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We revisit an approach to the replica-based analysis of the spherical spin glass model that makes
use of a mapping of the problem onto a one-dimensional interacting charge system. A saddle
point approximation leads to the conclusion that the interaction between charges is irrelevant in the
thermodynamic limit, and as a consequence, that there is no non-trivial correlation between replicas
for this model. This allows us to show that quenched and annealed disorder averages agree for the
spherical spin glass. We demonstrate this result within two different mathematical frameworks, and
we also relate our analysis to the conclusions that follow from the replica symmetry ansatz.
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I. INTRODUCTION

The spherical spin glass model was originally intro-
duced and solved by Kosterlitz, Thouless, and Jones
(KTJ) in 1976 [1]. Perhaps the most important feature
of the model is that it can be solved exactly, which fa-
cilitates its use as a convenient test-bed for new ana-
lytic approaches to the spin glasses and other disorder-
dominated problems. KTJ originally solved the model
via an analysis making use of the asymptotic properties
of a large random matrix [2]. In addition, they solved
the model via a replica symmetry (RS) ansatz, originally
introduced by Edwards and Anderson [3] and utilized by
Sherrington and Kirkpatrick in their attempt to solve the
“solvable” infinite-ranged Ising spin glass model [4]. It
was later shown by Almeida and Thouless that the replica
symmetry ansatz is unstable [5], which leads to the con-
clusion that a replica symmetry breaking (RSB) solution,
such as the one introduced by Bray and Moore [6] or,
most notably, by Parisi [7], is required to obtain physical
results for the infinite-ranged Ising spin glass. Neverthe-
less, in the case of the spherical model spin glass, the
RS solution was found by KTJ to provide results equiva-
lent to those given by their exact, random matrix-based
analysis. This equivalence served at the time to bolster
confidence in ansatz-based replica theory.

Despite the long history and importance of the spher-
ical spin glass (which remains one of the few known ex-
amples of an exactly solvable spin glass model), one of its
fundamental features appears to have gone previously un-
noticed: Quenched and annealed disorder averages agree
for this model. It is the purpose of this paper to demon-
strate this result. We employ an approach, previously
discussed in [8] and [9], that takes advantage of a map-
ping of the problem onto the finite-temperature partition
function of a set of logarithmically interacting charges. In
this mapping, there is one charge for each system replica,
and correlations between the charges carry information
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regarding the overlap between the different replicas. Our
analysis here differs from that in the previous works [8, 9],
in that we apply a saddle point approximation that al-
lows us to demonstrate the irrelevance of the interac-
tions in the thermodynamic limit. This leads to a rig-
orous, ansatz-free evaluation of the replicated partition
sum that reveals for the first time the full simplicity of
the spherical spin glass thermodynamics.

The paper is organized as follows. The charge mapping
procedure is reviewed in the following section; in Sec. III
the saddle point “Mehta” approximation is applied that
allows for the isolation of the interaction terms; Sec. IV
contains a short discussion of our results. Finally, two
appendices are included. Appendix A contains an evalu-
ation relating to the interaction portion of the partition
function, and Appendix B relates our work to the pre-
dictions of the RS ansatz.

II. MAPPING TO ONE-DIMENSIONAL
INTERACTING CHARGE SYSTEM

We briefly review the charge mapping approach to the
replicated spherical spin glass partition function in this
section. For background material we refer the reader
to [1, 8, 9] and to the text by De Dominicis and Gia-
rdina [10]. Here, we shall take as our starting point the
replicated hamiltonian for the mean-spherical spin glass
model,

H =
∑
α

{
−
∑
ij

Jijs
α
i s
α
j + Λ

(∑
sα2
i − nN

)}
. (1)

The spins sαi above are continuous variables to be inte-
grated over, with i and j currently acting as site indices,
and α as a replica index. The coefficients of interaction
Jij for each pair of spins are random variables indepen-
dently distributed according to the probability density
function

