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ABSTRACT 
 

Schloegl’s second model on a d≥2 dimensional hypercubic lattice involves: (i) spontaneous 
annihilation of particles with rate p; and (ii) autocatalytic creation of particles at vacant sites at a 
rate proportional to the number of suitable pairs of neighboring particles. This model provides a 
prototype for non-equilibrium discontinuous phase transitions. However, it also exhibits non-
trivial generic two-phase coexistence: stable populated and vacuum states coexist for a finite 
range, pf(d)<p<pe(d), spanned by the orientation-dependent stationary points for planar 
interfaces separating these states. Analysis of interface dynamics from Kinetic Monte Carlo 
(KMC) simulation, and from discrete reaction-diffusion equations (dRDE) obtained from 
truncation of the exact master equation, reveals that pe(f) ~ 0.2113765 + ce(f)/d, as d→∞, where Δc 
= ce – cf ≈ 0.014. An metastable populated state persists above pe(d) up to a spinodal p = ps(d), 
which has a well-defined limit ps(d→∞) = ¼. The dRDE display artificial propagation failure, 
absent in the stochastic model due to fluctuations, a feature which is amplified for increasing d 
thus complicating our analysis. 
 
1. INTRODUCTION 
 

Stochastic lattice-gas reaction and reaction-diffusion models prescribe kinetic rules and rates for 
the creation and annihilation of various species residing on a lattice [1,2]. The reaction steps are 
often cooperative and sometimes irreversible. The lack of detailed-balance condition on the 
governing rates means that these systems may evolve to non-equilibrium steady-states which are 
not characterized by a Gibbs measure familiar for thermodynamic equilibrium in Hamiltonian 
models. However, these steady states can display phase transitions somewhat analogous to those 
in thermodynamic systems [1,2]. For both equilibrium [3] and non-equilibrium [1] lattice-gas 
models, it can be instructive to consider behavior as a function of lattice dimension, d. For 
models exhibiting continuous transitions or criticality, an upper critical dimension exists above 
which fluctuations are weak and mean-field behavior applies [1,3]. One also expects that either 
equilibrium or non-equilibrium discontinuous transitions may be erased due to strong 
fluctuations below some critical d = d* [1-3]. 

A candidate for non-equilibrium discontinuous transitions is Schloegl’s second model for 
autocatalysis [4-13] on a hypercubic lattice which involves: (i) spontaneous annihilation of 
particles, X, at occupied sites at rate p; and (ii) autocatalytic creation of particles at vacant sites, 
∅, induced by suitable nearby pairs of particles [8,9-13]. Schematically, the reaction steps are: 

 

X →∅ (spontaneous annihilation @ rate p); ∅+2X→3X (autocatalytic creation). 
 

Mean-field (MF) analysis suggests the existence of a discontinuous transition between an active 
state with particle concentration C>0, for 0<p<pe, and an absorbing vacuum state C=0, for all 
p>0. However, Kinetic Monte Carlo (KMC) analysis of Grassberger’s version of this model 
found only a continuous transition for d<4 suggesting a critical d* = 4 [5]. In contrast, our KMC 
analysis for a version of the model based on Durrett’s Quadratic Contact Process or QCP (see 
below) revealed a discontinuous transition for d=2 [9] and d=3 [13], suggesting that d* =2.  
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In addition, our analysis of the QCP version revealed a non-trivial generic two-phase 
coexistence (2PC) for d=2 and d=3 wherein the stable populated and vacuum phases coexist for a 
finite range of annihilation rate, p [9-13]. (Trivial 2PC occurs due to a “quirk” in the QCP rules. 
For any p>0, the vacuum state can always resist the growth of active droplets which cannot 
escape any rectangular region containing them [8]. Trivial 2PC disappears upon perturbing the 
model, e.g., to include particle hopping or spontaneous creation.) The non-trivial 2PC derives 
from an orientation-dependence of the value of the annihilation rate p=peq corresponding to a 
stationary planar interface separating the two phases. This non-trivial generic 2PC feature may 
persist for d>3. This behavior contrasts phase coexistence in an equilibrium Hamiltonian system 
where planar interface separating phases is stationary at a unique point corresponding to equality 
of chemical potentials. As an aside, generic 2PC was first explored in Toom’s model for voter 
dynamics [14,15] where the kinetic rules have an unappealing [16] asymmetry. 

Our goal here is to elucidate fundamental aspects of the dependence on dimension, d, of 
discontinuous transitions in lattice-gas reaction models which display generic 2PC. In this paper, 
we consider only our QCP version of Schloegl’s second model, but the features displayed and 
issues analyzed will undoubtedly have broad applicability. Analogous studies for equilibrium 
systems would be performed using the ferromagnetic Ising model. One might expect the kinetics 
to approach mean-field behavior, and also enhanced metastability, as d→∞. However, the d-
dependence of features related to equistability of distinct phases is perhaps less clear, and is the 
focus of the current contribution. Although contentious [22], we claim that equistability for 
infinite lattices should be determined by stationarity of planar interfaces separating coexisting 
states (cf. [4,17-21]). Consideration of equistability is complicated by the presence of generic 
2PC for which we provide the first analysis of its d-dependence and disappearance as d→∞.  

With regard to development and application of general methodologies, we apply discrete 
reaction-diffusion equations (dRDE) to elucidate interface dynamics. dRDE are derived from 
truncation approximations to the exact master equations for spatially inhomogeneous states. This 
approach has received little attention previously, and then only for d=1-3 and mainly using the 
lowest-order mean-field truncation approximation. We exploit the dRDE to obtain exact limiting 
behavior as d→∞. However, we find that these dRDE can display artificial propagation failure 
(APF), an effect which is absent due to fluctuations in the stochastic model and which is strongly 
amplified with increasing d. Nonetheless, dRDE analysis of suitable interface orientations 
avoiding APF is shown to still capture behavior in the stochastic model. While we treat only our 
QCP model, this dRDE methodology and the observed APF behavior and its resolution should 
have broad applicability. 

