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We show that inhibitory networks composed of two endogenously bursting neurons can

robustly display several coexistent phase-locked states in addition to stable anti-phase and in-

phase bursting. This work complements and enhances our recent result [S. Jalil, I. Belykh,

A. Shilnikov, Phys. Rev. E, V. 81, 045201(R) (2010)] that fast reciprocal inhibition can

synchronize bursting neurons due to spike interactions. We reveal the role of spikes in

generating multiple phase-locked states and demonstrate that this multistability is generic

by analyzing diverse models of bursting networks with various fast inhibitory synapses; the

individual cell models include the reduced leech heart interneuron, the Sherman model for

pancreatic beta cells, and the Purkinje neuron model.

PACS numbers: 05.45.Xt, 87.19.La



2

I. INTRODUCTION

Phase locking between oscillatory cells plays a significant role in functions of various regulatory

and nervous systems such as vision, and memory [1]. These, and many other, systems are controlled

by central pattern generators (CPGs) [2–5]. CPGs are small neuronal networks that generate

various phase-locked bursting rhythms, including cardiac beating and locomotor behaviors [3]. The

advancement of electrophysiological tools and methods has allowed biophysical properties of several

CPGs and their component neurons to be identified and studied [3, 6, 7]. CPGs of many animals

are composed of pairs of reciprocally inhibiting neurons. These universal pairs, often referred to

as half-center oscillators, typically produce alternating, or anti-phase bursting rhythms. They can

also produce less robust in-phase bursting when driven externally or endogenously [11].

The original concept of the half-center oscillator was proposed by T. G. Brown in 1911 [5] while

studying animal locomotor behaviors and their associated neuronal rhythms. Brown proposed that

anti-phase bursting in the classical half-center oscillator (HCO) [5] is due to interactions between

individually spiking (non-bursting) neurons. In this paper, the HCO is viewed more broadly as

a reciprocally inhibitory, two-neuron configuration that can produce anti-phase bursting. There

has been many studies of mechanisms that generate bursting in individual and networked neurons,

including transitions to bursting, tonic spiking or quiescence [8–10, 12–14].

Interactions between neurons in CPG networks are highly nonlinear and nonhomogeneous as

the neurons receive uncorrelated driving inputs from each other at the same time. Nevertheless,

the stunning feature of all CPGs is the robust and stable timing in their oscillatory rhythms [4].

There are several aspects to consider when seeking explanations for this generic and noticeable CPG

phenomenon. These aspects include properties of individual neurons or neuronal models, types and

time scales of synaptic coupling, as well as network architectures of CPGs, see [2, 11, 12, 15–36]

and the references therein. The mechanisms that give rise to anti-phase bursting in the HCO have

been under particular scrutiny [2, 15]. Some of the mechanisms are synaptic release, post-inhibitory

rebound, and synaptic escape mechanisms [2]. Reciprocal inhibition has been shown to facilitate

anti-phase bursting in the HCOs [2, 15, 16, 25, 34] as long as the inhibition stays fast [16, 19, 22],

meaning the synaptic decay is on the time scale of a single spike. Rubin and Terman demonstrated

that synchronous oscillations are unstable in an HCO composed of fast inhibitory spiking (non-

bursting) cells [19, 22], unless each cell has at least two slow intrinsic variables [21]. In a seminal

paper [16], van Vreeswijk, Abbott and Ermentrout showed that the non-instantaneous “inhibition,

not excitation, synchronizes” oscillatory neurons, resulting in simultaneous spike firing. Another
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possible mechanism of the stable co-existence of in-phase and anti-phase bursting in the HCO is

due to time-delayed synapses [15].