P (Jij) ∝ exp[−
NJ2

ij

2J̄2
]. (2)

These coefficients are to be integrated over in order to
effect a disorder averaging. Finally, n is the number of
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replicas, N is the number of spins, and Λ is a Lagrange
multiplier that is used to enforce the mean-spherical con-
straint 〈

∑
i s

2
i 〉 = N . After integrating over the coeffi-

cients of interaction, one obtains

〈Zn〉J (3)

=

∫
s

exp
[β2J̄2

2N

∑
α,β

(
∑
i

sαi s
β
i )2 − βΛ(

∑
i,α

sα2
i − nN)

]
.

An auxiliary field is next introduced that decouples the
different lattice sites. This takes the form of a real, sym-
metric matrix Qαβ that we refer to in the following as
the overlap matrix:

〈Zn〉J

∝
∫
Q,s

exp
[ −N

2β2J̄2
Q2
αβ −Qαβ

∑
i

sαi s
β
i − βΛ

∑
i,α

sα2
i

]
=

∫
Q

exp
[
− N

2β2J̄2
Q2
αβ −

N

2
Tr log(βΛ +Q)

]
. (4)

Notice that the exponent is now a function of the eigen-
values of Q alone. This key observation was exploited
in [8] and [9] by switching from an integration over the
elements of Q to an integration over its eigenvalues and
eigenbasis. The Jacobian appropriate for real, symmetric
matrices separates into the form [2]

J(λ1, ..., p1, ...) = f(λi)g(pj), (5)

where f =
∏

(ij) |λi− λj | – with the product over all un-

ordered pairs of distinct indices, and the measure g(pj)
indicates an average over all eigenvector orientations.
Thus, the replicated partition function reduces to

〈Zn〉J

=

∫
λi

exp
[
−
∑
i

V (λi) + nβΛN
]∏

(ij)

|λi − λj |, (6)

where the potential is given by

V (λ) =
N

2
[log(βΛ + λ) +

λ2

β2J̄2
]. (7)

The eigenvalues λi may now be reinterpreted as loga-
rithmically interacting charges that are confined by the
one-dimensional potential V . The logarithmic interac-
tion was dropped in [8], but was taken into account in
[9], where the evaluation of (6) was carried out through
the analytic continuation of a result previously discussed
by Forrester and Witte [11]. This approach relied upon
the assumption that the logarithmic interaction in (6)
could be replaced by 2 log |λi−λj |. This assumption was
motivated, but not completely justified in [9]. We will see
below that this assumption follows from the fact that this
interaction does not affect the free energy whatsoever.

FIG. 1. Qualitative shape of the potential felt by the charges.
The potential is proportional to N , and the partition function
may be expanded about the local minimum near the origin.

III. MEHTA APPROXIMATION

The important observation required to simplify the
partition function (6) is that the potential V (λ) is pro-
portional to N . Thus, in the thermodynamic limit the
potential will be very steep, and all charges might be ex-
pected to sit near a global minimum. However, due to
the logarithmic term in the potential, the energy is un-
bounded from below near λ = −βΛ. If the charges are
allowed to access all states, they will be bound to the
region near −βΛ, and the partition function will diverge
– a consequence of the Λs2 term present in (1), which
results in instability for certain realizations of the Jij
when Λ is held fixed. In the corresponding analysis for
the hard-spherical model considered in [1], the charges
are required to always sit far from this divergence, how-
ever, and we can conclude that the physically appropriate
analytic continuation of (6) is that given by an expansion
about the local minimum near the origin, as depicted in
Fig. 1. We will see below that this simplification gives
free energy results identical to those obtained previously.

