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ABSTRACT 

 

 We report a mechanism that self-assembly propagates spontaneously in a continuum 

medium, enabling the delivery of local order information to distance. In a large stable system a 

locally self-assembled structure as a precursor destabilizes its surrounding areas through a dipole 

interaction. The newly formed structures inherit the same order information from the precursor 

and further activate the self-assembly of their neighbors. This process causes spatial extension of 

self-assembly and replication of the order, producing extremely long-range ordered superlattice 

without defects. 
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I. INTRODUCTION 

Self-assembly, the spontaneous organization of components into ordered patterns or 

structures[1], is ubiquitous in nature. Inspired by its elegance, researchers are exploring the 

concept to form useful structures for advanced materials[2], electronic nano-devices[3] and solar 

cells[4].  Depending on the building blocks, self-assembly systems can be categorized into two 

types: discrete and continuum. A discrete system utilizes pre-fabricated building blocks such as 

nanoparticles[5, 6] and nanorods[7, 8].  These components, with fixed sizes and shapes, 

aggregate into ordered crystal-like structures. In contrast, a continuum system exploits the 

spontaneous formation of nanoscale domains. The domain size and shape are not pre-fabricated, 

but emerge during the self-assembly process. A continuum system offers several advantages. For 

instance, domains and their patterns self-assemble simultaneously, so that there is no need to pre-

synthesize the building blocks. A significant degree of process flexibility and control can be 

achieved. The approach may be applied to diverse systems, such as microphase separation of 

block-copolymers[9, 10], spinodal decomposition of binary monolayers [11, 12] and ordered 

pattern of organic molecules[13, 14]. 

 While self-assembly holds great potential for nanofabrication, people have yet to find a 

general and intrinsic approach to effectively control the appearance of defects in the formed 

structures. Homogeneous phase separation in a continuum self-assembling system is the origin of 

defects, which are prone to appear when multiple grains emerging at different locations meet. 

Top-down approach has been investigated to help reduce defect formation by regulating the 

orientations of grains though physical masks[15, 16] or templates of external fields [10, 17, 18]. 



3 

 

In this paper, we show that extremely long-range ordered nanostructures can form without any 

external assistance by spontaneous propagation of self-assembly. 

Propagation phenomena are widely observed in nature and human activities. Examples 

include solidification[19], tumor growth[20], frontal polymerization of actin[21], chemical chain 

reaction[22], to population dynamics[23]. These phenomena can usually be described by the 

general diffusion-reaction model[24] with corresponding reaction terms. Moreover, these 

processes usually begin with a stage small in extent and then propagate over a large area. In 

contrast, self-assembled patterns are usually formed large in extent with no propagation.  

The question we aim to address is: can self-assembly propagate? Is it possible for a 

system to self-assemble locally to form a regular domain pattern, and then replicate this pattern 

spontaneously to distance? We envision a mechanism as below. Consider a homogeneous system 

stable against small perturbation so that self-assembly does not occur spontaneously. Upon 

activation of self-assembly in a local region, the formed ordered pattern may produce sufficient 

destabilizing effect through long-range interaction to trigger self-assembly in its immediate 

surrounding areas. The newly formed structures inherit the same order information and further 

destabilize their neighbors. The chain reaction may propel the propagation of self-assembly into 

distance and generate an extreme long-range order. 

There are few studies on the propagation of self-assembly on its strict definition. Some 

research has considered self-assembly in the loose sense, which refers to the aggregation of 

building blocks without forming any ordered pattern. For example, propagating aggregation 

waves were demonstrated in an organosilane monolayer system[25]. The organic molecules 

aggregated when the concentration was higher than a critical value. The propagation was driven 
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by concentration gradient. In another experimental study, the propagation of patterns in 

Langmuir monolayer at liquid-air interface was shown[26]. A local disturbance was driven by a 

constant external light excitation and the propagation was maintained via elastic forces. 

Although propagation phenomenon was reported in these systems, there were no explicit ordered 

patterns formed. We show that the propagation of self-assembly can carry ordering information 

and transmit it through intrinsic interaction between domains. 

