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We introduce a generic model of weakly non-linear self-sustained oscillator as a simplified tool
to study synchronisation in a fluid at low Reynolds number. By averaging over the fast degrees of
freedom, we examine the effect of hydrodynamic interactions on the slow dynamics of two oscillators

and show that they can lead to synchronisation.

Furthermore, we find that synchronisation is

strongly enhanced when the oscillators are non-isochronous, which on the limit cycle means the
oscillations have an amplitude-dependent frequency. Non-isochronity is determined by a nonlinear
coupling a being non-zero. We find that its (a) sign determines if they synchronise in- or anti-

phase.

We then study an infinite array of oscillators in the long wavelength limit, in presence

of noise. For a > 0, hydrodynamic interactions can lead to a homogeneous synchronised state.
Numerical simulations for a finite number of oscillators confirm this and, when a < 0, show the
propagation of waves, reminiscent of metachronal coordination.

Collections of cilia and flagella are examples of systems
that display synchronisation [1]. They are microscopic
active filaments attached to the membrane of pro- and
eukaryote cells [2] whose synchronisation is thought to aid
the efficiency of transport at the cellular scale. Typically
arrays of cilia generate fluid flows along tissues but can
also be used, like flagella, for the self-propulsion of swim-
ming cells. Due to their tiny size, the Reynolds number
associated with these flows is negligible. The coordinated
beating of cilia is also thought to have important devel-
opmental implications, such as the left-right symmetry
breaking in the arrangement of the internal organs in the
early embryo [3]. A precise understanding of the role hy-
drodynamics plays in their synchronised motion, is still
missing.

Both cilium and flagellum are made of complex sub-
units, microtubules driven by molecular motors, and
their modelling can be done at many levels. As syn-
chronisation takes place on length-scales larger than the
individual filaments, to a first approximation the fine
details of their internal structure can be ignored. This
coarse-grained approach has led to model studies of self-
sustained oscillators [4], rotating beads [5-7]; beating
filaments [8], as well as rigid rotating helices, [9, 10].
More recent work has focused on the conditions for hy-
drodynamic synchronisations for two oscillators [11] and
the phase dynamics of oscillators with long range inter-
actions [12]. Related experiments investigating the dy-
namics of micro-systems have been performed in vivo on
algae, [13, 14] and on simple model systems [15], and even
a macroscopic scale model of rotating paddles [16]. All
these studies suggest that simple forms of active forces,
e.g. as prescribed functions of time, are not enough
to guarantee synchronisation. Rather, a complex, non-
linear relation between forces and velocities is necessary.
Important questions therefore are what aspects of hydro-
dynamic interactions aid synchronisation and what fea-
tures of oscillators make them good hydrodynamic syn-
chronizers.

The dynamics of a system close to an oscillatory in-
stability can be conveniently described by weakly non-

linear oscillators whose averaged equations are univer-
sal [1]. This implies that the long time behaviour of many
systems with simple spontaneous oscillations can be cap-
tured by a generic model with a few parameters. Using
this insight, in this paper we introduce a minimal model
of an oscillator at low Reynolds number. To simplify our
presentation, we study our model in one-dimension. At a
coarse grained level, this degree of freedom can be inter-
preted as the centre of a filament beating in a plane [17].

The slow dynamics of the oscillator is naturally char-
acterised using of two variables: the amplitude and the
phase. Under arbitrary initial conditions, the trajecto-
ries of an isolated oscillator on long timescales converge
to a closed curve, the limit cycle [18]. While the ampli-
tude is tightly constrained to the limit cycle curve, the
phase can vary more freely. Hence many model studies
of synchronisation have focused only on the phase dy-
namics [5-7, 11, 12]. Our goal in this paper is to anal-
yse the role played by both the amplitude and phase dy-
namics on phase synchronisation mediated by hydrody-
namics. We first study a pair of well separated deter-
ministic oscillators and find that hydrodynamic interac-
tions strongly enhance phase locking, if the oscillations
are non-isochronous, which on the limit cycle means that
the frequency of oscillations depends on the amplitude.
We then consider an array of many oscillators, still well
separated, in the presence of fluctuations. On long wave-
lengths their slow dynamics can be naturally represented
in terms of a broken symmetry (phase) variable, which
is a non-equilibrium analogue of a Goldstone mode [19].
Denoting by a # 0 the parameter responsible for the non-
isochronity of the oscillations, we find that when o > 0,
hydrodynamic interactions can lead to in-phase synchro-
nisation of the array. These results are confirmed by
numerical simulations, which show also that conversely,
for aw < 0, the synchronisation is more subtle and leads
to the propagation of waves.