In Sec.2, we provide a detailed description of our stochastic reaction model for general 
d≥2. New KMC simulation results are reported for d = 2-5. In Sec.3, we present the exact master 
equations for general d, and develop dRDE for spatially heterogeneous states by applying the 
MF and pair approximations. The dRDE are used to assess the propagation of planar interfaces 
between active and vacuum states, specifically stationarity and artificial propagation failure 
(APF), in Sec.4. The interpretation of the dRDE results and their relationship to exact behavior 
of the stochastic reaction model is described in Sec.5. Conclusions are provided in Sec.6. 
 

2. MODEL PRESCRIPTION FOR GENERAL DIMENSION AND KMC ANALYSIS 
 

Our model involves particle annihilation and creation at the sites of an infinite d-
dimensional hyper-cubic lattice with sites labeled by i = (i1, i2, i3,…, id). Note that the total 
number of pairs of sites selected from the 2d nearest-neighbors (NN) of any site satisfies ktot = 
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(2d)(2d-1)/2! = d(2d-1). We divide all such pairs into two subsets: linear pairs where one site is 
(i1, i2,…, ij +1,…, id) and the other is (i1, i2,…, ij-1,…, id); and “diagonal” pairs with one site is at 
one of (i1, i2,…, ij ±1,…, id) and another at one of (i1, i2,…, ik ±1,…, id) and where j≠k. The 
number of linear pairs satisfies klin = d, and thus the number of diagonal pairs satisfies kmax =   
ktot - klin = 2d(d-1). Our QCP version of Schloegl’s second model for any d≥2 generalizes 
Durrett’s prescription [18] for a d=2. It involves: (i) spontaneous creation of particles at 
unoccupied sites at rate p; (ii) autocatalytic annihilation of particles at empty sites at rate k/kmax, 
where k is the number of “diagonal” pairs of particles on neighboring sites. This prescription 
produces a simple d-independent form for the mean-field kinetics of the model. Furthermore, it 
enables an exact simplification of the master equations, as described in Sec.3. 

For spatially homogeneous states, we define the particle concentration, C, as the mean 
probability that a site is occupied, so that 0 ≤ C ≤ 1. We find that a stable populated steady-state 
with concentration C>0 exists for a range of annihilation rates, 0 ≤ p ≤ pe(d). Previous KMC 
studies found pe(d=2) = 0.09443 [9] and pe(d=3) = 0.13939 [13]. Below we report behavior for 
d>3. In the “active” populated state, particles are continually created and annihilated. Increasing 
p to higher p > pe(d) results in a discontinuous transition to a stable absorbing “vacuum” state 
with C=0. An ill-defined metastable extension of the active state exists for a small range of pe(d) 
< p < ps(d), where ps(d) denotes the spinodal with ps(d=2)≈0.101 [12] and ps(d=3)≈0.15 [13].  

Previous studies for d=2 and 3 [9,12] found non-trivial generic 2PC wherein stable active 
and vacuum states coexist for a finite range pf(d) ≤ p ≤ pe(d). This range is spanned by the 
orientation-dependent “equistability” values p = peq for stationary planar interfaces separating 
these states, where pe(d) = max peq corresponds to a diagonal (d=2) or skew (d=3) interface. For 
a general orientation, when 0 ≤ p < peq, the active state displaces the vacuum state. For peq < p < 
pe(d), the vacuum state displaces the active state. For pe(d) < p < ps, the vacuum state transiently 
displaces the metastable active state until the latter spontaneously converts to the vacuum. One 
caveat is that for an exactly vertical interface (i1=0), the active state can never propagate into the 
vacuum (empty sites in this vacuum state have at most one occupied neighbor). More precisely, a 
vertical interface is stationary for all p ≤ pf(d), but the vacuum state expands for p > pf(d). See [9-
13] and Fig.1. As noted above, trivial 2PC occurs for all p ≤ pe(d) as the vacuum state is stable 
against expansion of droplets of the active state. These features are shown to persist for d>3. 

 

 
Fig.1. (Color online) Steady-state C versus p for: (a) d=2; (b) d→∞ MF behavior. pe (pf) = upper 
(lower) 2PC boundaries; ps = spinodal. Inset to (a): dependence of equistability peq on interface 
orientation. Inset to (b): profile of a hyperskew interface for d→∞ at pe = pf = 0.2113765. 
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Model behavior is characterized by performing KMC simulations on finite hypercubic 

lattices of Ld sites with periodic boundary conditions. In conventional constant-p ensemble 
simulations, processes are implemented with probabilities proportional to their rates. However, 
to assess peq, we implement alternative constant-C ensemble simulations [9,23]. System sizes 
were typically L = 1024, 128, 48, and 20, for d = 2, 3, 4, and 5, respectively. Simulation data was 
collected over times ~106 Monte Carlo steps (MCS) for d = 2 - 4 and ~104 MCS for d=5. 

For d≥2 dimensions, the interface orientation where a i1 + b i2 + c i3 +… = m is constant 
(with a, b, c,…, and m as integers) is labeled by (abc…). Vertical interfaces correspond to a=1 
and b=c=…=0 (so i1 = m) are (10), (100), (1000), etc. for d=2, 3, 4,…, respectively, and have 
peq(d) = pf(d) defined us the upper boundary of the region of propagation failure 0<p<pf(d). We 
define a “hyperskew” orientations as that where a=b=c=…=1 (so i1+i2+i3+…+id=m) which 
constitutes the furthest-from-vertical orientation. This hyperskew orientation corresponds to 
diagonal (11), skew (111), 4th-order skew (1111),…, for d=2, 3, 4,…, respectively, and have 
peq(d) = pe(d), i.e., peq is highest for orientations furthest-from-vertical where the active state can 
most easily displace the vacuum state. New results for peq(d=2-5) for various interface 
orientations are shown in Table I. In Sec.5, we show that peq(d→∞)=0.2113765 for all 
orientations. Our data suggests that peq(d) ≈ peq(d→∞) + c/d, where c depends weakly on 
orientation. See Fig.2. The width of the 2PC region satisfies Δpeq(d) = pe(d) – pf(d) ≈ 0.014/d. 
 
d=2 10: 0.0871 11: 0.09440 (2)    
d=3 100: 0.1353 110: 0.139027(7) 111: 0.139386(7)   
d=4 1000: 0.1548 1100: 0.157593(9) 1110: 0.158091(8) 1111: 0.158284(8)  
d=5 10000: 0.1664 11000: 0.16824(1) 11100: 0.168847(7) 11110: 0.169055(6) 11111: 0.169137(6) 
 
Table I: KMC values of p=peq for stationary planar interfaces separating populated and vacuum 
states for orientations indicated before the colon; peq → 0.211377, as d→∞, for all orientations. 
 

