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Spin glasses in the non-extensive regime

Matthew Wittmann and A. P. Young
Department of Physics, University of California, Santa Cruz, California 95064

Spin systems with long-range interactions are “non-extensive” if the strength of the interactions
falls off sufficiently slowly with distance. It has been conjectured for ferromagnets, and more recently
for spin glasses, that, everywhere in the non-extensive regime, the free energy is exactly equal to that
for the infinite range model in which the characteristic strength of the interaction is independent of
distance.

In this paper we present the results of Monte Carlo simulations of the one-dimensional long-range
spin glasses in the non-extensive regime. Using finite-size scaling, our results for the transition
temperatures are consistent with this prediction. We also propose, and provide numerical evidence
for, an analogous result for diluted long-range spin glasses in which the coordination number is finite,
namely that the transition temperature throughout the non-extensive regime is equal to that of the
infinite-range model known as the Viana-Bray model.

PACS numbers: 05.50.+q 75.50.Lk 75.40.Mg

I. INTRODUCTION

In the theory of phase transitions, it is often helpful
to study models in a range of dimensions from above the
“upper critical dimension”, du, where mean-field critical
behavior is valid, to below the “lower critical dimension”,
dl, where fluctuations destroy the transition. For Ising
spin glasses dl ≃ 2.5 [1] and du = 6. However, it has
been difficult to cover this broad range numerically for
spin glasses, since du is quite large, and slow dynam-
ics prevents equilibration at low temperatures when the
number of spins N (= Ld) is greater than a few thousand.
It follows that at and above du, one cannot study a suf-
ficient range of linear sizes L to perform the necessary
finite-size scaling (FSS) analysis.
As a result, there has been a lot of recent attention on

long-range models in one dimension, in which the inter-
actions fall off with a power of the distance. Such models
have a long history going back to Dyson [2, 3], who con-
sidered a ferromagnet with interactions Jij falling off like
1/rσ, and found a paramagnet-ferromagnet transition for
σ ≤ 2. Kotliar et al. [4] were the first to study the spin
glass version of this model, which has received a lot of
attention numerically in the last few years [5–9].
Varying the power σ in the long-range spin glass model,

one has a range of behavior similar that obtained by vary-
ing the dimension in short-range models, namely there is
a “lower critical value”, σl = 1, [10] above which there is
no transition at finite temperature, and an “upper criti-
cal value”, σu = 2/3 [4], below which the transition has
mean field critical exponents. Note that increasing σ
makes the interactions more short range, and so corre-
sponds to decreasing d.
A precise connection between d for short-range models

and σ for long-range models can be made in the mean
field region (d > 6 or 1/2 < σ < 2/3), namely [11]

d =
2

2σ − 1
, (d > 6, 1/2 < σ < 2/3) . (1)

This mapping shows that d → ∞ for σ → 1/2. Since the

transition temperature in mean field theory is given by

(
TMF
c

)2
=
∑

j

[
J2
ij

]
av

, (2)

we see that for smaller values of σ, i.e. 0 ≤ σ ≤ 1/2,
the strength of the interactions has to be scaled with an
inverse power of the system size to obtain a sensible ther-
modynamic limit. We call this regime “non-extensive”.
The extreme limit of this region, σ = 0, is the Sherrington
Kirkpatrick (SK) model [12], which is “infinite-range”.
To complete the picture of the 1-d long-range spin glass
model, in this paper we study the non-extensive regime
(0 ≤ σ < 1/2), which has not been studied before, to our
knowledge, apart from the SK model (σ = 0).
The non-extensive regime for ferromagnets has already

been investigated [13, 14]. This work shows that the be-
havior in the whole non-extensive regime is the same,
with a suitable rescaling of the interactions, as that of
the infinite-range ferromagnet in which every spin inter-
acts equally with every other spin, i.e. σ = 0. We give
intuitive arguments for this in Appendix A.
It is interesting to ask if the same is true for spin

glasses. In a recent paper Mori [15] has claimed that
this is so, i.e. for all 0 ≤ σ < 1/2 the behavior is the
same as that of the SK model (σ = 0) provided the inter-
actions are scaled with system size so that

