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Abstract
We analyze the non-equilibrium steady states (NESS) of a one dimensional harmonic chain of

N atoms with alternating masses connected to heat reservoirs at unequal temperatures. We find

that the temperature profile defined through the local kinetic energy T (j) ≡ < p2j >/mj , oscillates

with period two in the bulk of the system. Depending on boundary conditions, either the heavier

or the lighter particles in the bulk are hotter. We obtain explicit integral expressions for the bulk

temperature profile and steady state current in the limit N →∞. These depend on whether N is

odd or even. We also study similar temperature oscillations in the NESS of systems with noise in

the dynamics. These die out as N →∞.
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I. INTRODUCTION

The study of non-equilibrium steady states (NESS) of macroscopic systems in contact

with heat baths at different temperatures has a long history [1–3]. There are no known

analytic solutions for interacting Hamiltonian systems, except for harmonic crystals. When

the atoms in the crystal all have the same mass, this NESS can be obtained explicitly

[4, 5]. It gives a uniform "temperature", i.e 〈p2j〉/m, in the bulk of the system. It also gives

heat currents that are independent of the size of the system corresponding to the fact that

phonons can travel freely through the crystal. This behavior of the heat current is also true

for harmonic systems with periodic arrangement of masses [6, 7]. It was therefore surprising

when numerical simulations of the NESS showed that the bulk temperature profile of a

chain with alternating masses oscillates between two values and that these oscillations did

not seem to decay on increasing the system size [1].

Here we present analytical solutions for the temperature profile and current in the

alternate-mass chain connected to Langevin type heat baths, which prove that the oscil-

lations persist in the N → ∞ limit. Only for very special choice of parameter values, can

the oscillations be made to vanish. Surprisingly, the values of the oscillating temperature

and of the current depends on whether N is even or odd even in the asymptotic system size

limit. An oscillating temperature profile in a thermodynamically large system is surprising

when we think from the standard view-point of heat flow occuring from hot to cold regions.

However this expectation will be true only in systems exhibiting local thermal equlibrium

where one can define a meaningful thermodynamic local temperature. This is the case for

a system with normal diffusive heat transport, though a microscopic derivation of the con-

ditions when this is achieved is in general difficult [2]. In the study of systems in NESS

it is natural to define a local “temperature” from the mean local kinetic energy and this is

what we do here — the absence of local equilibrium in the harmonic chain allows for the

“temperature” profile to show the unexpected oscillatory feature.

We note here that the study of one dimensional models with alternating masses has a

long history [8–16]. The alternating mass harmonic chain which is the focus of the present

article was first studied in [6]. An exact explicit expression for the current in the case of a

chain with an even number of sites was given in [7] and then in [14]. It was noted in [14] that

the current is proportional to (m
M

), the ratio of the light and heavy masses when m
M
→ 0.

2



This would make the current smaller in the alternating mass chain than in a mono-atomic

chain with only particles of mass m.

Temperature oscillations have earlier been observed in the steady state of the alternate

mass hard particle gas [15] and in the Fermi-Pasta-Ulam chain [16] but in these cases the

oscillations decay with system size. The case of temperature oscillations persisting for infinite

system sizes is thus special to harmonic systems where heat is transmitted by non-interacting

phonons. It is expected that introduction of phonon-phonon interactions will in general make

things different. Here we investigate this issue by considering alternate-mass harmonic chains

where the dynamics is stochasticlly perturbed by noise which either conserves both energy

and momentum or conserves only energy. Finally to consider the effect of dimensionality,

we present results from simulations of two-dimensional strips of alternate mass harmonic

systems.

The plan of the paper is as follows. In Sec. (II) we define the precise model and present

some of the numerical results for small finite systems. In Sec. (III) we present the analytic

and numerical results in the limit N → ∞. In Sec. (IV) we present simulation results on

temperature profiles in harmonic chains with noisy dynamics. In Sec. (V) we summarize

our results and give a physical explanation of the results. The details of our analytical

calculations are given in Appendix (A).