 
Fig.2. KMC results for peq versus 1/d for hyperskew (filled square) and vertical (open square) 
interfaces, where the exact result is also shown for d→∞. 
 
3. MASTER EQUATIONS FOR HOMOGENEOUS AND INHOMOGENEOUS STATES 
 

Let x (o) denote a filled (empty) site, and let P’s denote the probabilities for various 
configurations of clusters of sites. For general spatially inhomogeneous states, the probability 
that a site is occupied or vacant depends on its location. Thus, we let Ci = P[xi] denote the 
probability that site i = (i1, i2,…, id) is occupied. Then, P[oi] = 1 - P[xi] is the probability that site 
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i is empty. Let e1 = (1,0,0,…), e2 = (0,1,0,…), etc., denotes vectors between NN sites. Then        
P[xi xi+e1] (P[oi oi+e1]) denotes the probability that sites in the NN pair i, i+e1 are both occupied 
(empty). Also, P[xi oi+e1] and P[oi xi+e1] denote the probabilities of mixed occupied-empty pairs. 
Conservation of probability implies that P[xi] + P[oi] = 1, P[xi oi+e1] + P[xi xi+e1] = P[xi],        
P[oi xi+e1] + P[oi oi+e1] = P[oi], etc. For the special case of spatially homogeneous states, these 
quantities do not depend on site location, so P[xi] = P[x] = C, P[oi] = P[o] = 1-C (= C′ ), etc. 

The exact master equations for our reaction model can be written as a coupled hierarchy 
for the evolution of the probabilities for empty single sites, empty pairs, etc. [24]. Terms in these 
equations simply account for all possible gain pathways due to spontaneous particle annihilation, 
and all possible loss pathways associated with autocatalytic particle creation.  
 
3A. LOWEST-ORDER HIERARCHICAL EQUATION FOR SINGLE-SITE PROBABILITIES 
For spatially inhomogeneous states, the equations for single empty sites have the exact form 
 
d/dt P[oi] = p P[xi] – (1/kmax){P[oi xi+e1 xi+e2] + P[oi xi+e1 xi-e2] + P[oi xi+e1 xi+e3] +…}. (1) 
 
The first gain term on the right-hand-side (RHS) of (1) corresponds to spontaneous particle 
annihilation at site i at rate p. The other loss terms correspond to autocatalytic particle creation at 
empty site i where one term appears for each of the kmax possible configurations of diagonal pairs 
of particles on sites NN to i. We have shown explicitly only three out of these kmax creation terms. 
From (1), it is clear that for a spatially homogeneous state, the evolution equation for the 
probability of a single empty site has the d-independent exact form 
 

d/dt P[o] = p P[x] – ⎥
⎦

⎤
⎢
⎣

⎡
xo

x
P .        (2) 

 
The loss term on the right-hand-side denotes the probability of a filled site with a specific 
diagonal pair of filled sites, where the state of the 2d-2 other neighboring sites is unspecified. 

In deriving the loss terms in (1), P[oi xi+e1 xi+e2] corresponds to a sum of contributions for 
different configurations of the 2d sites surrounding oi, but all including a diagonal pair of 
particles at sites i+e1 and i+e2. One case is the configuration with all other 2d-2 neighboring sites 
empty so k=1, associated with a creation rate of 1/kmax. The general case has k-1 additional 
diagonal pairs with creation rate k/kmax. We associate a fraction 1/k of this contribution with the 
term P[oi xi+e1 xi+e2], and the rest is equally distributed between the other terms. Summing all 
contributions associated with P[oi xi+e1 xi+e2] thus yields 1/kmax times the probability that site i is 
empty and the indicated diagonal pair is occupied (with all other neighbors of the empty site in 
an unspecified state). A similar analysis generates P[oi xi+e1 xi-e2] and the other terms. 

For spatially inhomogeneous states corresponding to planar interfaces between populated 
and vacuum states, (1) adopt a simpler form. For specific orientations, the Ci1 i2,…,id and related 
probabilities can be independent of some ik or dependent only on certain combinations of them. 
Also, some probabilities for configurations of clusters of sites become identical. For example, for 
vertical interfaces where Ci1,i2,…,id = Ci1, the first two particle creation terms in (1) are equivalent.  

 
3B. HIERARCHICAL EQUATION FOR PAIR PROBABILITIES 

One can also obtain equations for probabilities of adjacent empty pairs of sites, and for 
larger clusters of empty sites. For a spatially inhomogeneous state, the evolution equation for the 
pair probability P[oi oi+e1] has the exact form 
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d/dt P[oi oi+e1] = p {P[xi oi+e1] + P[oi xi+e1]} - (1/kmax) {P[oi oi+e1 xi+2e1 xi+e1+e2] +… } 
 

- (1/kmax) {P[xi+e1+e2 xi-e1 oi oi+e1] +… }. (3)  
 
The first two gain terms on the RHS corresponds to spontaneous particle annihilation at site i and 
i+e1 at rate p. The next group of loss terms correspond to autocatalytic particle creation at empty 
site i+e1 where one term appears for each of the 2(d-1) possible configurations of diagonal pairs 
of particles NN to this site, where neither particle is on the neighboring site i.  We have shown 
explicitly only one out of the subset of 2(d-1) configurations where one particle forms a linear 
triple with the empty pair. There is another larger subset of 2(d-1)(d-2) configurations where 
neither particle forms a linear triple with the empty pair. The analogous last group of loss terms 
correspond to autocatalytic particle creation at empty site i, where one term appears for each of 
the total of 2(d-1)2 possible configurations of diagonal pairs of particles NN to this site. 