 

II. MODEL 

Many continuum self-assembly systems demonstrate similar domain patterns, which 

suggests a possible universal theoretical framework.  Here we consider a representative system 

with dipole-type interaction, which can be physically originated from electrostatic[27], 

magnetic[28] or elastic[29, 30] interactions. Experiments have shown periodic dots or other 

domain patterns in these self-assembly systems, with domain size in the range of 1-100nm[11].  

Consider a thin film of two atomic species A and B. Define ( )xC  as the position 

dependent concentration fraction, C =0 for pure A and C =1 for pure B. A homogeneous film 

may phase separate to form A-rich and B-rich domains. The free energy involves short-range 

atomic interaction and long-range interaction between domains, 

namely 2 2 (( ) / 2 ,) ( ) ( )
A A AA

C CG f C dA h dA dAdg C Aμ
′

′ ′ ′= + −∇∫ ∫ ∫ ∫ x x x x . The first term is 

relevant to phase separation, where ( )f C  is the chemical energy per unit area, which represents 

the excess energy of mixing. The second term is the phase boundary energy, which prefers a 

larger domain size. The material parameter h is a positive constant. The third term captures the 
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long-range nature of dipole-dipole interaction, where 3( ),x x x xg −= ′−′  and μ  is the dipole 

density difference between pure A and B domains. The negative sign comes from Legendre 

transformation for a fixed average concentration. This term prefers a smaller domain size. The 

two actions compete and determine the domain size. The reduction of the free energy drives 

diffusion and leads to pattern formation. Take elastic dipole interaction induced by surface stress 

as an example, the normalized diffusion equation is [29] 

 2 22C df C QI
t dC

∂ ⎡ ⎤= ∇ − ∇ +⎢ ⎥∂ ⎣ ⎦
.  (1)  

Here Q  is a dimensionless number scales with the ratio of interface width and domain size. I is 

an area integration over the substrate surface characterizing the long-range interaction, namely 

 
( ) ( )

( ) ( )
3/22 2

1
C Cx y

I d d
x y

ξ η
ξ η ξ η

π ξ η

∂ ∂− + −
∂ ∂= −

⎡ ⎤− + −⎣ ⎦
∫∫ , (2) 

where ξ  and η  are coordinates and variables of integration. 

The condition of self-assembly can be obtained from linear stability analysis. Assume a 

regular solution ( ) ln (1 ) ln(1 ) (1 )f C C C C C C C= + − − + Ω − , where Ω  is a dimensionless 

number measuring the bond strength relative to the thermal energy. The curve ( )f C  is convex 

and prefers a homogenous film when 2Ω < . Consider a perturbation of the form 

0( , ) ( )sin( )C x t C q t kx= + , where 0C  is the average concentration. The solution of Eq. (1) is 

0
tq q eα= , where 0q  is the initial amplitude and [ ]2 2

0 0[ 1/ (1 ) 2 2 2 ]k C C k Qkα = − − + Ω − + . With 

0α ≤  for all k , the perturbation amplitude q decays with time so that a homogeneous film is 
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stable against small perturbation. This condition corresponds to 0 LC C≤  or a symmetric case of 

0 HC C≥ , where ( )1 1 / 2LC s= − − , ( )1 1 / 2HC s= + − , and ( )28 / 4s Q= + Ω . Self-assembly 

occurs for 0L HC C C< < . With Ω=1.3 and Q=1.8 we have 0.386LC =  and 0.614HC = . 

 

III. RESULTS AND DISCUSSION 

Unlike common study of self-assembly in the regime of 0L HC C C< < , here we focus on 

the stable regime of 0 LC C≤ . Figure 1 demonstrates how self-assembly can propagate under 

such a condition. We performed fully non-linear simulation of Eq. (1) in Fourier space with 

periodic boundary directions. The initial condition was set to fluctuate randomly within 0.001 

from an average. We took Ω=1.3 and Q=1.8. The film was initially homogeneous with an 

average concentration of 0C =0.38 (below LC ), which was stable against small perturbation. We 

introduced a small initiation zone at the left edge by increasing its local concentration to 0.42 