II. MODEL AND NUMERICAL RESULTS FOR SMALL SYSTEM SIZES

We consider a one-dimensional chain of N particles labeled i = 1, . . . , N that are placed

in an external harmonic potential (with spring constant ko) and which are interacting with

each other through a nearest neighbor harmonic potential (with spring constant k). Let the

vectors q = (q1, q2, . . . , qN) and p = (p1, p2, . . . , pN) denote respectively the displacement

and momenta of the N particles of the chain. The Hamiltonian for the 1D chain we consider

is given by:

H =
1

2

i=N∑
i=1

p2i /2mi +
1

2

N+1∑
i=1

k(qi − qi−1)2 +
1

2

N∑
i=1

koq
2
i (1)

=
1

2
p.M−1.p+

1

2
q.Φ.q , (2)

with q0 = qN+1 = 0, and in the second line we have used a compact notation with M defining

the mass matrix and Φ the force-matrix. The ends of the chain are coupled to Langevin
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reservoirs at temperatures TL and TR. The equations of motion of the system is given by:

miq̈i = −
∑
j=1,N

Φi,jqj + δi,1[−γLq̇1 + (2γLTL)1/2ηL] + δi,N [−γRq̇N + (2γRTR)1/2ηR] , (3)

for i = 1, 2, . . . , N , where ηL, ηR are Gaussian white noises chosen from distributions with

averages 〈ηL(t)〉 = 〈ηR(t)〉 = 0 and correlations 〈ηL(t)ηL(t′)〉 = 〈ηR(t)ηR(t′)〉 = δ(t− t′) and

γL, γR are dissipation constants ( Note that the derivation in [6] uses a different convention

for the reservoir coupling. The dissipative forces on the end particles were there taken

to be −λ1p1 and −λNpN and so their coupling constants are related to ours as λ1m1 =

γL, λNmN = γR ). We will be interested in the case where the masses mi alternate between

two values ma and mb on successive sites.

Corresponding to the Langevin equations in Eq. (3) it is straightforward to write the

Fokker-Planck equation to describe the evolution of the phase space distribution µ(x, t),

x = (q1, · · · , qN , p1, · · · , pN). Following standard methods [18] it can be shown that the

Fokker-Planck equation is given by:

∂µ

∂t
+

N∑
i=1

[
pi
mi

∂µ

∂qi
−

N∑
j=1

Φi,jqj
∂µ

∂pi

]
=
∑
i=1,N

γi
mi

∂

∂pi

[
piµ+ Timi

∂µ

∂pi

]
, (4)

where the right hand side of Eq. (4) describes the interaction of the end particles with the

heat baths and T1,N = TL,R and γ1,N = γL,R. Let us define the 2N × 2N matrix

a =

 0 −M−1

Φ M−1Γ

 , (5)

where Γ is a N×N diagonal matrix with Γij = γiδij(δi1 +δiN) . We also define the 2N×2N

matrix d with elements dij = 2γδij(TLδi,N+1 + TRδi,2N). It is known that the steady state

distribution is Gaussian [4] and given by

µs = (2π)−NDet[b]−1/2exp(−1

2

2N∑
i,j=1

b−1ij xixj) ,

where the covariance matrix b with elements bij =< xixj > satisfies

a.b + b.a† = d . (6)

The solution of the linear equations, Eq.(6), gives us all the correlations bij and hence the

temperature profile Ti =< p2i > /mi = bN+i,N+1/mi , and the current, J = k〈(qi+1 −
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Figure 1: (Color online) Temperature profiles for (a) system with even number of sites N = 32, 64,

and with γL = γR = 1.0 and (b) system with odd number of sites N = 33, 65, and with γL =

1.5, γR = 0.5. Other parameters were set to ma = 0.75,mb = 0.25, k = 1, TL = 1.5, TR = 0.5.

The mass of the first particle is always taken to be ma. Note that in (a), the heavier particles

are hotter, while in (b), the lighter particles are hotter. The horizontal dashed lines indicate the

analytic predictions for N →∞, from Eqs. (11,12).

qi)pi/mi〉 = k(bi+1,N+i−bi,N+i)/mi. In the equal mass case the covariance matrix for N sites

can be obtained in a fairly explicit form [4]. This seems to be difficult for the alternate mass

case. However the matrix equations can be solved numerically for small system sizes and we

can obtain accurate results for the temperature profile and current for these system sizes. In

Fig. (1) we show typical temperature profiles for alternate mass chains with even and odd

number of sites for particular choices of parameter values and N . We see oscillations in the

temperatures of the particles in the bulk in both the even and odd cases, and the amplitude

of the oscillations does not seem to change with system size. In the next section, we will

obtain expressions for the current and the bulk temperatures and show that the temperature
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ocscillations persist in the N →∞ limit.