From (3), it follows that for a spatially homogeneous state, the equation for evolution of 
the probability of an empty pair has the exact form 
 

d/dt P[o o] = 2p⋅P[x o] -  {4(d-1)/kmax} ⎥
⎦

⎤
⎢
⎣

⎡
xoo

x
P  –{4(d-1)(d-2)/kmax} ⎥

⎦

⎤
⎢
⎣

⎡
⊗o
x

P , (4) 

 

where ⎥
⎦

⎤
⎢
⎣

⎡
xoo

x
P   and ⎥

⎦

⎤
⎢
⎣

⎡
⊗o
x

P  represent probabilities of an empty pair where the right site 

in this pair has a diagonal neighboring pair of particles. In the first, one filled site forms a linear 
triple with the empty pair. In the second, both filled sites form bent triples with the empty pair. 

Derivation of the loss terms in (3) due to autocatalytic particle creation follows a similar 
strategy to that for (1) above. Each term corresponds to a sum of contributions associated with 
different configurations of the 2d-1 sites at the relevant end the empty pair oi oi+e1 but which all 
include the diagonal pair of particles indicated explicitly in (3). Summing all contributions 
associated with the specific pair thus yields 1/kmax times the probability that the pair is empty and 
the specific diagonal pair is occupied (with other neighbors of the empty pair unspecified).  
 
4. APPROXIMATIONS AND DISCRETE REACTION-DIFFUSION EQUATIONS 
 

4A. TRUNCATION APPROXIMATIONS 
In the simplest mean-field (MF) or site approximation, one neglects all correlations in the 
occupancy of different sites. Thus, for example, one has that  
 

P[oi xi+e1 xi+e2] ≈ P[oi] P[xi+e1] P[xi+e2]   (reducing to ⎥
⎦

⎤
⎢
⎣

⎡
xo

x
P  ≈ P[o] P[x]2),  (5) 

 
for inhomogeneous (homogeneous) states. In the next higher-order pair approximation, 
probabilities configurations of clusters of sites are factorized in terms of those for all constituent 
pairs where one also compensates for double-counting of some sites. Thus, one has that  
 

P[oi xi+e1 xi+e2] ≈ P[oi xi+e1] P[oi xi+e2]/ P[oi], and 
 

P[oi oi+e1 xi+2e1 xi+e1+e2] ≈ P[oi oi+e1] P[oi+e1 xi+2e1] P[oi+e1 xi+e1+e2]/ P[oi+e1]2  (6) 
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(reducing to ⎥
⎦

⎤
⎢
⎣

⎡
xo

x
P  ≈ P[xo]2/P[o]  and  ⎥

⎦

⎤
⎢
⎣

⎡
xoo

x
P  ≈ ⎥

⎦

⎤
⎢
⎣

⎡
⊗o
x

P  ≈ P[o o]P[x o]2/P[o]2), 

    
for inhomogeneous (homogenous) states. 
 
4B. MEAN-FIELD TYPE KINETICS FOR HOMOGENEOUS STATES 
The MF site-approximation to (2) yields the d-independent MF kinetics 
 

d/dt C = -p C + C2(1-C) ≡ R(C), so d/dt ln C′  = (C/C′)[p - CC′],    (7) 
 

where C′ = 1-C gives the probability of an empty site. Steady-state analysis reveals a stable 
vacuum state with C=0 for all p>0, and a stable active state with C = Cact(MF) = ½ + ½(1 - 4p)1/2 
for a bistability regime 0 ≤ p ≤ ps(MF) = ¼ [4,8-10]. In the pair approximation, a natural variable 
is the conditional concentration, K = P[x o]/P[o], representing the probability of finding a 
particle next to a site specified empty. Setting K′ = 1-K (the conditional probability of an empty 
site) and cd = (d-1)/d, the pair kinetics can be instructively formulated as 

 

d/dt ln C′ = (C/C′)[p - CC′(K/C)2] and d/dt ln K′ + d/dt ln C′ = 2(K/K′)[p - cd KK′]. (8) 
 
A steady-state analysis yields a stable vacuum state with C = K = 0 for all p>0, and a stable 
active state K = Kact(pair) = ½ + ½(1 - 4p/cd)1/2 for a bistability regime 0 ≤ p ≤ ps(pair) = cd/4.  
Since cd→1 as d→∞, it is clear comparing (7) and (8) that site and pair approximations converge. 
 More generally, consider the evolution of the probability, P[{o}n], of finite connected 
cluster of n vacant sites, {o}n. The key observation is that as d→∞, all sites are on the perimeter 
and almost fully coordinated with sites not in the cluster. More precisely, the fractional deficit 
from full coordination scales like 1/d. Thus, the structure of the evolution equation is similar to 
that for the probability, (P[o])n, for n isolated far separated sites. It follows that P[{o}n] → 
(P[o])n, as d→∞, a general feature applying for any lattice-gas reaction model. 
  
4C. MEAN-FIELD-TYPE DISCRETE REACTION-DIFFUSION EQUATIONS (dRDE) 
We will consider only spatially inhomogeneous states corresponding to planar interfaces 
between active and vacuum states. As in Sec.2, interface orientations where a i1 + b i2 + c i3 +… 
= m is constant is labeled by (abc…) for d≥2 dimensions. In these case, the concentrations 
Ci1,i2,…,id = Cai1+bi2+ci3…=m = Cm are labeled by a single integer m. Applying MF factorization to 
(1) produces closed discrete reaction-diffusion (dRDE) type equations for the Cm. The 
“diffusion” type terms reflect spatial coupling in the reaction model rather than particle hopping. 
These type of MF dRDE have been explored previously for other reaction-diffusion models, but 
just for d≤3 [25-27]. It is convenient to define a pseudo-diffusion coefficient Dj(C)=C(1-C)/j, 
and the discrete Laplacian 
 