∑
j 6=i[J

2
ij ]av

is set to the same value for all σ. However, this argu-
ment is just at the level of replicating the Hamiltonian
so it becomes translationally invariant, and then arguing
that the earlier work for ferromagnets can be taken over
directly to prove the result. While plausible, this result
is by no means rigorous and so we test it here by Monte
Carlo simulations.
One of the models we simulate here is the usual one in

which every spin interacts with every other spin. How-
ever, it is also interesting to carry out the same study
for a diluted model [7] with a fixed average coordination
number z. This model has received a lot of attention re-
cently because the computer time per sweep only varies
as Nz (rather than N2 for the undiluted model), so it
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can be simulated much more efficiently than the undi-
luted model for large N . The diluted model with σ = 0
is called the Viana-Bray [16] model. It corresponds to a
spin glass on a random graph, the exact solution of which
is expected to be the Bethe-Peierls approximation. By
analogy with Mori’s proposal, we suggest here that the
behavior of the diluted spin glass model is identical to
that of the Viana-Bray model σ = 0 everywhere in the
non-extensive region (0 ≤ σ < 1/2). We shall also pro-
vide numerical evidence for this.
We should emphasize that universal quantities, such

as critical exponents, are expected to be the same ev-
erywhere both in the mean field (1/2 < σ < 2/3) and
non-extensive (0 ≤ σ < 1/2) regimes. The claim that
we test is that all the behavior of these models (not just
the critical behavior) is identical for all σ in the non-
extensive regime, at least in the thermodynamic limit.
We therefore need to look at non-universal quantities,
and focus here on one particularly convenient quantity,
the value of the transition temperature Tc.
The plan of this paper is a follows: In Sec. II we de-

scribe the models used in the simulations and give their
corresponding mean-field transition temperatures. In
Sec. III we give the details of the Monte Carlo simulations
and FSS analysis. The results are given in Sec. IV and
our conclusions are summarized in Sec. V. Appendix A
provides an intuitive explanation of why the behavior of
the ferromagnet is independent of σ in the non-extensive
regime.

II. MODELS

The Hamiltonian that we study is

H = −
∑

〈i,j〉

JijSiSj , (3)

where the Si, (i = 1, 2, · · · , L) are Ising spins which
take values ±1, and the Jij are statistically independent,
quenched, random variables. The mean is taken to be
zero and the variance satisfies

[
J2
ij

]
av

∝ r−2σ
ij , (4)

where, for the distance rij we put the sites on a ring and
take the chord distance between sites i and j [17], i.e.

rij =
L

π
sin

(
π|i − j|

L

)
. (5)

The form of the distribution of the Jij is different for
the undiluted and diluted models. For the undiluted case
the distribution of the Jij is Gaussian,

P (Jij) =
1√

2π∆Jij
exp

(
−J2

ij

2 (∆Jij)
2

)
, (undiluted),

(6)

where the variance is given by

(∆Jij)
2
=

C2

r2σij
, (7)

in which C is a constant to be determined below.
In order to compare models with different values of σ,

for each σ and L, we scale the variance so that
∑

j

[
J2
ij

]
av

= 1 , (undiluted), (8)

where the sum is for fixed i and we have Jii = 0. Equa-
tion (8) determines the value of C in Eq. (7). Because
we consider the non-extensive regime, C must vanish for

L → ∞ like Lσ−
1

2 .
The expression for the mean-field transition temper-

ature in Eq. (2) is the exact result for the SK model,
σ = 0. Hence, from Eq. (8), we have

Tc(σ = 0) = 1 (undiluted) . (9)

For the diluted model, rather than the strength of the
interaction falling off like 1/rσij , most bonds are absent
and it is the probability of there being a non-zero bond
which falls of with distance (asymptotically like 1/r2σij ). If
a bond is present it is chosen from a Gaussian distribution
with mean zero and variance unity (i.e. independent of
rij). In other words

P (Jij) = (1− pij) δ (Jij) + pij
1√
2π

e−J2

ij/2 , (diluted),

(10)
where pij ∝ 1/r2σij at large distance.
It is convenient to fix the mean number of neighbors z.