III. ANALYTICAL AND NUMERICAL RESULTS IN N →∞ LIMIT

To obtain analytic results in the limit N →∞ we follow [6] and express the covariances in

terms of integrals over frequencies. The integrands involve elements of the following Green’s

function:

G+ = [−Mω2 + Φ− iωΓ]−1 . (7)

Here we are interested in the temperature and current and these are given by [6, 17]

Ti =
1

π
mi

[
γLTL

∫ ∞
−∞

dω ω2 |G+
i1(ω)|2 + γRTR

∫ ∞
−∞

dω ω2 |G+
iN(ω)|2

]
, i = 1, 2, . . . , N

J =
γLγR(TL − TR)

π

∫ ∞
−∞

dω ω2 |G+
1,N(ω)|2 . (8)

We rewrite the above expressions in the following form.

Ti = Ii TL + Îi TR ,

J =
γR
mN

(TL − TR)IN ,

where the

Ii =
miγL
π

∫ ∞
−∞

dω ω2 |G+
i1(ω)|2 , Îi =

miγR
π

∫ ∞
−∞

dω ω2 |G+
iN(ω)|2 . (9)

are independent of the temperatures TL and TR. Now we note that for the equilibrium case

TL = TR, we must have the same temperature at all sites, i.e Ti = T , and hence deduce the

equality Ii + Îi = 1. Using this fact and defining TL = T + ∆T/2, TR = T −∆T/2 we can

rewrite the equation for the temperature profile in the following form:

Ti = T + (Ii − 1/2)∆T = TR + Ii∆T. (10)

We thus only need to evaluate the integral Ii, in the limit N →∞.

So far our treatment has been quite general. We now focus on the alternate mass case.

We define the first mass to be m1 = ma and the next to be mb and so on. Thus odd sites

have mi = ma and even sites, mi = mb. For simplicity we only consider the unpinned

case ko = 0. It is straightforward to extend the calculations to the case ko 6= 0. Without

loss of generality we can choose time and energy scales so that k = 1 and ma + mb = 1.
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We give the details of the calculation in the appendix. The main result is that Ii can be

written as a sum of two parts, one coming from the acoustic modes of the system and one

from the optical modes. We note that the mode frequencies for the acoustic and optical

bands are respectively given by: ω2
− = (1/mamb)[1−φ(q)] , ω2

+ = (1/mamb)[1 +φ(q)], where

φ(q) = [1− 2mamb(1− cos q)]1/2 , , 0 ≤ q ≤ π. The various expressions depend on whether

N is even or odd and for these two cases corresponding to superscript E,O respectively, we

get:

Case (1)- N = 2L, L→∞:

TEo = T + ∆T

[∫ π

0

dq
γLma

2πφ(q)

(mbω
2
+ − 2)2 + 4γ2Rω

2
+cos2(q/2)

|2(γL + γR)− (maγR +mbγL)ω2
+| (1 + γLγRω2

+)

+

∫ π

0

dq
γLma

2πφ(q)

(mbω
2
− − 2)2 + 4γ2Rω

2
−cos2(q/2)

|2(γL + γR)− (maγR +mbγL)ω2
−| (1 + γLγRω2

−)
− 1

2

]
,

TEe = T + ∆T

[∫ π

0

dq
γLmb

2πφ(q)

4cos2(q/2) + γ2Rω
2
+(maω

2
+ − 2)2

|2(γL + γR)− (maγR +mbγL)ω2
+| (1 + γLγRω2

+)

+

∫ π

0

dq
γLmb

2πφ(q)

4cos2(q/2) + γ2Rω
2
−(maω

2
− − 2)2

|2(γL + γR)− (maγR +mbγL)ω2
−| (1 + γLγRω2

−)
− 1

2

]
,

JE = ∆T

[∫ π

0

dq
γLγR
πφ(q)

sin2q

|2(γL + γR)− (maγR +mbγL)ω2
+| (1 + γLγRω2

+)

+

∫ π

0

dq
γLγR
πφ(q)

sin2q

|2(γL + γR)− (maγR +mbγL)ω2
−| (1 + γLγRω2

−)

]
, (11)

where the subscript o refers to odd sites and e to even sites.

