spaces. Results from another confocal microscopy
experiment on a monodisperse sample suggested that the
length scale for CRRs grows upon confinement [19]. The
difference from our results may be due to our use of a
binary sample.

An alternate way to quantify the size of a CRR is
through its spatial extent. We define the spatial ex-
tent of the CRRs as xextent = max(xi)−min(xi), where
i ranges over all particles within a given CRR. Similar
definitions apply for the y and z directions. We plot the
mean CRR extent in the x, y and z directions separately
in Fig. 10(c). We find that the CRRs maintain a constant
size in the direction parallel to the walls. However, the
amount of distance that the CRRs extend in the direction
perpendicular to the walls is significantly smaller than H,
and decreases as H decreases. In the z direction, then,
clusters are smaller, perhaps trivially because CRRs have
to fit into a thinner sample chamber. Comparing this re-
sult with the 〈Nc〉 data of Fig. 10(b) suggests that the
CRRs are becoming more compact in z with the same
number of particles. This suggests that perhaps they are
fractal in the bulk with a fractal dimension larger than 2
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FIG. 11: (Color online) Three-dimensional renderings of the top 10th percentile of the most mobile particles in two different
sample thicknesses. The bonds between particles are drawn only to indicate nearest neighbors and do not imply physical
connections. Only groups with NC ≥ 2 particles are drawn. The colors correspond to the magnitude of displacements in
the z-direction, normal to the confining boundaries. The experiment’s field of view, and the effective position of the confining
boundaries, are indicated by the light gray bounding boxes. The sample on the left (a, b) has a thickness of H = 15.8 µm
and the one on the right (c, d) has H = 6.63 µm. The top row of images (a, c) view the sample normal to the confining
boundaries, while the bottom row (b, d) provide a parallel view. Black and white indicate displacements of at least asmall over
a ∆t = 23 s and 250 s for the thicker and thinner sample respectively.

(as seen previously in Ref. [22]) and become more planar
upon confinement (fractal dimension approaching 2).

The onset of flatter or more planar CRRs coincides
with the sample’s overall slowing. In Fig. 10(d) we plot
the MSD values from Fig. 6(a) for ∆t = 100 s against the
corresponding range of H. We observe that the MSD val-
ues of Fig. 10(d) begin to deviate from those of the bulk,
indicated by the horizontal dashed line in (d), at approx-
imately the same H that the z-extents of the CRRs first
begin to flatten relative to the z-extent from the bulk,
the horizontal dashed line in (c). This is the strongest
evidence linking the changing CRRs to the slowing dy-
namics. The overall concept is that confinement modi-
fies the structure from that of the bulk, and this changed
structure leads to slower dynamics [48].

To more carefully quantify the shapes of the CRRs,
we consider the probability distributions of the extents
in the three directions. These distributions are shown in
Fig. 12 for a bulk sample (panel a) and a confined sample

(panel b). In the unconfined sample the distributions for
the x, y, and z directions are approximately the same, as
should be expected; these CRRs are spatially isotropic.
Differences in the z are most likely due to minor parti-
cle position errors which are larger in z, as discussed in
Sec. II. Figure 12(b) looks quite different. The extent in
z is nearly zero for a majority of CRRs [red (dark gray)
curve in Fig. 12(b)]; these are planar CRRs and are over-
whelmingly more probable than in the unconfined case.
A small subset of confined CRRs do extend into the z-
direction by one to two particle diameters. The clusters
of rearranging particles along the walls in Fig. 11(c,d)
seem to be the most planar in shape. Thus we are led to
conclude that the CRRs in the confined cases are quali-
tatively different than those of the unconfined sample.
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FIG. 12: (Color online) Extent of mobile groups of parti-
cles. Dark and light gray (red and orange online) indicate the
perpendicular and parallel extents respectively. CRRs in the
bulk (a) of the sample are more isotropic in shape than when
confined (b) to H = 6.63 µm. Note the difference in vertical
scales used by the two plots. Only CRRs consisting of at least
3 particles are considered in the data shown.

E. Details of Rearrangements

We next investigate the behavior of particles within
CRRs. In Fig. 11 the particles are colored in corre-
spondence with their amount of perpendicular motion, as
shown in the key. In the confined situation mobile parti-
cles displace horizontally more frequently than otherwise,
as suggested by the greater number of orange (medium
gray) particles in Fig. 11(c, d), This makes sense: a re-
arrangement consisting of particles within a single layer
does not require the particles to move vertically for the
rearrangement to occur. Occasionally we do see particles
which jump between layers or even swap between layers;
one example is near the bottom right corner of Fig. 11(c).