The pairs of sites with non-zero bonds are then generated
as follows. Pick a site i at random. Then pick a site j
with probability p̃ij = A/r2σij , where A is determined by
normalization. If there is already a bond between i and j
repeat until a pair i, j is selected which does not already
have a bond1. At that point set Jij equal to a Gaussian
random variable with zero mean and variance unity. This
process is repeated Nz/2 times so the number of sites
connected to a given site has a Poisson distribution with
mean z. Because each site has, on average, z neighbors,
and the variance of each interaction is unity, we have

∑

j

[
J2
ij

]
av

= z , (diluted) . (11)

The transition temperature for the diluted model with
σ = 0 was shown by Viana and Bray [16] to be given by
the solution of

1√
2π

∫ ∞

−∞

dx e−x2/2 tanh2
(

x

Tc

)
=

1

z
. (12)

1 Note that if zp̃ij ≪ 1 then pij in Eq. (10) is given by pij = zp̃ij ,
but otherwise there are corrections due to rejection of pairs i, j
when there is already a bond between them.
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σ L Nsamp Nequil Nmeas Tmin Tmax NT

0 64 16000 1000 10000 0.5 1.65 47
0 128 16000 1000 10000 0.5 1.6 45
0 256 16000 1000 10000 0.5 1.6 45
0 512 8000 1000 10000 0.75 1.55 33
0 1024 8000 1000 10000 0.75 1.5 31
0 2048 4000 1000 10000 0.75 1.5 31
0 4096 4000 2000 10000 0.85 1.525 28

0.25 64 16000 1000 10000 0.5 1.65 47
0.25 128 16000 1000 10000 0.5 1.6 45
0.25 256 16000 1000 10000 0.5 1.6 45
0.25 512 8000 1000 10000 0.5 1.525 42
0.25 1024 8000 1000 10000 0.75 1.5 31
0.25 2048 4000 1000 10000 0.75 1.5 31
0.25 4096 4000 2000 10000 0.85 1.525 28

TABLE I: Simulation parameters for the undiluted models.
Nsamp is the number of samples, Nequil and Nmeas are the
number of sweeps for equilibration and for the measurement
phase, respectively. We simulate NT temperatures between
Tmin and Tmax.

σ L Nsamp Nequil Nmeas Tmin Tmax NT

0 256 8000 400 8000 1.85 2.5 27
0 512 8000 800 16000 1.85 2.5 27
0 1024 8000 2000 40000 1.85 2.5 27
0 2048 4000 2000 40000 1.85 2.5 27
0 4096 4000 2000 40000 1.9 2.5 25
0 8192 2000 4000 80000 1.9 2.5 25
0 16384 2000 4000 80000 2.0 2.5 14

0.25 256 8000 800 16000 1.85 2.5 27
0.25 512 8000 800 16000 1.85 2.5 27
0.25 1024 8000 1200 24000 1.85 2.5 27
0.25 2048 4000 2000 40000 1.85 2.5 27
0.25 4096 4000 2000 40000 1.9 2.5 25
0.25 8192 2000 4000 80000 1.9 2.5 25
0.25 16384 2000 4000 80000 2.0 2.5 14

0.375 256 32000 1200 24000 1.863 4.0 24
0.375 512 26327 1200 24000 1.863 4.0 26
0.375 1024 16000 1200 24000 1.913 4.0 24
0.375 2048 15998 2000 40000 1.95 4.0 24
0.375 4096 8000 4000 80000 1.962 4.0 28
0.375 8192 7999 4000 80000 1.975 4.0 34
0.375 16384 4000 4000 80000 2.0 2.51 18

TABLE II: Simulation parameters for the diluted models.
The parameters are the same as in Table I

.

We choose z = 6 for which we find

Tc(σ = 0) = 2.0564 , (diluted) . (13)

III. METHOD

We perform Monte Carlo simulations on the models
described in Sec. II. To speed up equilibration we use
the parallel tempering (exchange) Monte Carlo method

[18]. In this approach one simulates NT copies of the
spins with the same interactions, each at a different tem-
perature between a minimum value Tmin and a maximum
value Tmax. In addition to the usual single spin-flip moves
for each copy, we perform global moves in which we in-
terchange the temperatures of two copies at neighboring
temperatures with a probability which satisfies the de-
tailed balance condition. In this way, the temperature
of a particular copy performs a random walk between
Tmin and Tmax, thus helping to overcome the free energy
barriers found in the simulation of glassy systems.
For the simulations of the undiluted model to be in

equilibrium the following equality must be satisfied [17],

U = −
(
TMF
c

)2

2T
(1 − ql) , (undiluted), (14)

where

U = −
∑

〈i,j〉

[Jij〈SiSj〉]av , (15)

is the average energy, and ql is the “link overlap” defined
by

ql =
2

N

∑

〈i,j〉

[J2
ij ]av

(TMF
c )2

[〈SiSj〉2]av, (undiluted). (16)

in which TMF
c is given by Eq. (2) (and here set equal

to unity by the scaling of the interactions, see Eq. (8)).
Equation (14) is obtained by integrating by parts with re-
spect to the Jij the expression for the average energy, and
noting that the distribution is Gaussian. This equation
is useful because, very plausibly, the two sides approach
their common value from opposite directions [17], so, if
the two sides agree, the system has reached equilibrium
(at least for the energy and link overlap).
For the diluted model, the equilibration test takes the

form, [5]