Case (2)- N = 2L+ 1, L→∞.

TOo = T + ∆T

[∫ π

0

dq
γLma

2(γL + γR)πφ(q)

4cos2(q/2) + γ2Rω
2
+(mbω

2
+ − 2)2

|(maω2
+ − 2) + γLγRω2

+(mbω2
+ − 2)|

+

∫ π

0

dq
γLma

2(γL + γR)πφ(q)

4cos2(q/2) + γ2Rω
2
−(mbω

2
− − 2)2

|(maω2
− − 2) + γLγRω2

−(mbω2
− − 2)|

− 1

2

]
,

TOe = T + ∆T

[∫ π

0

dq
γLmb

2(γL + γR)πφ(q)

(maω
2
+ − 2)2 + 4γ2Rω

2
+cos

2(q/2)

|(maω2
+ − 2) + γLγRω2

+(mbω2
+ − 2)|

+

∫ π

0

dq
γLmb

2(γL + γR)πφ(q)

(maω
2
− − 2)2 + 4γ2Rω

2
−cos

2(q/2)

|(maω2
− − 2) + γLγRω2

−(mbω2
− − 2)|

− 1

2

]
,

JO = ∆T

[∫ π

0

dq
γLγR

(γL + γR)πφ(q)

sin2q

|(maω2
+ − 2) + γLγRω2

+(mbω2
+ − 2)|

+

∫ π

0

dq
γLγR

(γL + γR)πφ(q)

sin2q

|(maω2
− − 2) + γLγRω2

−(mbω2
− − 2)|

]
. (12)

We now present some numerical data for the two cases of even N and odd N for various

parameter sets. When γL = γR, the above integrals can be carried out exactly, see Eqs. (A13-

A17). In other cases, we evaluated the integrals numerically (using Mathematica).
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Figure 2: (Color online) Temperatures at odd and even sites for a chain with even number of

particles, plotted as a function of γ = γL = γR, ma = 0.75,mb = 0.25, k = 1, TL = 1.5, TR = 0.5.

We also plot separately the contributions of the acoustic and optical modes to the temperature at

any site. The inset shows J and also the contributions of the acoustic and optical modes.

Case (1): We consider chains with even N and set γL = γR = γ. In Fig. (2) we plot the

temperatures on the odd (TEo ) and even (TEe ) sites, and also the current (JE in inset) as a

function of the parameter γ. We also separately plot the contributions of the acoustic and

optical modes to the temperatures and current. We note the following features:

(i) Depending on the value of γ, either the heavier particles (those on odd sites), or the

lighter ones are hotter. At γ ≈ 0.41, the temperatures at the odd and even sites are equal.

(ii) The temperature of the heavier particles gets its main contribution from the acoustic

modes while that of the lighter particles comes mostly from the optical modes. The heat

current is mostly carried by the acoustic modes.

Case (2): We consider chains with odd N . In this case, γL = γR becomes a very

special case: the masses of the end particles being equal, this condition implies symmetry
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Figure 3: (Color online) Temperatures at odd and even sites for a chain with odd number of

particles, plotted as a function of γR with γL = 1, ma = 0.75,mb = 0.25, k = 1, TL = 1.5, TR = 0.5.

We also plot separately the contributions of the acoustic and optical modes to the temperature at

any site. The inset shows the variation of heat current with γR and also the contributions of the

acoustic and optical modes.

between the left and right reservoirs, and this leads to a uniform bulk temperature equal

to (TL + TR)/2. The more typical situation is when the two couplings are different and we

consider this by setting γL = 1 and changing γR. In Fig. (3) we plot the temperatures on

the odd (TOo ) and even (TOe ) sites, and also the current (JO in inset) as a function of the

parameter γR. We also separately plot the contributions of the acoustic and optical modes

to the temperatures and current. We note the following features:

(i) Depending on the value of γR, either the heavier particles (those on odd sites), or the

lighter ones are hotter. At a special value of γR = γL, the temperatures at the odd and even

sites are the same. They are both equal to the mean temperature T = 1.