a. The model oscillator A universal model for stable
spontaneous oscillations is provided by the normal form
of a dynamical system close to a supercritical Hopf bifur-
cation [18]. To be concrete, we represent the oscillator in



a low Reynolds number fluid as a sphere of radius a sub-
ject to a time-varying force f. The equation of motion
for the sphere, with z its deviation from its equilibrium
position, is

i=L (1)

where v = 67na is the Stokes drag. The dynamics is
encoded in the evolution equation for the force f :

f=0(fxz):= —éx—i—u%(l—aa@)—l—azg. (2)

Here, all the parameters, except « are positive quantities,
The 1st and 3rd term of eq (2) give rise to respectively,
a linear and a non-linear passive oscillator, while the 2nd
term is responsible for active, self-sustained oscillations.
We emphasize that all the terms in eq (2) would emerge
naturally from coarse-graining any friction-dominated
microscopic model oscillator [4, 10, 17]. Egs (1), (2)
can be conveniently non-dimensionalised as © = f; and
J = —x+ e,f(1 — 2%) + €42, choosing units where
T = £. They correspond to a weakly non-linear Van
der Pol-Duffing oscillator [18]. The parameters €, := &
and €, := 7 are small quantities. We restrict ourselves
here mainly to cases where €,/¢, = O(1).

b. Two oscillators coupled hydrodynamically The
oscillators are arranged along the x-axis. The forces f;
acting on the spheres, for ¢ = 1,2, are directed along
the same axis and cause sphere 1 to oscillate around the
origin and sphere 2 around position d. We denote by x;
the deviations from these equilibrium positions, see fig 1.
Their equations of motion are

i1 == (fi+H(r)f2);
(3)
oy =2 (fa+ H(r)f1),

where H (r) is a scalar, representing the hydrodynamic in-
teractions, and r := d+x2 — 21 is the separation between
the sphere centres. We shall consider the limit of large
separation r compared to the sphere radius a. Then, for
an unbounded three-dimensional fluid, interactions are
described by the Oseen tensor [20] as H(r) = 3¢, For a
rigid surface with a non-slip boundary condition, placed
at distance h from the oscillators, one obtains effective in-
teractions scaling as H (r) ~ “T—}f [21]. For an assembly of
oscillators arranged on a regular lattice, d can be thought
of as the lattice spacing, see fig 1. We assume that it
is large compared to the amplitude of the oscillations,
d > x5 — 1, and that the ratio €4 := a/d, characterising
the hydrodynamic coupling, satisfies €4 < €,,€4. The
time evolution of forces is given by fi = W(f;,x;), with
U(f;, ;) defined in eq (2), and is entirely local [4]. The
long-range hydrodynamic coupling links the coordinates
x; via eq (3). In the following we denote the nonlinear
parts of U(f;, z;) by Fi(x;, fi) := %fz(l - Ja:?) + ax.
To proceed, we take the time derivative of both sides
of eq (3) and use, on the rhs, the evolution equation for

FIG. 1: (color online) One dimensional lattice of oscillators.
The inset illustrates the dynamic variables of a pair.

the forces and the expression of forces as functions of
velocities #; obtained by inverting eq (3) as an expan-
sion in a/r. Thus, to leading order, we obtain equations
for oscillators with reactive couplings [1] (given by %)

- 2 _ 1 : 2
as i1 +wiwr = SFi(e1,y81) + 2

%}'2(172,7:1'72)—1- %xl, where © := —H(d)£. wy represents
the natural frequency of the linear oscillators, defined
by wi = WLT Note terms like #]—]—(mi,ﬂym’i), of order
O(eqey,) and 25 f;, of order O(€2) have been neglected.
We now derive the equations governing the slow dy-
namics of the oscillators [1]. This is done naturally
using a complex amplitude A and its complex con-
jugate Aj; related to position and velocities by xj, =
$(Ape™ + Aze~™) and iy = L2 (Age™! — Aje™t) for
k = 1,2. This requires of course that A* = —Ae2«t,
Here w is the (unknown) frequency of the non-linear os-
cillators, determining the period, 7' = 2% of the (fast) os-
cillations. The (slow) complex amplitudes, on the other
hand, hardly change on this timescale. Writing eq (3)
and the dynamic equations for the forces in terms of Ay
and A; and averaging over the period 1" one obtains

To and Zo + w%xg =

Ay = —iAAy + Ny — (B +ix)Az| As)® + 1641, (4)

2_ 2
w —wo — M
;A

The parameters are defined as A = —

. o . 3« . H) Kk

Writing the complex amplitudes Ay in polar form,
Ap = Rpe™*, eqs (4) become a coupled system for the
amplitudes Ry and the phases ¢. Finally, this system
can be reduced to a single equation for the phase dif-
ference [1]. This can be achieved perturbatively, when
the parameter J§, parametrising the hydrodynamic inter-
actions, is small compared to the other terms. If in-
teractions are neglected, Ry have fixed points given by

Ry = % The dynamics of small deviations from these

fixed points can be studied by writing Ry = \/%(1 + Sk)s

for s, < 1. One finds that the deviations sy relax quickly
to zero. Setting s = 0 we obtain s; as functions of
the phase difference ¢ := ¢ — ¢1. The resulting expres-
sions are then substituted in the equations for the phases.