U = − z

2T
(1− ql) , (diluted), (17)

where the link overlap is now defined by

ql =
2

Nz

∑

〈i,j〉

[
ǫij〈SiSj〉2〉

]
av

, (diluted), (18)

in which ǫij = 1 if there is a bond between i and j, and
zero otherwise. As with Eq. (14), we expect that the
two sides of Eq. (17) approach each other from opposite
directions as equilibrium is approached.
We consider results obtained by successively doubling

the number of sweeps, in each case averaging over the
last half of the sweeps, and we accept the data as being
in equilibrium if the last three data points agree with
each other within the error bars. The total number of
sweeps used in this check is shown as Nequil in Tables I
and II. We then do “production” runs where, in addition
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to Nequil sweeps for equilibration, we do 10 to 20 times
as many sweeps, Nmeas, during which measurements are
performed. All the parameters used in the simulations
are given in Tables I and II. To avoid bias, each distinct
thermal average, for example in Eq. (16), is evaluated
in a separate copy (replica) of the system with the same
interactions.
We focus on moments of the spin glass order parameter

q where

q =
1

L

∑

i

S
(1)
i S

(2)
i , (19)

in which “(1)” and “(2)” refer to two independent copies
of the system with the same interactions. Of particular
interest are the spin glass susceptibility

χSG = L〈q2〉 , (20)

and the Binder ratio

g =
1

2

(
3− [〈q4〉]av

[〈q2〉]2av

)
. (21)

Since the Binder ratio is dimensionless, its finite-size
scaling (FSS) behavior is simple. We are always in the
regime of mean field critical exponents (0 ≤ σ < 2/3), so
it has the form [19]

g = g̃
(
(T − Tc)L

1/3
)
. (22)

The spin glass susceptibility is not dimensionless but,
since we are in the mean field regime, its FSS form is
also known exactly. It has the form [19]

χSG = L1/3 χ̃
(
(T − Tc)L

1/3
)
. (23)

One can therefore determine the transition tempera-
ture from where the data for g or χSG/L

1/3 for different
sizes intersects. However, we shall see that the data does
not all intersect at a single temperature, showing that
there are corrections to the FSS form in Eqs. (22) and
(23). Consider Eq. (23). According to standard finite-
size scaling, the spin-glass susceptibility normally varies
near the critical point according to [11]

χSG(t, L) = La
[
f(Lbt) + L−ωg(Lyt) + · · ·

]
+c0+c1t+· · · ,

(24)
where t = T − Tc, a = 2 − η (= 2σ − 1 here), and b =
1/ν. The L−ω term is the leading singular correction to
scaling and c0 is the leading analytic correction to scaling.
However, in the mean field limit, σ < 2/3, the exponents
a and b are independent of σ[20–22] and take the value at
σc for all 1/2 < σ < σc, i.e. a = b = 1/3. Furthermore,
although the L2σ−1 term is replaced as the largest term
by an L1/3 term (due to the presence of a “dangerous
irrelevant variable,”cf. Refs. [20–22]) we expect [11] this

term to not disappear but rather become a correction to

scaling. Hence, we replace Eq. (24) by

χSG(t, L) = L1/3
[
f(L1/3t) + L−ωg(L1/3t) + · · ·

]

+ d0L
2σ−1hg(L1/3t) + c0 + c1t · · · . (25)

The correction exponent ω can be obtained in the mean-
field regime from the work of Kotliar et al. [4] and is given
by ω = 2− 3σ. Hence, in the non-extensive regime, σ <
1/2 the dominant correction to scaling is the constant c0.
Adding a constant to the RHS of Eq. (23) it is straight-

forward to show that the intersection temperature of the
data for χSG/L

1/3 for sizes L and 2L is given by

T ⋆(L, 2L) = Tc +
A

L2/3
+ · · · , (26)

where A is a constant and the omitted terms are higher
order in 1/L. We expect that the intersection tempera-
tures for the data for g have the same form. We shall use
Eq. (26) to determine Tc for the models studied.