(ii) As for the even N case, here also we see that the temperature of the heavier particles
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Figure 4: (Color online) Temperature profiles with energy– and momentum–conserving noisy dy-

namics for a harmonic chain with even number of particles. Other parameters were taken to be

ma = 0.5, mb = 1.5, γL = γR = 1.0 and TL = 2.0, TR = 1.0.

gets it main contribution from the acoustic modes while that of the lighter particles comes

mostly from the optical modes. The heat current is again mostly carried by the acoustic

modes.

IV. SIMULATION RESULTS ON THE EFFECT OF NOISE IN THE DYNAMICS

As discussed in the introduction, temperature oscillations have been observed in anhar-

monic chains, where however the oscillations decay with system size. This is expected since

anharmoncity leads to interactions between phonons which helps to establish local thermal

equilibrium. A simple model which incorporates phonon-phonon interactions was intro-

duced in [19, 20] where the determinsitic dynamics of the Harmonic chain is stochastically

perturbed. Here we have carried out simulations with this noisy dynamics and looked at

it’s effect on the temperature profiles of the alternating mass chain. There are two cases to

consider:

(a) Momentum conserving noise: Here, in addition to the Hamiltonian dynamics without

pinning, one introduces random exchange of momentum between nearest neighbor particles,
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Figure 5: Temperature profiles with energy– and momentum–conserving noisy dynamics for a

harmonic chain with an odd number of particles. Other parameters were taken to be ma = 0.5,

mb = 1.5, γL = γR = 1.0 and TL = 2.0, TR = 1.0.
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Figure 6: (Color online) Temperature profiles with only energy–conserving noisy dynamics for

a harmonic chain with even number of particles. Other parameters were taken to be ma = 0.5,

mb = 1.5, γL = γR = 1.0 and TL = 2.0, TR = 1.0.
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Figure 7: (Color online) Temperature profiles with only energy–conserving noisy dynamics for a

harmonic chain with an odd number of particles. Other parameters were taken to be ma = 0.5,

mb = 1.5, γL = γR = 1.0 and TL = 2.0, TR = 1.0.

which occurs with a rate λ. This conserves both momentum and energy. In Figs. (4,5) we

show the effect of momentum conserving noise on the temperature profiles for chains of even

and odd number of particles. In the even N case we see that, on introducing noise, the size

of the oscillations has decreased and the phase of the oscillation on the left half has changed

sign. For the odd case, the choice of parameters (γL = γR = 1) corresponds to a case with

no oscillations when λ = 0. On introducing noise, λ > 0, one gets oscillations very similar to

the even N case. We also see that the oscillation amplitude becomes smaller on increasing

system size, for both even and odd N cases.

Thus we see that the temperature profile in this system with energy-momentum conserv-

ing noisy dynamics shows the following qualitative features : (i) The oscillations decay as

we go into the bulk, (ii) There is a phase shift in the sign of the oscillation amplitude as

one crosses the center of the chain. The lighter particles at the hot end are always hotter

than the heavier particles. At the cold end, the heavier particles are hotter. Thus this is

qualitatively different from the harmonic case, (iii) For large N , the temperature profile is

not sensitive to whether N is even or odd. These same features have also been observed
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earlier for the alternate mass FPU chain [16] which had a quartic interparticle interaction

potential (in addition to the harmonic one). The FPU system has momentum conservation

and does not satisfy Fourier’s Law as is also the case for the system with noisy dynamics.

(b) Momentum non-conserving case: When the noise only conserves energy but not

momentum, as can be obtained by randomly reversing the velocity of the ith particle at

rate λ, then, as is seen in [21], the NESS for N → ∞ corresponds to a local equilibrium

state. This ensures that the Ti in the bulk is the same for i odd or even independently of

whether N is even or odd. In Figs. (6,7), we show the effect of addition of velocity flipping

dynamics on the temperature profile for harmonic chains with odd and even number of

particles. We observe that for the even case, the oscillations in the temperature decreases

considerably on introducing the noise, and this reduction is greater when N is larger. For

the odd case however, for small systems, introduction of noise produces small oscillations

in the temperature profile, but these oscillations eventually decrease as the system-size is

increased. For both even and odd total number of particles, the decay of the oscillation

amplitude with system size is faster than for the momentum-conserving case and we quickly

get a linear temperature profile in the bulk of the system.