Applying a quadratic saddle point approximation

about the local minimum λ0 = β
2

[
− Λ +

√
Λ2 − 2J̄2

]
gives,

〈Zn〉J ∼ enβΛN−nV (λ0)

∫
λi

e−α
∑

(λi−λ0)2
∏
(ij)

|λi − λj |

= enβΛN−nV (λ0)α−
n
4 f(n), (8)

where the quadratic coefficient α is given by

α =
N

β2J̄2

√
Λ2 − 2J̄2

Λ +
√

Λ2 − 2J̄2
. (9)

All of the physical parameters of the model have been ex-
tracted in the second line of (8) through a rescaling of the
integration variables. What’s left is the function f(n),
the k = 1/2 Mehta integral [2]. This retains the logarith-
mic interactions, but now carries only an n dependence.
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As shown in Appendix A, this function is well-behaved
as n → 0, and it does not affect the free energy at large
N . Thus, despite the mutual proximity of the charges
at the saddle point, the interactions are irrelevant in the
thermodynamic limit, and f(n) can be dropped in (8).

The final step of the replica technique may now be ap-
plied. We differentiate 〈Zn〉J with respect to n to obtain
the disorder-averaged free energy,

〈logZ〉J = lim
n→0

∂

∂n
〈Zn〉J

= −
(
V (λ0) +

1

4
log(α)− βΛN

)
. (10)

The mean-spherical constraint, ∂
∂Λ 〈logZ〉J = 0, is then

Nβ =
1

2

J̄2(
Λ2 − 2J̄2

) (
Λ +
√

Λ2 − 2J̄2
)

+
N

2J̄2

{
Λ− [Λ2 − 2J̄2]1/2

}
. (11)

In the low temperature regime, with T < TC =
√

2J̄ [12],

Λ =
√

2J̄ −
√

2J̄

8N
(
1−
√

2J̄β
) +O(N−3/2), (12)

so that all three terms contribute and the constraint
equation is satisfied to O(N1). In the high temperature
regime, with T > TC , the second term in the constraint
equation is sub-dominant and we have

1

2J̄2

{
Λ− [Λ2 − 2J̄2]1/2

}
= β. (13)

This has one solution,

Λ = βJ̄2 +
1

2β
. (14)

The final disorder-averaged free energy expression, ob-
tained by plugging these solutions back into (10), is then
given by

f =

{
−
√

2J̄ + T
4 + T

2 log J̄√
2T
, for T ≤ TC

− J̄2

2T −
T
2 (1 + log 2), for T ≥ TC .

(15)

The result (15) is equivalent to those of [1, 8–10]. The
new and interesting feature of the present solution is that
it is characterized by a diagonal overlap saddle point, im-
plying that there are no inherent correlations introduced
between the different replicas of the system upon disor-
der averaging. This is apparent in the saddle point ex-
ponent in (8), which scales exactly as n for each positive
integer n. Because of this feature, Carleman’s condition

[13]
∑∞
n=1〈Zn〉

−1/2n
J = ∞ holds, which guarantees that

there is at most one distribution P (Z) (representing the
probability of obtaining a physical sample with partition
sum Z) that can generate the disorder-averaged, positive
integer moments of Z, which are given in (8). A delta
function distribution can generate these moments, and

we thus conclude that the partition sum must be delta-
distributed. That is,

P (Z) = δ
(
Z − e−βNf

)
, (16)

with f given by (15). This result can be heuristically
understood to follow from the self-averaging nature of the
eigenvalue distribution of the coupling matrix: Because,
in the thermodynamic limit, the eigenvalue distribution
of Jij approaches the semi-circle distribution for nearly
every realization of the disorder [2], the partition sum is
expected to be, in turn, sharply distributed. The above
analysis represents a rigorous demonstration that this is
so. The validity of (10) and the equivalence of quenched
and annealed averages for this model [14] (〈Zn〉J = 〈Z〉nJ)
both follow immediately from (16), which is our main
result. We show in Appendix B that similar conclusions
also hold for the hard-spherical model of [1].