IV. RESULTS

We first present our results for the undiluted model.
Data for the the scaled spin glass susceptibility and the
Binder ratio are shown in Fig. 1. The top part is for the
SK model, σ = 0, and the bottom part is for the undi-
luted model with σ = 0.25. One sees large corrections
to scaling for the Binder ratio (the left-hand figures) but
much smaller corrections for the scaled spin glass suscep-
tibility (the right-hand figures). The inset enlarges the
region of the intersections for the latter data.
Figure 2 shows values for the intersection tempera-

ture. These were determined by interpolation using cubic
splines, and error bars computed by a jackknife analysis.
For both values of σ the data extrapolates to a value of
1, the exact value for the SK model, (with very small er-
rors). The quality of the fit, as represented by the good-
ness of fit parameter Q [23], is satisfactory except for
the Binder ratio data for the SK model. We don’t have
a good explanation for this, except perhaps that multi-
ple corrections to scaling are significant for the range of
sizes studied. In any case we note that the result Tc = 1
for the SK model is rigorously correct. The result that
Tc = 1 also for σ = 0.25, at the midpoint of the non-
extensive region, provides strong evidence for the claim
of Mori [15] that all models in the non-extensive region
are identical to the SK model. While it would be useful
to check this also in the space glass phase below Tc, such
simulations would be difficult because relaxation times
increase dramatically at low T and so the range of sizes
that could be studied would be much more limited than
in the data presented here.
The corresponding results for the diluted model for

σ = 0 and 0.25 are shown in Figs. 3 and 4. We also
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FIG. 1: (Color online) Data for the the scaled spin glass susceptibility and the Binder ratio for the undiluted model with σ = 0,
the SK model, (top), and the undiluted model with σ = 0.25 (bottom). The dashed vertical line shows the exact value of the
transition temperature (Tc = 1) for the SK model.

performed simulations for σ = 0.375 and show the re-
sulting intersection temperatures in Fig. 5. For σ = 0,
the Viana-Bray [16] model, the transition temperature
is given by Eq. (12) which, for z = 6 taken here, gives
the result in Eq. (13). In Fig. 3 we again see that cor-
rections to scaling are larger for the Binder ratio than
for the scaled spin glass susceptibility. The intersection
temperatures all extrapolate to the exact value for σ = 0

within statistical uncertainty2.

2 All the results within one standard deviation except for the data
for g for σ = 0 and χSG/L1/3 for σ = 0.25 but even these
are within ∼ 1.5 standard deviations, which we also consider
acceptable.
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FIG. 2: (Color online) Results for the intersection temperatures for the SK model (left) and the undiluted σ = 0.25 model
(right).

V. SUMMARY AND CONCLUSIONS

We have performed Monte Carlo simulations to investi-
gate the transition temperature of one-dimensional Ising
spin glasses, both undiluted and diluted, for several val-
ues of σ in the non-extensive regime 0 ≤ σ < 1/2. For
the undiluted model we studied two values of σ, σ = 0
and σ = 0.25. For σ = 0.25, which lies in the middle
of the non-extensive regime, we find that the transition
temperature agrees to high precision with the exact so-
lution of the SK model. As a check, we also simulated
the σ = 0 case, obtaining results consistent with the ex-
act SK model result, though there seem to be multiple
corrections to FSS for some of the data.
For the diluted model we studied three values of σ:

σ = 0, which corresponds to the Viana-Bray model,
σ = 0.25, which lies in the middle of the non-extensive
regime, and σ = 0.375. In all cases we found the tran-
sition temperature to be consistent with the exact solu-
tion of the Viana-Bray model; all results are within ∼ 1.5
standard deviations.
To conclude, our results provide confirmation of the

proposal [15] that the behavior of (undiluted) spin glasses
everywhere in the non-extensive regime is identical to
that of the SK model. We have also proposed that an
analogous result applies to diluted spin glass models, and
provided numerical evidence for this too.
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Appendix A: Spherical Approximation for the

ferromagnet

For the infinite-range ferromagnet, the interaction Jij
is equal to 1/(N − 1) for i 6= j and 0 for i = j. This
fixes Tc = 1. The Fourier transform of this interaction is
given by