ΔCm = Cm+1 -2Cm + Cm-1,  so that (Cm+1 + Cm-1)2 – (2Cm)2 = 4Cm ΔCm + (ΔCm)2.  (9) 
 
     For hyper-skew (1111…) interfaces where Ci1,i2,…,id = Ci1+i2+…+id=m, one obtains the MF 
dRDE 
 

d/dt Cm = -pCm + ¼ (1-Cm)(Cm+1 + Cm-1)2 
 

 = R(Cm) + D1(Cm) ΔCm + ¼ (1-Cm) (ΔCm)2,      (10) 
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which have a form independent of d. As a consequence, the MF-value of peq for the d=2 diagonal, 
d=3 skew, and d>3 hyperskew orientations will identical. It should be noted that the physical 
Euclidean distance between adjacent planes, m and m+1, equals d-1/2, and thus the physical width 
of the concentration profile across the interface also scales like d-1/2. 
        For vertical (1000…) interfaces where Ci1,i2,…,id = Ci1=m, one obtains the distinct MF dRDE 
 

d/dt Cm = R(Cm) + Dd(Cm) ΔCm,       (11) 
 
incorporating weak spatial coupling for large d due to small Dd ~ 1/d. Since R(0) = 0 and Dd(0) = 
0, (10) appropriately ensures that the active state cannot displace the vacuum state. 
 Next, consider more general low-index interfaces including diagonal (11000…) 
interfaces where Ci1,i2,…,id = Ci1+i2=m, skew (11100…) interfaces Ci1,i2,…,id = Ci1+i2+i3=m, and the 
natural generalization to nth-order skew interfaces where Ci1,i2,…,id = Ci1+i2+i3+…+in=m. For the 
general nth-order skew case, one obtains the MF RDE 
 

d/dt Cm = R(Cm) + n Dd(Cm) ΔCm + ¼ n(n-1)d-1(d-1)-1 (ΔCm)2.   (12) 
 
This result includes vertical (n=1), diagonal (n=2), skew (n=3) orientations as special cases, and 
reveals weak spatial coupling in all cases with n=O(1) and large d, in contrast to (9). 

For reasons discussed below, it will also be instructive to consider near-vertical 
orientations. When Si1 + i2 = m, corresponding to a near-vertical interface with large slope S and 
far-spaced rare “horizontal steps” (see Fig.3a), one obtains the MF dRDE 

 
d/dt Cm = -pCm + d-1(d-1)-1(d-2)(d-3)(1-Cm)(Cm)2 

 
+ d-1(d-1)-1(d-2)(1-Cm)Cm(Cm-1+Cm+1+Cm-S+Cm+S) 

 
+ ½ d-1(d-1)-1(1-Cm)(Cm-1+Cm+1)(Cm-S+Cm+S).   (13) 

 
When Si1 + i2 +… +id = m, corresponding to a near-vertical interface with large slope S and far-
spaced rare “maximally kinked” or hyperskew steps” (see Fig.3b), one obtains the MF dRDE 

 
d/dt Cm = -pCm + ¼ d-1(d-2)(1-Cm)(Cm-1+Cm+1)2  

 
+ ½ d-1(1-Cm)(Cm-1+Cm+1)(Cm-S+Cm+S).    (14) 

 
Writing (13) and (14) in the form d/dt Cm = R(Cm) + “diffusion-type terms”, these diffusion 
terms are of order 1/d in (13), but of order unity in (14) (which reduces to (9) as d→∞). 
 

 
Fig.3. (Color online) Schematic for d=3 of a rare horizontal (a) and hyperskew (b) step on a 
vertical interface. 
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One can also apply the pair approximation to (1) and (3) for planar interfaces between 

active and vacuum states to obtain pair dRDE for Cm and related pair probabilities. See 
Appendix A for the special cases of hyperskew (1111…) and vertical (1000…) interfaces. 
 
5. DISCRETE RDE ANALYSIS: MEAN-FIELD AND PAIR RESULTS 
 

We now present results from numerical integration of the dRDE’s for evolution of planar 
interfaces between the active and vacuum states. The initial data are chosen as a sharp interface 
between the active state Cm = Cact, for m<m*, and the vacuum state Cm = 0, for m≥m*. In the 
pair approximation, we also specify certain pair occupations determined from Kact(pair). The 
interface location is determined from <m> = ∑m Cm/Cact for a large finite system of ~1000 sites. 
The interface velocity, V(p) = d/dt <m>, is determined for long times t ≈ 4×104. Our focus is on 
assessing variation of V(p) with p to determine stationarity and propagation failure. 
 
5A. HYPERSKEW (1111…) ORIENTATION 
The MF dRDE for the hyperskew orientation where m = i1+i2+…+id  have the special feature of 
being independent of d. Analysis of interface propagation reveals that V(p) vanishes at a single 
stationary point which has the d-independent MF value peq(111…) = 0.2113765(4). See Table II. 
The pair dRDE for the hyperskew orientation predict qualitatively similar interface evolution 
with V(p) vanishing at a single stationary point. However, the pair peq(111…) depends on 
dimension and increases smoothly to converge to the MF value as d→∞. See Table III. 
Continuously deviating from a hyperskew orientation produces continuous deviations from the 
above behavior either at the MF or pair level with peq shifting to lower values. 
 