V. DISCUSSION

In this paper we obtained exact expressions for the temperature-profile and the heat

current in the alternate mass chain connected to heat baths at different temperatures in

the limit of infinite system size. This proves rigorously that the temperature oscillations of

successive particles in the bulk persist even in the thermodynamic limit.

We provided an understanding of these oscillations by noting that in any given normal

mode, the mean kinetic energy of a particle depends on its mass. In an acoustic mode, the

heavier particles have higher mean kinetic energy than the lighter ones, while in an optical

mode, the lighter particles have higher kinetic energy. On connecting the chain to heat

reservoirs each of the modes are excited to different degrees, depending on the parameters.

The kinetic energy of a particle gets contributions from all the modes, both acoustic and

optical and the net result depends on the distribution of energy in the different modes. If

both the baths have the same temperature, we have an equilibrium steady state in which

each mode has the same average energy (equipartition). In this case the temperature at all
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Figure 8: (Color online) Simulation results for temperature profile for a two-dimensional N ×W

strip of harmonically coupled particles with a periodic arrangement of masses. The sites on the

strip are labeled (i, j) with i = 1, . . . , N and j = 1, . . . ,W . Particles at sites with even i + j have

mass ma and others have masses mb. Heat baths are attached to all sites on the layers i = 1

(temperature TL) and i = N (temperature TR). Periodic boundary conditions are imposed in the

transverse (j) direction. Upper plot shows the average temperature on succesive layers for chains

of lengths N = 32 and N = 64. There are oscillations in the transverse direction also and this is

shown in the lower plot which shows the temperatures Ti,j on all sites of a section of the N = 64

chain. Note that from symmetry we have Ti,j = Ti,j+2, and this can be observed here. The width

of the strips were taken to be W = 4. The other parameters were taken to be ma = 0.6, mb = 1.4,

γL = γR = 1.0 and TL = 2.0, TR = 1.0.

sites are equal. The same is true locally when the system is in local equilibrium.

The situation is different in the non-equilibrium case where we do not have local equilib-

rium and there is no equipartition of energy between the different modes. We then expect

generically that the mean kinetic energy (temperatures) obtained by adding the contribu-

tions of all modes will depend on the mass of the particle. It is therefore not so surprising

that we get different kinetic energies for the different masses. From the above explanation we

expect that temperature oscillations should also occur in higher dimensional periodic har-

monic systems. Simulation results for two-dimensional strips (see Fig. (8) suggest that this

is the case, but more extensive studies are necessary to establish the role of dimensionality.
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As already noted there will be no oscillations in the bulk if the NESS is in local thermal

equilibrium. To achieve this one introduces interactions between the phonons. Interactions

between phonons can be introduced for example by adding stochasticity in the dynamics and

we studied this case numerically. We find that in this case the oscillations are qualitatively

different from the purely harmonic case and do not survive in the limit of large system size.
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Appendix A: Details of calculation

Here we give more details of the derivation for the temperature profile and the current.

We basically need to evaluate the integral

Ii =
miγL
π

∫ ∞
−∞

dω ω2 |G+
i1(ω)|2 , (A1)

where G+ = [−Mω2 + Φ− ıωΓ]−1. We consider the case with k = 1. Let us define ∆l,m as

the determinant of the sub-matrix of [−Mω2 + Φ − iωΓ] that starts from the lth row and

column and ends in the mth row and column. We also define Dl,m as the determinant of the

sub-matrix of [−MΩ2 + Φ] starting from the lth row and column and ending in the mth row

and column. In terms of these one has:

G+
l,1(Ω) =

∆l+1,N

∆1,N

, G+
l,N(ω) =

∆1,l−1

∆1,N

(A2)

with ∆1,l−1 = D1,l−1 − iωγLD2,l−1

∆l+1,N = Dl+1,N − iωγRDl+1,N−1

∆1,N = D1,N − ıω(γRD1,N−1 + γLD2,N)− ω2γLγRD2,N−1 . (A3)