J(k) = δk,0 −
1

N
, (A1)

so only the k = 0 mode contributes to the transition.
For a power-law decay of the interactions in the non-

extensive regime (0 < σ < 1), on dimensional grounds
there is a singular piece which diverges like kσ−1 for k →
0. Furthermore the interactions have to be multiplied by
a number of order Nσ−1 in order to satisfy the condition
TMF
c =

∑
j Jij = 1. Hence, roughly speaking, we have

J(k) ∝ (kN)
σ−1

, (A2)

where we note that k ≡ kn = 2πn/L, (n = 0, 1, 2, · · · ).
(For n = 0, J(0) does not actually diverge but will be
comparable to J(k1)). Hence other long wavelength
modes, in addition to k = 0, are now significant. How-
ever, we shall now see that there are not enough of them
to change the value of Tc from that of TMF

c (= 1).
We will do this by considering the “spherical approx-

imation” [24]. in which we reexpress the problem as a
Gaussian one, with “soft” spins φi which take values from
−∞ to ∞, and a Hamiltonian

HGauss =
1

2

∑

i,j

(µδij − Jij) φiφj , (A3)

where µ is a Lagrange multiplier whose value is chosen
to enforce the length constraint

〈φ2
i 〉 = 1 . (A4)
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FIG. 3: (Color online) Data for the the scaled spin glass susceptibility and the Binder ratio for the Viana-Bray model, i.e. the
diluted model with σ = 0 (top), and the diluted model with σ = 0.25 (bottom). The dashed vertical line shows the transition
temperature for the Viana-Bray model obtained from Eq. (12) of the text.

It turns out the the spherical approximation is exact for
an m-component model in the limit m → ∞ [25]. Fourier
transforming Eq. (A4) and doing the Gaussian integrals
gives

1

T
=

1

L

∑

k

1

µ− J(k)
. (A5)

The transition occurs when the denominator vanishes at

k = 0, i.e. when µ = J(0) and so

1

T spher
c

=
1

L

∑

k

1

J(0)− J(k)
. (A6)

It is interesting to compare this with the mean field re-
sult, Tc =

∑
j Jij = J(0). Since Jii = (1/L)

∑
k J(k) = 0
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FIG. 4: (Color online) Results for the intersection temperatures for the Viana-Bray model (left) and the diluted model with
σ = 0.25 (right).

FIG. 5: (Color online) Results for the intersection tempera-
tures for the diluted model with σ = 0.375.

we can rewrite the mean field transition temperature as

TMF
c =

1

L

∑

k

[ J(0)− J(k) ] . (A7)

Thus, whereas in mean field theory, Tc is equal to the
average of J(0) − J(k), in the spherical approximation
1/Tc is equal to the average of the inverse of this.
For the infinite range model, where J(k) is given by

Eq. (A1) and only the k = 0 mode contributes, the spher-
ical result agrees with the mean field result (consistent

with the MF result being exact for this model).

We now estimate Tc from the spherical approximation,
Eq. (A6), for the power-law model, where J(k) varies
like Eq. (A2). Because we normalize the interactions to
J(0) = 1, we can include an extra factor of J(0) and
expand in powers of J(k)/J(0), i.e.

1

T spher
c

=
1

L

∑

k

1

1− J(k)/J(0)
(A8a)

=
1

L

∑

k

[
1 +

J(k)

J(0)
+

(
J(k)

J(0)

)2

+ · · ·
]

(A8b)

= 1 +
1

L

∑

k

[(
J(k)

J(0)

)2

+ · · ·
]

(A8c)

= 1 +

∑
j J

2
ij(∑

j Jij

)2 + · · · , (A8d)

where in Eq. (A8c) we used that
∑

k J(k) = 0. In
Eq. (A8d) we have

∑
j Jij ∝ L1−σ while

∑
j J

2
ij =

L1−2σ (0 ≤ σ < 1/2),
∑

j J
2
ij = const. (1/2 < σ < 1).

Hence the leading correction term in Eq. (A8d) vanishes
everywhere in the non-extensive regime.

To conclude, in this appendix we have given a sugges-
tive argument as to why Tc for the ferromagnet is given
exactly by the mean field value everywhere in the non-
extensive regime. It is therefore also plausible that other
properties are also identical to those of mean field theory
(i.e. the infinite-range model.)
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