5B. VERTICAL (1000…) AND NEAR-VERTICAL ORIENTATIONS  
The MF dRDE for vertical interfaces where m = i1 predict propagation failure for 0 < p < 
peq(100…) where MF peq(100…) increases with d. In fact, MF peq(100..) → ps(MF) = ¼, as d→∞, 
where the interface is stationary over the entire bistability regime. See Table II. Additional 
analysis elucidates the sharpening of the stationary interface at p = peq as d increases. See 
Appendix B. Analysis of the pair dRDE (15) reveals the same qualitative behavior where the 
pair peq(100…) → ps(MF) = ¼, as d→∞, but the rate of convergence is slower. See Table III.  
Deviation from a vertical orientation with rare horizontal (H) “steps” (cf. Fig.3a). Both MF and 
pair analysis for near-vertical orientations with rare horizontal steps (Si1+i2=m with large S 
=1024) indicates a unique stationary point peq(100…H) for d=2-5 which shifts upward  with d. 
For d≥6, a finite range of propagation failure emerges over a regime p-(100…H) < p < 
p+(100…H). This regime expands with increasing d to cover the entire region of bistability, i.e., 
p-(100…H) → 0 and p+(100…H) → ps(MF) = ¼, as d→∞. See Tables II-III. 
Deviation from a vertical orientation with rare hyperskew (HS) steps (cf. Fig.3b). Orientations 
defined by Si1+i2+…+id = m with large S correspond to a vertical interface i1=0 mis-oriented by 
occasional hyperskew (maximally kinked) “steps” separated by vertically S lattice constants. 
Analysis based on both the MF and pair dRDE for S=1024 indicates a unique stationary point for 
which peq(100..HS) → limd→∞ peq(111…) = 0.2113765, as d→∞. See Tables II-III. 
 
5C. DIAGONAL (11000…), SKEW (11100..), AND OTHER ORIENTATIONS  
Analysis of the MF and pair dRDE for diagonal (11000…) interfaces where m = i1+i2 reveals 
that except for small d, one has propagation failure over a regime p-(1100…) < p < p+(1100…). 
The regime of propagation failure expands with increasing d to cover the entire region of 



 10

bistability, i.e., p-(1100…) → 0 and p+(1100…) → ps(MF) = ¼, as d→∞. See Tables II-III. 
Motivated by the analysis of near-vertical interfaces, we also consider deviations from diagonal 
orientations associated with rare hyperskew (maximally kinked) steps as a route to eliminate 
propagation failure. These orientations are described by S(i1+i2)+i3+i4+…+id = m, where we 
choose S=1024. Analysis for the MF and pair dRDE reveals a lack of propagation failure with 
stationary point peq(1100..HS) → limd→∞ peq(111…) = 0.2113765, as d→∞. See Tables II-III. 
 Analysis of both MF and pair dRDE for skew (11100…) interfaces reveals that except for 
small d, one has propagation failure over a regime p-(1110…) < p < p+(1110…).  Again, the 
regime of propagation failure expands with increasing d to cover the entire region of bistability, 
i.e., p-(1110…) → 0 and p+(1110…) → ps(MF) = ¼, as d→∞. It is also the case that propagation 
failure can be eliminated by deviating from skew orientations with rare hyperskew steps. These 
orientations are described by S(i1+i2+i3)+i4+…+id = m, where we choose S=1024. The 
stationary point peq(1110..HS) → limd→∞ peq(111…) = 0.2113765, as d→∞. See Table II-III. 
 One can extend the above investigations to consider nth-order skew orientations as 
defined in Sec.4B. One anticipates analogous behavior, i.e., development of propagation failure 
with increasing d which engulfs the entire bistable regime as d→∞. It is also anticipated that 
deviating from these orientation with rare hyperskew steps will eliminate propagation failure. 
 
6. RELATING dRDE PREDICTIONS TO STOCHASTIC MODEL BEHAVIOR 
 

In relating MF-type dRDE predictions to stochastic reaction model behavior, it is instructive to 
first focus on two key interface orientations, hyperskew and vertical.  

For hyperskew (111…) interfaces, the correspondence is unambiguous: there is no 
propagation failure for MF or pair dRDE, and the predicted peq(111…) corresponds to that in the 
stochastic model. The large discrepancy between the d-independent MF predictions and KMC 
values of peq(111…) for smaller d is largely removed in the pair approximation. As noted 
previously, the simple form peq(111…) ≈ 0.2113765 + c/d describe well observed d-dependence. 

For vertical (100…) interfaces, recall that propagation failure is expected for p below 
some critical value, peq(1000…) as the active state cannot displace the vacuum state for any p≥0. 
For p > peq(1000…), the vacuum state displaces the populated state. This feature applies to both 
the stochastic model and to various MF-type dRDE. However, peq(1000…) from MF-type 
treatments does not correspond to that for the stochastic model as estimated by KMC simulations. 
Specifically, MF-type formulations “artificially extend” the regime of propagation failure. This 
feature is amplified for increasing d, recalling that MF-type peq(1000…) → ps(MF) = ¼, as d→∞.  

Artificial propagation failure (APF) in MF-type dRDE treatments can be understood as 
follows. For smooth vertical interfaces in the stochastic lattice-gas reaction model, propagation 
of the vacuum state into the populated state for p>peq is associated with fluctuation-mediated 
nucleation and growth of (d-1)-dimensional droplets of the vacuum state in the layer adjacent to 
the completely empty edge layer of the vacuum state. This feature not reflected in MF-type 
treatments where more difficult “spatially homogeneous propagation” of the vacuum state into 
the next layer is required. Considering near-vertical interfaces in MF-type treatments, i.e., 
vertical interfaces with far-separated “steps”, could potentially avoid APF. However, introducing 
“smooth” horizontal steps does not avoid APF. Why? Step propagation must still occur “spatially 
homogeneous” propagation rather than by fluctuation-mediated nucleation and growth of new 
rows of empty sites adjacent to the step as in the stochastic reaction model. However, 
introducing more easily-propagating maximally-kinked hyperskew step avoids APF. 
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The amplification of APF with increasing d follows from the form of the MF-type dRDE. 
For vertical interfaces, the spatial coupling in MF-type dRDE is ~1/d [cf. (11)]. The diminution 
of this coupling with increasing d produces an amplification of APF. The same diminution of 
coupling persists upon introducing rare horizontal steps to a vertical interface [cf. (13)], thus 
preserving APF. However, introduction of rare hyperskew steps results in strong spatial coupling 
[cf. (14)], as for the hyperskew interface orientation [cf. (10)], thus avoiding APF. 