Let us now define f(l) = D1,2l and g(l) = D1,2l−1. These satisfy the recursion relation, f(l)

g(l)

 = B

 f(l − 1)

g(l − 1)

 ,

where B =

 (2−maω
2)(2−mbω

2)− 1 −(2−mbω
2)

(2−maω
2) −1

 ,
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with the initial condition f(0) = 1 and g(0) = 0. Hence we get f(l)

g(l)

 = Bl

 1

0

 . (A4)

The matrix B has unit determinant and can be expressed in terms of the Pauli spin matrices

~σ as follows:

B = cos q 1 + ı~σ.~n sin q = eı~σ.~nq

where cos q = Tr
B

2
=

(2−maω
2)(2−mbω

2)− 2

2
, (A5)

and ~n is a three dimensional unit vector. Hence we get:

Bl = = eı~σ.~n lq = cos(lq) 1 + sin(lq)
B− cos q 1

sin q
(A6)

Combining Eq. (A6) and Eq. (A4) we have :

f(l) =
sin(l + 1/2)q

sin(q/2)
(A7)

g(l) =
sin(lq)

sin q
(2−maω

2) (A8)

Note that for odd-dimensional matrices with the first mass equal to mb, the determinant

would be given by Eq. (A8) withma replaced bymb. Using these expressions in Eqs. (A2,A3),

we then get the following forms for the integrals Ii, depending on whether N is even or odd.

Case(1) - even N :

Iodd i =
2maγL
π

∫ ∞
0

dωω2

(
sin2

(N−i+1)q
2

sin2 q
(2−mbω

2)2 + γ2Rω
2 sin

2 (N−i)q
2

sin2(q/2)

)
|∆1,N |2

,

Ieven i =
2mlγL
π

∫ ∞
0

dωω2

sin2
(N−i+1)q

2

sin2(q/2)
+ γ2Rω

2 sin
2 (N−i)q

2

sin2 q
(2−maω

2)2

|∆1,N |2
,

IN =
2γLma

π

∫ ∞
0

dω
ω2

|∆1,N |2
, (A9)

where

∆1,N =

[
sin (N+1)q

2

sin(q/2)
− γLγRω2 sin (N−1)q

2

sin(q/2)

]
+ ıω

[
γL(2−mbω

2) + γR(2−maω
2)
]sin(Nq/2)

sin q
.
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Case(2) - odd N :

Iodd i =
2maγL
π

∫ ∞
0

dωω2

(
sin2

(N−i+1)q
2

sin2(q/2)
+ γ2Rω

2(2−mbω
2)2

sin2
(N−i)q

2

sin2(q)

)
|∆1,N |2

,

Ieven i =
2mlγL
π

∫ ∞
0

dωω2
(2−maω

2)2
sin2

(N−i+1)q
2

sin2 q)
+ γ2Rω

2 sin
2 (N−i)q

2

sin2(q/2)

|∆1,N |2
,

IN =
2γLma

π

∫ ∞
0

dω
ω2

|∆1,N |2
, (A10)

where

∆1,N =

[
(2−maω

2)
sin (N+1)q

2

sin q
− γLγRω2(2−mbω

2)
sin (N−1)q

2

sin q

]
+ ıω

(
γL + γR

)sin(Nq/2)

sin q
.

We now consider points in the bulk such that x = i/N and (N − i)/N remain finite in

the N →∞ limit. We now note that, for real values of 0 < q < π, Eq. (A5) has two allowed

solutions for ω, namely:

ω2
− =

1

mamb

[1− φ(q)]

ω2
+ =

1

mamb

[1 + φ(q)] ,

where φ(q) = [1− 2mamb(1− cos q)]1/2 , , 0 ≤ q ≤ π .

These correspond to the frequencies in the acoustic and optical branches of the lattice with

the frequency ranges 0 < ω− <
√

2/M and
√

2/m < ω+ <
√

2/(mM), where m (M)

is the smaller (larger) of the two masses. For frequencies outside these ranges, Eq. (A5)

gives imaginary values of q. This means that, for these frequencies, terms such as sinNxq

grow exponentially with N . Hence it is clear that, in the limit N → ∞, the integrals in

Eqs. (A9,A10) only get contributionsfrom frequencies in the acoustic and optical bands.