(above LC ) for self-assembly to occur. The width of the rectangular initiation zone is roughly the 

diameter of a self-assembled dot. This ensures that an array of dots is aligned along the y axis. In 

experiments we envision that this process can be achieved by local mass deposition. The size of 

the initiation zone may be as large as a single grain so that no defects are introduced. A typical 

grain contains about 10 dots across its diameter. Upon pattern formation, the nearby 

homogeneous region was disturbed and became unstable. Self-assembly propagated and 

generated a uniform lattice of dots in the entire film without any defects. To eliminate the 

boundary effect, the presented results were cropped from a larger calculation cell of 2048 48× . 

We placed the initiation zone in the middle of the stripe so that self-assembly actually 
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propagated symmetrically toward two sides. The right 512 48×  was shown in Fig. 1. The 

intriguing propagation poses interesting questions. Why does self-assembly propagate and what 

determines the rate? How can we control the propagation process?  

 While we started self-assembly in a small initiation zone by giving it a concentration 

higher than LC  , this amount had negligible effect on the average concentration of the entire 

film. Thus the propagation was not due to the long-range diffusion of higher concentration. We 

believe that the self-sustained propagation relies on the interaction between the ordered structure 

in the propagation front and the homogenous region immediately ahead of it, which we call 

affected zone. Equation (2) shows that the I term is negligible when the film is homogeneous 

with small random noise. In contrast, the self-assembled pattern in the propagation front induces 

a dipole-type I field that is in phase with the pattern and extends into the affected zone, as shown 

in Fig. 1. How this field triggers self-assembly propagation is related to the free energy. 

For a hexagonal pattern of dots lining up along the y direction with a lattice space of d, as 

shown in the inset of Fig. 2a, the concentration field can be represented by   

 
0 0 0

,

2 2( , ) cos cos
3

2 2cos cos
3

m n
m n

mn
m n

x yC x y C q m q n
dd

x yq m n
dd

π π

π π

⎛ ⎞ ⎛ ⎞= + + ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠
⎛ ⎞ ⎛ ⎞+ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

∑ ∑

∑                 
 (3) 

The summations run from 1 to ∞. Minimization of the free energy in terms of d gives the 

equilibrium size, 4 /d S QHπ= and free energy per area, 2 2 / 8g L Q H S= − . Here 

2 2 2 2 2 2 2
0 0 ,

/ 3 1/ 2 ( / 3 )m n mnm n m n
S m q n q m n q= + + +∑ ∑ ∑ and 

2 2 2 2 2
0 0 ,

/ 3 1/ 2 / 3m n mnm n m n
H mq nq q m n= + + +∑ ∑ ∑  depend only on the geometry, and not 
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the scale, of the patterns, while 
1/2 1/2

1/2 1/2
[ ln (1 ) ln(1 ) (1 )]L C C C C C C d dξ η

− −
= + − − + Ω −∫ ∫ , 

/ 3x dξ = , /y dη = . We further minimize g with respect to 0mq , 0nq , and mnq by the 

conjugate-gradient method to obtain the free energy per area of a hexagonal lattice of dots, as 

shown in Fig. 2a. For a homogenous film the free energy density is simply L evaluated at 0C .  

The hexagonal pattern has lower energy than a homogenous film when the concentration is 

higher than a critical value, DC  . The range between DC and LC  creates a special bistable state, 

where a homogenous film is stable against small perturbation yet the hexagonal pattern has lower 

energy. The concentration 0C  in Fig. 1 falls in this bistable state. As illustrated in Fig. 2b, self-

assembly from a homogenous film (H) to the dot pattern (D) will reduce the free energy by 

H Dg −Δ , but it needs help to first overcome an energy battier, bgΔ .  