Next, consider the d-dependence of the boundaries of the regime of 2PC. As noted above, 
there is a direct correspondence between peq(111…) = pe (the upper boundary) in KMC analysis 
and MF-type treatments. However, due to APF, peq(100…) in MF-type treatments does not 
correspond to the lower boundary, pf, of the 2PC regime (as it does in KMC analysis). We claim 
that pf can be estimated in MF-type treatments from the stationary point for near vertical 
interfaces with rare hyperskew steps, i.e., pf = limS→∞ peq(1000…HS), as such steps eliminate 
APF. Support for this claim comes from the results in Table IV. The behavior pe(f) ~ 0.2113765 + 
ce(f)/d, as d→∞, as determined from KMC analysis, is confirmed from the MF-type analysis 
where the 1/d-scaling is seen as a natural consequence of the form of the spatial coupling. As an 
aside, this strategy allows comparison of KMC and MF dRDE results for other orientations [25]. 
 

 KMC pe Pair pe δpe  KMC pf Pair pf δpf
d=2 0.09440 0.1083 0.0139  0.0871 0.1056 0.0185
d=3 0.13939 0.14295 0.0036  0.1353 0.1399 0.0046
d=4 0.15828 0.16014 0.0019  0.1548 0.1572 0.0024
d=5 0.16914 0.17042 0.0013  0.1664 0.1679 0.0015

 

Table IV: KMC and pair estimates of pe and pf, and small errors δpe(f) = pe(f)(pair) - pe(f)(KMC).  
 

7. CONCLUSIONS 
 

Our analysis indicates shrinking of the width, Δpeq(d) ≈ 0.014/d, of the regime of generic 
2PC associated with the discontinuous transition in our QCP version of Schloegl’s second model 
on a hypercubic lattice with increasing dimension d. Appropriate application of MF-type dRDE 
is shown to be effective in elucidating this behavior particularly the scaling with d. These 
features and the utility of the dRDE analysis are expected to be general for non-equilibrium 
reaction models displaying discontinuous transitions. One could extend this analysis to consider 
nucleation of the more stable phase from the less stable one just outside the 2PC region. The 
orientation-dependence of interface propagation will be reflected in the shapes of evolving 
droplets [10,11], a feature which again can be elucidated by a MF-type dRDE analysis.  
 A significant feature of the MF-type dRDE treatment is the appearance of artificial 
propagation failure (APF). APF is artificial in the sense that it does not occur in the stochastic 
lattice-gas model due to fluctuations at the interface. Propagation failure in dRDE’s of interest in 
its own right [26-28]. Studies often identify a critical value in spatial coupling below which there 
exists propagation failure, behavior which is amplified upon further reducing this coupling [28]. 
These observations are consistent with our observations, e.g., amplified APF for increasing d. 
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APPENDIX A. PAIR DISCRETE REACTION-DIFFUSION EQUATIONS (dRDE) 
 

The pair approximation is applied to (1) and (3) for spatially inhomogeneous states 
corresponding to planar interfaces between active and vacuum states. For planar interfaces with a 
hyper-skew (1111…) orientation, so that Ci1,i2,…,id = Ci1+i2+…+id =Cm, we let εm = 1-Cm denote the 
probability that a site on the hyper-skew plane m=i1+i2+…+id is empty. The probability of a NN 
empty pair with one site in plane m and the other in plane m+1 is denoted by φm+1/2. Then, the 
corresponding dRDE have the form 
 

d/dt εm = p(1-εm) - (2εm - φm+1/2 - φm-1/2)2/(4εm),      (15a) 
 

d/dt φm-1/2 = p(εm + εm-1 -2φm-1/2)        (15b) 
 

 -φm-1/2[d(εm - φm+1/2)2 + 2(d-1)(εm - φm+1/2)(εm - φm-1/2) + (d-2)(εm - φm-1/2)2]/[4d(εm)2] 
 

-φm-1/2[d(εm-1 - φm-3/2)2 + 2(d-1)(εm-1 - φm-3/2)(εm - φm-1/2) + (d-2)(εm - φm-1/2)2]/[4d(εm-1)2]. 
 

These pair dRDE reduce to those of the MF dRDE in the limit as d→∞. 
For a vertical (1000…) interface where Ci1,i2,…,id = Ci1 = Cm, we let εm = 1-Cm. The 

probability of a NN empty pair with one site in plane m and the other in plane m+1 [i.e., sites 
(i1,i2,…,id) and (i1+1,i2,…,id)] is denoted by φm+1/2. In addition, we must consider the distinct 
probability, ψm, of NN empty pair with both sites in plane m. The corresponding dRDE have the 
form 
 

d/dt εm = p[1-εm] – [εm -ψm][dεm – (d-2)ψm - φm+1/2 - φm-1/2]/[dεm],    (16a) 
 

d/dt φm-1/2 = p[εm + εm-1 -2φm-1/2] 
 

 -φm-1/2[εm - ψm][(d-1)εm – (d-1)ψm - φm+1/2]/[d(εm)2] 
 

-φm-1/2[εm-1 - ψm-1][(d-1)εm-1 – (d-1)ψm-1 - φm-3/2]/[d(εm-1)2],    (16b) 
 

d/dt ψm = 2p[εm - ψm] 
 

 -ψm[εm - ψm][2(d-1)2εm – 2(d-2)2ψm – (2d-3)(φm+1/2 +φm-1/2)]/[d(d-1)(εm)2].  (16c) 
 
Examination of the form of (16) reveals that the active state cannot displace the vacuum state, 
consistent with exact behavior in the stochastic model. 
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APPENDIX B: dRDE PERTURBATION ANALYSIS FOR VERTICAL INTERFACES AS d→∞ 
 

For a stationary planar vertical interface between the vacuum state on the left for m = 0, -1,          
-2,…and a populated state on the right for m=1, 2,…, the MF dRDE (11) imply that 
 

p – Cm(1-Cm) = d-1(1-Cm)(Cm+1 – 2Cm + Cm-1), for m≥1,    (17) 
 

where C0 = 0. For large d, the RHS is small which forces p – Cm(1-Cm) ≈ 0 or Cm ≈ Cact. Thus, it 
is natural to write Cm = Cact - δm for m≥1 where δm <<1 from which one obtains 
 

(2Cact -1)δ1 – d-1Cact(1-Cact) – (δ1)2 - d-1(2-3Cact)δ1 - d-1(1-Cact)δ2 - d-1 δ1(δ2 - 2δ1) = 0, (18a) 
 