From them one obtains an Adler equation [1] for v,
- )
w:a-z%smw. (5)

Hence, eq (5) illustrates that phase locking is deter-
mined by the hydrodynamic coupling, via d, provided
the oscillator is nonisochronous, i.e. a # 0. Note that %X

l feeq and 7 is related to the difference of the

natural frequenc1es of the oscillators. We choose them to
be identical, so we can set 7 = 0. While for v # 0 varying
the ratio of 7 and %X controls the saddle-node bifurcation

scales as ~

of cycles [18], for ¥ = 0 eq (5) has a stable fixed point
given by one of the zeros of sin(y) for ¢ € [0,27]. The
position of the stable point is determined by the sign of
—%X, which in turn is determined solely by the sign of
the non-isochronism parameter a: when a < 0, then the
equation has a stable fixed point at ¥ = 7, i.e. the os-
cillators lock in anti-phase; vice-versa, if a > 0 then the
equation has a stable fixed point at ¢ = 0 and the os-
cillators lock in-phase. A numerical solution, using the
Euler method, of eq (3) confirms this.

It is also interesting to note that the two flagella of
the microscopic algae C. Reinhardtii are found to alter-
nate between periods of synchronised (with small phase
difference) and non-synchronized beating [13, 14]. This
is well described by a stochastic Adler equation, of the
same form as eq (5) but with an additional fluctuating
term [14]. The estimates of the parameters presented
in [14], for the flagellar synchronisation, indicate positive
values for o and 7 of our model.

When o = 0, we need to include higher order correc-
tions in der1V1ng eq (5). Upon doing this we find to lead—
ing order ¢ ~ —3eqeu[1+3 62 cos 1)) siny). When ¢4 <

the synchronisation is 1n-phase Otherwise, both in- and
anti-phase states are possible and synchronization de-
pends on details such as initial conditions (confirmed nu-
merically). These higher order terms also indicate that
the transition from in-phase to anti-phase in general oc-
curs at some «, # 0. Unsurprisingly when o = 0, syn-
chronisation occurs more slowly (a higher order effect).
c.  Many oscillators coupled hydrodynamically —As we
have discussed above, the amplitudes of the oscillators
are tightly constrained to the limit cycle and the long
time behaviour can be reduced to an effective (amplitude
dependent) dynamics of the phases. For a large num-
ber N of oscillators, in the dilute regime, this is done
by introducing the one-particle probability c(¢,y,t) =
(% Egﬂ 0(p—r(t)) d(y—yi(t))) of having an oscillator
with slow phase ¢, at site y at time ¢, where the brack-
ets () indicate the average over noise. The probability
satisfies a Smoluchowski equation
Orc = D(??wc — Oy ([w1 + Qc). (6)
D is the diffusion coefficient resulting from both thermal
and active fluctuations, wy the deterministic contribution
of an isolated oscillator with w; = —A — X—B’\ and Q the

deterministic effect of the hydrodynamic interactions,

Qy, ¢, 1) ?=/dyzdwzc(%,yzaf)ﬂgmt(y2—ya%@z)- (7)

¢znt (902 _

the dynamlcs of two oscillators, (see eq (5)). It describes
the effect of the interactions on the phase of one oscillator
due to the presence of the another. Here, ¢' := §(Jy2—y]).

The 1-particle probability can be expressed as an ex-
pansion in its moments:

©) + & cos(p2 — ) is obtained from

c(p,y,t) = % [p(y,t) + (e7#@(y,t) +c.c.) +...] (8)

To study synchronization we only need the first two :
2
p(y,t) == / dec(p,y,t) ;  (density)
0

2m
D(y,t) := / dpe?c(p,y,t);  (1st harmonic) . (9)
0

The emergence (or not) of a globally synchronized state
is obtained from the homogeneous probability c?(ip, 1),
with associated moments p°(t), ®°(¢) representing spa-
tially homogeneous dynamical states. The correspond-
ing expression for Q° is obtained by evaluating the
space integral in eq (7) with ¢ = cO. For hydrody-
namic interactions scaling as H(r) ~ £ the leading term
from the integral depends both on the lattice spacing
d, and the total length L of the array. Hence, Q°(t) =

i"fv 1n(L/d)[—i% + 1]e=#1®%(t) + c.c. For interactions

scaling as H(r) ~ “T—}éz, the leading term in the integral
depends only on the lattice spacing d. Consequently, the

term aln (L/d) is replaced by one ~ %4, Dynamic equa-
tions for the homogeneous moments are derived by tak-
ing the time derivative of both sides of eq (9), inserting
eq (6) and using eq (8) to close the system. Since p is a

conserved variable, 9;p° = 0, while ®° satisfies
0,00 = T9°, (10)