The ordered pattern in the growth front helps to eliminate the energy battier in the 

affected zone by the I field, which modulates in y and decays quickly in x. We approximate the 

field by ( , ) cos(2 / ) kx
a ll

I x y a ly d eπ θ −= +∑ , where la  is amplitude, θ is the phase angle relative 

to the perturbation to be examined in the affected zone and k is a decay parameter. Due to its 

proximity to an ordered pattern, a homogenous film perturbed in the affected zone by the form of 

Eq. (3) has an additional free energy per area,  

 
( )

3

0 2
(1 ) cos

2 3 1 2 / 3

kd
mn

a n n
n m

qe Qg a q
kd m kd

θ
π

− ⎡ ⎤
− ⎢ ⎥Δ = − +⎢ ⎥+⎢ ⎥⎣ ⎦

∑ ∑ . (4) 

The negative agΔ promotes the destabilization of a homogenous film by more energy reduction. 

In addition, agΔ  minimizes at 0θ = , suggesting that any emerging pattern will prefer to be in 
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phase with aI or the existing pattern in the growth front. This effect explains why the subsequent 

dot pattern follows the same orientation and extremely long-range ordered lattice can form. The 

term agΔ  is also proportional to the perturbation amplitudes 0nq and mnq , suggesting more energy 

reduction as the pattern grows. Self-assembly in the affected zone occurs when agΔ removes the 

energy barrier. Then the following propagation appears like an autocatalytic process transitioning 

from a homogenous film to a dot pattern, or DH D⎯⎯→ . 

The propagation process may be accompanied by a significant gradient-driven long-range 

diffusion if the average concentration of the dot pattern, pC , is quite different from 0C . This 

situation may happen since a dot pattern can reach lower free energy if it raises its average 

concentration above 0C , as shown by the monotonic curve in Fig. 2a. To maintain an overall 0C , 

the homogenous film ahead of the growth front has to reduce its average concentration, which 

increase its free energy. After a balance is reached, a region with an average concentration 

aC ( 0aC C< ) is formed ahead of the growth front, as illustrated in the inset of Fig. 3. Then the 

concentration gradient drives long-range diffusion from the remote area in the homogenous film 

to the affected zone by a diffusion distance d. The lower aC  in the affected zone makes it more 

stable since it is further from LC . 

The long-range diffusion is necessary to sustain the pattern growth when it maintains an 

average concentration higher than 0C . The accumulated concentration relocation to the dot 

pattern increases at it expands. Thus the diffusion distance or the front width, d, increases with 

the propagation of self-assembly. The diffusion rate reduces as a result of the decreasing 
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concentration gradient, 0( ) /aC C d− , which slows down the propagation of self-assembly. This 

trend can be clearly observed through the decreasing slope of the Q=1.7 curve in Fig. 3. We have 

found an effective approach to control the propagation rate by tuning how much it is limited by 

long-range diffusion. The triggering I field from the growth front affects how fast self-assembly 

emerges in the affected zone, while the long-range diffusion affects how fast the mass transport 

is. Thus the propagation would be faster for a larger triggering field and minimal requirement of 

long-range diffusion, which translate to larger Q and smaller Ω. The ( )f C  curve is more steep 

for smaller  Ω, thus makes it more energetically unfavorable for a uniform film to decrease its 

concentration for a higher average concentration of the dot pattern. Therefore the dot pattern 

would maintain an average concentration close to 0C  and does not need much long-range 

diffusion during propagation. As shown in Fig. 3, the propagation slows down significantly with 

Q=1.7, Ω =1.4, while keeps an almost constant rate with Q=1.8, Ω =1.3. Generally speaking, we 

can classify the propagation of self-assembly into two modes: long range diffusion-limited and 

activation-limited. The former situation is similar to many frontal propagations [21, 25, 31], 

when the fronts move forward at the cost of background concentration. For actin polymerization, 

the propagation stops automatically when the surrounding concentration decreases to a critical 

value. To prevent the cease of propagation, one could manually keep the background 

concentration invariant by constantly adding reactive materials [25]. The latter involves little or 

no long-range diffusion, and is determined only by the local transport for concentration 

modulation. Without the requirement of the mass replenishment, this scenario is unique and 

preferred for potential large-scale nanofabrication. Propagation can also happen in two-
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dimensions, as demonstrated in Fig. 4. Starting with a circular initiation zone, the hexagonal 

pattern quickly expands to the entire area. Defect-free patterns are produced in a high output 

manner. 