(2Cact -1)δm - d-1(1-Cact)(δm+1 - 2δm + δm-1) – (δm)2 - d-1 δm(δm+1 - 2δm + δm-1) = 0, for m>1. (18b) 
 
 First, we consider the general case of a stationary interface for fixed p < peq(d) where    
2Cact -1 = (1-4p)1/2 = O(1). It follows from (18a) where the first two terms dominate that δ1 ≈        
d-1Cact(1-Cact)(2Cact -1)-1 = O(d-1). Then, considering the first two dominant terms in (18b) 
implies that δm ≈ d-1(1-Cact)(2Cact -1)-1 δm-1, which in turn yields 
 

δm ≈ Cact(1-Cact)m(2Cact -1)-m d-m, for m≥1.       (19) 
 

Second, in the special case of a stationary interface for p=peq(d), one might anticipate 
distinct scaling behavior in the situation where peq(d) → ¼, as d→∞. Indeed analysis of 
numerical data in Table II indicates that ¼ - peq(d) ≈ A/d where A ≈ 0.25, so that 2Cact -1 =      
(1-4p)1/2 ≈ B/d1/2 where B ≈ 1.0. This forces modified scaling from (18) above. Now, the first 
three terms in (18a) dominate, and one concludes that B≥1 and δ1 ≈ E/d1/2 where                        
E = ½[B±(B2-1)1/2]. Then, considering the first two dominant terms in (18b) implies that            
δm ≈ ½ d-1/2 B-1δm-1 for m>1, which in turn yields 

 

δm ≈ (2B)-m+1E d-m/2,  for m≥1.        (20) 
 
Data from numerical analysis of the MF dRDE’s supports this analysis. See Table V.  
 
d δ1 δ2 δ3 δ4 δ5 δ6 δ6 
10 0.1687 2.02×10-2 22.0×10-4 2.39×10-4 2.58×10-5 2.78×10-6 3.01×10-7 

100 0.0504 2.25×10-3 9.79×10-5 4.26×10-6 1.85×10-7   
1000 0.0161 2.44×10-4 3.69×10-6 5.57×10-8    
10000 0.0077 3.56×10-5 1.67×10-7     
 
Table V. Behavior of δm versus m and versus d from a MF dRDE analysis for vertical interfaces 
at p = peq. 
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 Vertical 

1000… 
Si1+i2 Si1 

+i2+…+id

Diagonal 
11000…

S(i1+i2) 
+i3+…+id 

Skew 
11100.. 

S(i1+i2+i3) 
+i4+…+id 

Hyperskew 
111… 

d=2 0.2071068 0.20505      0.2113765 
d=3 0.21038 0.20602 0.20605 0.21023 

-0.21037 
0.21030   0.2113765 

d=4 0.21514 0.20720 0.20732 0.20949- 
0.21027 

0.20990 0.21093 0.21092 0.2113765 

d=5 0.21953 0.20782- 
0.20829 

0.20834 0.20820- 
0.21099 

0.20974 0.21060- 
0.21075 

0.21068 0.2113765 

d=6 0.22312 0.20717- 
0.20974 

0.20906 0.20583- 
0.21246 

0.20971 0.21024- 
0.21081 

0.21053 0.2113765 

d=7 0.22600 0.20468- 
0.21175 

0.20957 0.20222- 
0.21437 

0.20977 0.20959- 
0.21120 

0.21045 0.2113765 

d=10 0.23188 0.18816- 
0.21845 

0.21039 0.18559- 
0.22035 

0.21015 0.20496- 
0.21414 

0.21039 0.2113765 

d=100 0.24774 0.03235- 
0.24558 

0.211365 0.03234- 
0.24566 

0.21135 0.04977- 
0.24370 

0.21134 0.2113765 

d=1000 0.24976 0.00339- 
0.24952 

0.2113764 0.00340- 
0.24952 

0.2113763 0.00531- 
0.24929 

0.2113765 0.2113765 

d=∞ 0-0.25 0-0.25  0-0.25  0-0.25  0.2113765 
 
Table II: MF results for stationary points p=peq or for regimes of propagation failure for planar 
interfaces separating populated and vacuum states. 
 
 Vertical 

100… 
Si1+i2 Si1 

+i2+…+id

Diagonal 
11000…

S(i1+i2) 
+i3+…+id 

Skew 
11100… 

S(i1+i2+i3) 
+i4+…+id 

Hyperskew 
111… 

d=2 0.106016 0.105596  0.108312    0.108312 
d=3 0.14123 0.13989 0.13989 0.14251 0.14251   0.14295 
d=4 0.16084 0.15714 0.15716 0.15930- 

0.15941 
0.15936 0.15990 0.15990 0.16014 

d=5 0.17471 0.16784 0.16794 0.16902- 
0.16972 

0.16939 0.17002 0.17001 0.17042 

d=6 0.18500 0.17476- 
0.17533 

0.17527 0.17460- 
0.17726 

0.17608 0.17664- 
0.17677 

0.17671 0.17726 

d=7 0.19288 0.17860- 
0.18138 

0.18055 0.17713- 
0.18349 

0.18090 0.18120- 
0.18175 

0.18149 0.18215 

d=10 0.20814 0.17446- 
0.19593 

0.19003 0.17204- 
0.19769 

0.18985 0.18683- 
0.19256 

0.19012 0.19093 

d=100 0.24525 0.03219- 
0.24310 

0.20932 0.03218- 
0.24318 

0.20931 0.04952- 
0.24124 

0.20930 0.20933 

d=1000 0.24951 0.00339- 
0.24926 

0.21117 0.00339- 
0.24927 

0.21117 0.00539- 
0.24904 

0.21117 0.21117 

d=∞ 0-0.25 0-0.25  0-0.25  0-0.25  0.2113765 
 
Table III: Pair approximation results for stationary points p=peq or for regimes of propagation 
failure for planar interfaces separating populated and vacuum states. Results shown for S=1024. 
 

 
 
  
 