It is worth noting that in the absence of noise
Ap,t) = %Zi\;l 5(p — @i(t)) and ®°(t) reduces to
the order parameter introduced by Kuramoto, ®°(t) =
N Z ek () representing the (mean field) average
over a populat1on of oscillators [1, 12, 22].

It is useful to express ®°(t) = PO(£)e’@’® in polar
form (reflecting the U(1) symmetry). We obtain equa-
tions for its amplitude and phase as §;P° = Re[l'|P°
and 9,Q" = Im[l']. Re(T') = —(D — %4 In(L/d)p°)
is the real part of I'. Here, the first term is due to
noise, whereas the second term encodes the effect of
two body interactions. The imaginary part is Im(I") =
(w1 + 22 In(L/d)).

As in the Kuramoto model [1, 22], order (synchronisa-
tion) is determined by a non-zero, constant value of P°.
Here, the dynamic equation for P° shows that the onset
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FIG. 2: (color online) Space-time plots of the positions for
N = 100 deterministic oscillators, (D = 0). (a), (b) describe
respectively the case for a > 0 and «a < 0, after long time.
The initial conditions of the oscillators are the same for both
values of a: identical amplitudes, close to the maximum value,
and random, Gaussian distributed, phases. The parameters of
the model are v = 107 3Pa s wm; £ =128 ., = 0.052%;

T um s; pum?
o = 1(um)~?; |a| = 0.052Y— and a/d ~ 0.005.
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of order is controlled by the sign of Re[l']. If Re[l'] < 0,
order is suppressed. On the contrary, when Re[l'] > 0, or-
der is enhanced. A stabilising term of the type ~ ®°|®°|2
in eq (10) is needed for P to stop unbounded growth and
attain a finite value at long times. Such a term could be
generated for instance by taking into account three-body
interactions. Finally, the condition Re[l'] = 0 defines
a transition line in the space of parameters [19]. Cru-
cially, from these considerations, homogeneous synchro-
nization is possible only when a > 0: (i) in presence of
noise (D # 0) and by keeping all the parameters fixed,
synchronisation occurs only above a particular value of
density; (ii) neglecting noise (D = 0), instead, synchroni-
sation occurs for any (finite) value of the density. On the
contrary, when a < 0 both terms in Re(I") are negative
and homogeneous order is prohibited. This behaviour
suggests a spin analogy, where a > 0 (ferromagnet) pro-
motes alignment of neighbouring oscillator phase (spins)

while o < 0 (antiferromagnet) promotes anti-alignment.

We compared these results with numerical simulation
for a large but finite number of deterministic oscillators
(D = 0). In fig 2 we show typical space-time plots for the
positions of N = 100 oscillators and compare the effects
of different signs of «. For av > 0, see fig 2(a), the sys-
tem displays spatially homogeneous order, i.e. in-phase
synchronised state. Interestingly, when o < 0, although
homogeneous order is lacking, fig 2(b) still shows a co-
herent motion of the oscillators, with propagating waves.
As suggested by the antiferromagnetic analogy, the oscil-
lators self-organise into a dynamical state which is close
to the anti-phase synchronised state, but deviates from
it at long wavelengths.

In conclusion, we have presented a simple, one-
dimensional model (that can be generalised to higher di-
mensions [23]) to investigate analytically the role of hy-
drodynamic interactions on the synchronisation dynam-
ics of oscillators at low Reynolds number. We studied the
case of two oscillators and found that synchronisation, ei-
ther in- or anti-phase, was determined to leading order by
both hydrodynamic interactions and non-isochronism of
the oscillations (e # 0). We then derived a coarse grained
description for an infinite array of oscillators and found
that spatially homogeneous order, corresponding to the
in-phase synchronisation of the array, can occur only for
a > 0. Systems of cilia are known to display metachronal
waves [24]. Our analysis suggests that these could be ob-
tained in two different ways: either as slow hydrodynamic
(phase) modes, like spin waves, when « > 0; or alterna-
tively, for o < 0, as a spatially inhomogeneous, approxi-
mately anti-phase synchronised state, as indicated by the
numerics. A more extensive investigation of these issues
is left for the future.
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