IV. DISCUSSION

While we have shown here that the thermodynam-
ics of the spherical spin glass model are quite simple
(in the sense that quenched and annealed disorder av-
erages agree), the model exhibits many of the challeng-
ing characteristics that are associated with glassy sys-
tems (random couplings, a phase transition, and also
off-equilibrium dynamical behavior [10, 15]). Thus, al-
though the model is Gaussian, it would be wrong to
consider it trivial, and it may yet provide new insight
into the properties of disordered systems. In particular,
we note that the charge-mapping approach might be ap-
plied to other models, and then compared back to the
solution presented here, perhaps providing a new per-
spective of the mechanisms that cause RSB. We feel that
this prospect is a promising one, given the cleanness of
the exact, ansatz-free solution that has resulted here.
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Appendix A: Evaluation of Mehta integral in n→ 0
limit

In this section, we evaluate the n → 0 limit of the
Mehta integral that appears in (8). We use the fact that
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the Mehta integral reduces to [2]

1

(2π)n/2

∫
λi

e−
∑

i λ
2
i /2
∏
(ij)

|λi − λj |2k

=

n∏
j=1

Γ(1 + jk)

Γ(1 + k)

=
1

Γ(1 + k)
exp[

n∑
j=1

log Γ(1 + jk)]. (A1)

The sum in the exponent may be simplified via the for-
mula [16]

log Γ(z) =

∫ ∞
0

{
(z − 1)e−t − e−t − e−zt

1− e−t

}
dt

t
. (A2)

For k = 1/2, the sum becomes

n∑
j=1

log Γ(1 +
j

2
) (A3)

∼ n
∫ ∞

0

{
1

4
e−t − 1

(et − 1)
+

t

2(et − 1)(et/2 − 1)

}
dt

t
.

Each of these integrals diverge at small t. To evaluate
them, the lower limit is replaced by a constant ε, which
we will later take to zero at the end of the calculation.
After making this replacement, the first and third inte-
grals are easily evaluated. To evaluate the second, the
integrand is multiplied by a damping factor so that one
can subtract out the divergence at small t without then
obtaining a divergence at large t. We write∫ ∞
ε

1

(et − 1)

dt

t
= lim
α→0

∫ ∞
0

(
1

(et − 1)
− 1

t
+

1

2

)
e−αtdt

t

+

∫ ∞
ε

(
1

t
− 1

2

)
e−αtdt

t

−
∫ ε

0

(
1

(et − 1)
− 1

t
+

1

2

)
dt

t
.

(A4)

The second integral is easily evaluated and then ex-
panded. The third is evaluated by expanding the inte-
grand in a power series. The first is evaluated via the
first Binet log Γ expression [17],

log Γ(z) = (z − 1/2) log z − z +
1

2
log 2π

+

∫ ∞
0

(
1

(et − 1)
− 1

t
+

1

2

)
e−tz

t
dt. (A5)

Putting all this together and taking α→ 0 gives∫ ∞
ε

1

(et − 1)

dt

t
∼ γ

2
− 1

2
log π +

1

2ε
+

1

2
log ε. (A6)

Finally, combining with the other terms in (A3) gives

n∑
j=1

log Γ(1 +
j

2
) ∼ n

(
1

2
log π − 3

4
γ

)
. (A7)

Therefore, the n→ 0, k = 1/2 Mehta integral goes to

1

(2π)n/2

∫
λi

e−
∑

i λ
2
i /2
∏
(ij)

|λi − λj |2k

∼ 1

Γ(3/2)

{
1 + n

(1

2
log π − 3

4
γ
)}

+O(n2), (A8)

which is well-behaved.

Appendix B: Hard-spherical model analysis

The absence of replica correlations in the mean-
spherical spin glass (as seen above) runs counter to the in-
tuition one obtains from the hard-spherical model, which
is characterized by a strictly off-diagonal overlap. One
might wonder if it is the presence of variable diagonal
elements in the mean-spherical system that results in its
simple thermodynamics, and whether the hard-spherical
model, being further constrained, might exhibit a more
complicated behavior under disorder averaging. We show
here that this is not the case: In contrast to a naive in-
terpretation of the RS solution, quenched and annealed
averages also agree within the hard-spherical system.