 In real systems, temperature and fluctuation can affect the propagation. With increasing 

temperature, a higher propagation rate is generally expected due to higher mobility. Thermal 

fluctuation usually causes the broadening of the front width in a typical propagating system[32]. 

To consider the fluctuation effect, a random “white noise” term ( , )x tε  can be added to the right 

hand side of Eq. (1). This random term obeys the fluctuation dissipation theorem so that 

( , ) ( , )t tε ε ′ ′x x  scales with ( ) ( )bk T t tδ δ′ ′− −x x , where bk  is Boltzmann’s constant, and T is the 

absolute temperature [33]. The fluctuation is small compared to the average concentration, and 

therefore has minimum effect on the equilibrium size of the domains, as can be seen from the 

derived dispersion relation ( )kα . In our system the dipole interaction dominates at the 

propagation front, thus the fluctuation would not significantly affect the growth front width.  

It should be noted that similar propagation phenomena were reported in reaction-

diffusion experiments [34]. The patterns in this paper are similar to Turing patterns in the Gray-

Scott (GS) reaction diffusion model [35] with parameter setting allowing for self-replicating 

patterns of spots. The GS model also allow for a metastable and spatially homogeneous state 

where local perturbation can trigger production of new spots that spreads out and eventually fills 

the entire space. A difference from this paper is that the GS system does not have long range 

interaction. The dots are generated in the fashion of cell division due to the local reaction, which 

renders the self-replicated spots lacking intrinsic size uniformity and long-range order. In 
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contrast, the long-range interaction in this paper prescribes an intrinsic size scale that ensures 

highly uniform and ordered patterns. 

 

IV. CONCLUSION 

In summary, we proposed a mechanism that self-assembly can propagate spontaneously 

and deliver ordering information to distance. This mechanism utilizes the ordered pattern in the 

growth front to trigger self-assembly in the affected zone. Two propagation modes: diffusion-

limited and activation-limited, were identified. We showed that the propagation can produce 

extremely long-range ordered superlattice. While a representative system with dipole-type 

interaction was considered, we envision that the mechanism may be applicable to a wide range of 

self-assembly systems. 
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Figure Captions 

 

FIG. 1.  Spontaneous propagation of self-assembly in a homogenous film. (a) The propagation 

was initiated by a local deposition at the left edge. The locally self-assembled structure as a 

precursor destabilized its initially stable surrounding areas through a dipole-type interaction. The 

newly formed structures inherited the same order information from the precursor and further 

activated the self-assembly of their neighbors. This process caused spatial extension of self-

assembly and replication of the order, producing a long-range ordered superlattice without 

defects. (b) Magnified concentration field.  (c) The corresponding I field is in phase with the 

pattern. Q=1.8, Ω=1.3. 

FIG. 2.  (a) Free energy of homogenous film and dot pattern. The hexagonal dot pattern has 

lower energy when its average concentration is higher than a critical value, DC  . The range 

between DC and LC  is a bistable state, where a homogenous film is stable against small 

perturbation although the dot pattern has lower energy. (b) Illustration of free energy change 

during perturbation growth. The ordered pattern in the growth front removes the energy barrier, 

bgΔ , in the affected zone, causing a homogenous film (H) to self-assemble into a dot pattern (D). 

Q=1.8, Ω=1.3.  

FIG. 3.  Growth of dot superlattice by propagation of self-assembly (superlattice length 

normalized by the diameter of a dot). The upper curve shows activation-limited propagation. 

Q=1.8, Ω=1.3.  The lower curve shows long range diffusion-limited propagation. Q=1.7, Ω=1.4. 

The inset illustrates propagation accompanied by long-range diffusion. The average 
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concentration of the dot pattern, pC , is higher than 0C , while the average concentration in the 

affected zone, aC , is less than 0C  . The concentration gradient drives long-range diffusion from 

the remote area in the homogenous film to the affected zone by a diffusion distance d. 

 

FIG. 4. Propagation of self-assembly in two-dimensions. Q=1.8, Ω=1.3. 
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