To compare the amount of parallel versus perpendicu-
lar displacements, we calculate the directions of motion
for all particles and then repeat the comparison for dif-
ferent confinement thicknesses. Using a spherical coor-
dinate system we determine the polar angle of a given
particle displacement. The polar angle θ spans a range
from 0◦ to 180◦, which correspond to motion toward or
away from the nearest sample chamber wall, respectively.
That is, we exploit the symmetry between the two walls.
We first compute the polar angle θ relative to the +z axis,
and then use 180◦−θ for the data in the lower half of the
sample chamber. Comparing the data separately for the
top and bottom half, we find no difference in the results.
For isotropic motion, the distribution of θ is proportional
to sin θ, so we divide our measured histograms by sin θ
to remove this dependence. The distributions are plotted
in polar coordinates, shown in Fig. 13, for thicknesses of
H = 6.63 µm and H = 15.8 µm. The dark curves are
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FIG. 13: (Color online) Polar plots of the probability
distributions of the directions of particle displacements for
H = 6.63 and H = 15.8 µm as indicated. (a,b) Data for
the two thicknesses, considering only particles away from the
walls. (c,d) Data for particles in the layers immediately adja-
cent to a wall. The displacements from one wall are reversed,
so that 180◦ always means motion away from the nearest wall.
In all panels, the light blue curve (light gray) is the distribu-
tion for the most mobile 10% of the particles, while the dark
blue curve (dark gray) is the distribution for all particles. Dis-
placements are measured over ∆t = 250 s and ∆t = 23 s for
the H = 6.63 µm and H = 15.8 µm data, respectively.

for all particles, and the light curves are for the top 10th

percentile of displacements, providing insight into the di-
rections that tend to permit higher mobility. The top
panels show the motion of the particles in the interior of
the sample, and the bottom panels show the motion of
the particles immediately adjacent to the walls.

In both the 15.8 µm and 6.63 µm samples, the particles
in the outer layers along the walls tend to move parallel
to them (θ ≈ 90◦) rather than perpendicularly [Fig. 13(c,
d)]. The effect is even more pronounced for the fastest
particles, whose distribution suggests that fast particles
move almost exclusively along the walls. This agrees with
our observations from Fig. 11(b, d), where the particles
layered along the walls are almost all orange (medium
gray), indicating they are moving primarily horizontally.
The distributions in Fig. 13(c, d) do show some data at
θ = 180◦, indicating that some particles move away from
the walls, and less data at θ = 0◦, indicating that some
particles make slight motions toward the walls.

The situation changes markedly for the inner layers
[Fig. 13(a, b)]. Considering only the full distribution
of all particles we see that the displacements are more
isotropic, although there is still a slight bias in the
θ ≈ 90◦ direction. The distribution of directions for the
most mobile interior particles is similar. There are bumps
in these distributions near θ = 0◦ and 180◦, suggest-
ing that particles that move in z have a slight increased
probability to make large motions in z, hopping between
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layers.
Overall, the particle dynamics in the thicker region are

far more isotropic than the ones from the confined region
[compare Fig. 13(a, c) with (b, d)]. In the H = 15.8 µm
case, there are appreciable signs of anisotropic behavior
only along the walls.

IV. CONCLUSION

The smooth quasi-parallel walls confining our sample
induce the formation of density layers within the col-
loidal sample’s volume. The most dense layers form along
the sample chamber’s glass surfaces, as shown in Fig. 5
and also observed in other experimental work that used
single-component colloidal samples [11, 30]. The struc-
tural inhomogeneities induced by the density layers result
in corresponding inhomogeneities in the system’s dynam-
ics, as described by the plots in Fig. 7. Particles move
most easily within their layer, but this is still slower than
they would move in unconfined samples. The layered par-
ticles cooperatively rearrange within the layer but rarely
with adjacent layers; the cooperative rearrangements oc-
cur in more planar-shaped groups of particles. Given that
even in unconfined samples, particles need to move co-
operatively if they wish to have large displacements, the
change in the character of the cooperatively rearranging

regions seems to explain the slowing dynamics. In short,
the thickness at which we begin to observe the slowing in
the sample’s average dynamics corresponds with the con-
finement length scale at which cooperatively rearranging
regions begin to become planar in shape [Figs. 10(c) and
(d)]. Our prior work suggests that the observed increase
in rearrangement time scales and the thickness at which
these regions begin to flatten will both grow with higher
volume fractions [17].

It is likely if the walls were roughened, the results
might change. Simulations [6, 7, 10] and experiments
[11, 39] showed that behavior is often glassier with rough
walls. With rough walls, layering is greatly diminished or
prevented entirely, or perhaps becomes more subtle. For
example, particles might form a corrugated layer wrap-
ping around the local wall texture. This could then lead
to other shapes for the cooperatively rearranging regions;
the main point being that structure that departs from the
bulk results in slower dynamics [48].
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