Following [1], the analysis for the hard-spherical spin
glass begins similarly to that above. We write,

〈Zn〉J =

∫
s,Λ

exp
[β2J̄2

2N

∑
α 6=β

(
∑
i

sαi s
β
i )2

−βΛ(
∑
i,α

sα2
i − nN) +

nNβ2J̄2

2

]
, (B1)

where Λ is now formally to be integrated over in or-
der to enforce the hard-spherical constraint. Applying a
Hubbard-Stratonovich transformation once again results
in an exponent that depends only on the eigenvalues of
Qαβ , but this is now constrained to be off-diagonal,

〈Zn〉J =

∫
Q,Λ

exp[
nNβ2J̄2

2
+ nNβΛ−

∑
i

V (λi)].

(B2)

In the thermodynamic limit, the partition sum (B2)
will be dominated by those configurations that minimize
the exponent. To evaluate the sum, we again switch to
an integration over the eigenvalues and eigenvectors of
Qαβ . The integration over eigenvalues is now subject to
the traceless constraint, and the orientation averages are
further restricted so as to maintain an off-diagonal cou-
pling matrix. The orientation averages do not affect the
free energy here [18]. Generalizing slightly, we consider
the partition function subject to the constraint that the
eigenvalues sum to s, writing (with terms independent of
the λi temporarily suppressed)

〈Zn(s)〉 ≡
∫
λi

δ(
∑
i

λi − s) exp[−
∑
i

V (λi)]. (B3)
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The inverse Laplace transform of 〈Zn(s)〉 is given by

〈Y n(t)〉 =

∫
λi,s

〈Zn(s)〉est

=

∫
λi

exp[−
∑
i

{
V (λi)− tλi

}
]. (B4)

The eigenvalue integrations are now independent, and
they are free to each sit at the same optimal saddle point
location where

∂λV λ0(t) = t. (B5)

This effectively sends the V to its Legendre transform.
The partition sum is obtained by inverting the Laplace
transform with s taken to zero,

〈Zn〉J =

∫
λi,Λ,t

〈Y n(t)〉et(s→0) (B6)

= min
Λ,λ

exp

[
n
{Nβ2J̄2

2
+NβΛ + V − λ∂λV

}]
.

It is important to note that the exponent is actually to be
minimized here, in contrast to most spin glass problems
where the physical solutions are obtained by maximizing
the free energy in the n→ 0 limit. The n dependence is
trivial in this model, and consequently, there can be no
peculiarities in the analysis for any value of n. Carrying
out the minimization procedure is straightforward, and
the free energy expressions (15) are once again obtained.

Importantly, the exponent in (B6) scales linearly with n:
Both the mean and hard-spherical systems satisfy equiv-
alence of quenched and annealed disorder averages.

We can now relate the exact solution to that obtained
via the RS ansatz. The RS ansatz sends each off-diagonal
element of Qαβ to Q. The eigenvalues of the resulting
matrix are then given by{

−Q (n− 1)-fold degenerate

(n− 1)Q 1-fold degenerate.
(B7)

Plugging into (B2) gives∑
i

V (λi) = (n− 1)V (−Q) + V ((n− 1)Q)

= n
{
V (−Q) +QV ′(−Q)

}
+O(n3), (B8)

which agrees to O(n) with the exact saddle point upon
sending Q→ −Q. However, the corrections at higher or-
ders in n in (B8) are not consistent with our exact anal-
ysis. These corrections relate to higher order cumulant
averages of the free energy with respect to the disorder
averaging. To resolve this discrepancy, we have evaluated
the second order fluctuations of the free energy about the
replica symmetric saddle point, and have found that the
RS saddle is stable only in the n → 0 limit [19]: The
RS ansatz fails at finite n, and it can only be used to
evaluate the first cumulant average of logZ.
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