Thus for each of the integrals above, we get:∫ ∞
0

dωF (ω) =

∫ √2/M

0

dω− F (ω−) +

∫ √2/(mM)

√
2/m

dω+ F (ω+)

=

∫ π

0

dq
∣∣dω−
dq

∣∣− F (ω−(q)) +

∫ π

0

dq
∣∣dω+

dq

∣∣ F (ω+(q))

We now note from Eqs. (A9,A10) that the required integrands F (ω) have factors of the

form sin2(Nxq) in the numerators and ∆1,N in the denominators. In the limit N → ∞

the factors sin2(Nxq) in the numerators can be replaced by 1/2. Next we note that the
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determinant ∆1,N always has the following form:

∆1,N = A(q) sin(Nq) +B(q) cos(Nq) , (A11)

where A and B are smooth complex-valued functions. We now obtain the following result

for any function g(θ, φ) which is periodic in both variables:

lim
N→∞

∫ π

0

dθ g(θ,Nθ) = lim
N→∞

1

N

∫ 2π(N/2)

0

dφg(
φ

N
, φ)

= lim
N→∞

1

N

i=(N/2)∑
i=1

∫ 2πi

2π(i−1)
dφg(

φ

N
, φ) = lim

N→∞

1

N

i=(N/2)∑
i=1

∫ 2π

0

dψg(
2π(i− 1) + ψ

N
,ψ)

= lim
N→∞

i=(N/2)∑
i=1

1

N

∫ 2π

0

dψg(
2π(i− 1)

N
,ψ) =

1

2π

∫ π

0

dθ

∫ 2π

0

dψg(θ, ψ) .

Using this we obtain:∫ π

0

dq
C(q)

|A(q) sin(Nq) +B(q) cos(Nq)|2
=

∫ π

0

C(q)dq
1

2π

∫ 2π

0

dψ
1

|A(q) sinψ +B(q) cosψ|2

=

∫ π

0

dq
C(q)

|A(q)B∗(q)− A∗(q)B(q)|
(A12)

Using this we get the asymptotic forms of the various integrals in Eqs. (A9,A10), and these

lead to the results given in Eqs. (11,12). When γL = γR = γ, we can explicitly carry out the

integrals appearing in these expressions and we get the following results.

Case (1) - even N :

Iodd =
mb

2

2(1 + β) + (δ2 + 2δ)2β + 2 β2

1+2βµ
δ2(δ + 1)2

√
2β + 1

√
1 + 2β + 2β2µ

− 4
ma

1 + 2βµ

(√
1 + 2β + 2β2µ

1 + 2β
− 1

)

+
mb

2

|δ|(δ + 1)2

µ(1 + 2βµ)
√

1 + δ2
+ma

2βµ

1 + 2βµ

(
1− |δ|√

1 + δ2

)
(A13)

Ieven = ma

(
1 +
−(1 + β) + β(2δ − δ2)− δ2(1− δ)2 β2

1+2βµ√
1 + 2β

√
1 + 2β + 2β2µ

+ β
|δ|(1− δ)2√

1 + δ2(1 + 2βµ)

)

+
mb

1 + 2βµ

(
− |δ|√

1 + δ2
+

√
1 + 2β + 2β2µ√

1 + 2β

)
(A14)

JE = ∆T
γ

β2µ(1 + 4γ2)
[2β + 1 + 2β2µ(1 + δ2 − |δ|

√
1 + δ2)−

√
(2β + 1)(2β + 1 + 2β2µ)]

(A15)

where µ = 2mamb , δ = ma −mb , β = γ2/(mamb) .
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Case (2) - odd N :

Iodd = Ieven =
1

2
, (A16)

JO = ∆T
γB

G2

(
1−

√
(F +H)2 −G2 +

√
(F −H)2 −G2

2F

)
(A17)

where

F =
B

2C
(B2 − 4AC)1/2 , G = Cµ , H =

B2

2C
− C(1− µ)− A

and A =
δ

mb

− δβ

ma

, B =
1

mb

+
2mbβ

ma

, C =
β

ma

.
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