In our recent Rapid Communication [35], we demonstrated that the fast non-delayed reciprocal

inhibition can stably synchronize endogenously bursting cells in the HCO due to spike interactions

during the active phase. Fast inhibition is typical in many neuronal networks such as the leech

heartbeat CPG [37] and the Tritonia swim CPG [38]. The bistability in HCO networks can make

the CPG multistable with a bursting repertoire of two (anti-phase and in-phase) or more complex

rhythms [36]. Such HCOs with bursting neurons contrast with the HCOs comprised of relaxation-

type cells, which are only capable of generating a single anti-phase rhythm. Less robust compared

to anti-phase bursting, in-phase bursting can be effectively established in the HCO after both cells

have received an external inhibition from another bursting neuron [11, 12]. Our previous study [35]

indicated the significance of spike interactions for establishing synchrony in fast inhibitory networks.

In this paper, we revisit the HCOs composed of square-wave bursters in order to examine a

more general property of the coupled neurons – the coexistence of multiple phase-locked states.

This coexistence results in the occurrence of specific phase lags or time delays between the nearest

intervals of spiking or active phases in voltage traces. To the best of our knowledge, this phe-

nomenon for realistic fast synapses has not been reported elsewhere. Multiple phase-locked states,

however, were reported in several cases of slow inhibitory [15, 16] and fast excitatory synapses [17].

We assert that multistability is a common phenomenon for square-wave bursting neurons coupled

reciprocally by fast inhibitory synapses. To justify this assertion, we analyze diverse models of

square-wave bursting neurons such as leech heart interneurons [9, 10], Sherman pancreatic beta

cells [18], Purkinje neurons [13], and consider a few models of fast non-delayed inhibitory synapses.

This analysis reveals the general ability of such HCOs to produce multiple co-existent phase-locked

bursting patterns. We demonstrate that the number of phase-locked states is essentially deter-

mined by the number of spikes in the burst. These results may not hold for weakly coupled elliptic

bursters whose formation involves delayed loss of stability and canard solutions [29]. As a result,

the number of generated spikes may vary irregularly and the HCOs composed of elliptic bursters

might not consistently have stable multiple phase-locking states.

Our computational approach enhances the perturbation technique of phase resetting curves

(PRCs) [27]. The conventional PRCs are proved to be an effective tool for analyzing spiking

neuronal models and allow for analytical analysis at some degree. However, the PRC technique, in

application to bursting cells interacting during the active phase, has turned out to produce rather

complex outcomes (due to highly timing-sensitive changes in the number of spikes per burst that
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can sporadically cause large magnitude phase responses) even in the weak coupling case [39]. We

argue that the stability diagrams, along with Poincaré return mappings based on the variations of

phase lags between the neurons, are a more efficient tool for thorough studies of spike interactions

during active phases of bursting.

The layout of this paper is as follows. In the next section, Sec. 2, we introduce the HCO concept

employed in this study and describe the models of the neurons and synapses. In Sec. 3, we present

weakly coupled HCOs, as well as the methods and materials used to explore phase-locked states;

namely, the way the phase of a bursting cycle is defined for examinations of co-existent phase-locked

states. Next, we explain how inhibition and spike interactions induce stable phase-locked states.

We measure these spike interactions and construct stability diagrams for phase lags between bursts

produced by each coupled neuron. We introduce an effective potential to quantify the stability

of phase-locked states, through the depths of wells, which correspond to stable states. Finally,

we analyze and compare HCOs, made of square-wave bursters, using Poincaré mappings for phase

lags, whose fixed points correspond to phase-locked states. In Sec. 4, we study the stability of

in-phase bursting in strongly coupled HCOs. The models employed in this study are presented in

the Appendix.

II. NETWORK MODEL

We model a HCO network by means of Hodgkin-Huxley type equations

C V ′

i = F (Vi,hi)− I
(ij)
syn , τ(Vi)h

′

i = G(Vi,hi), i, j = 1, 2, (1)

where Vi stands for the i-th neuron membrane potential, and hi stands for the gating (in)activation

variable(s) describing kinetics of specific ion current(s) with a characteristic time scale(s) τ(V ).

Neurons composing the HCO are assumed to be identical. The individual neuron models we use

are: (i) the 3D reduced model of the leech heart interneuron [9, 10]; (ii) Sherman β-cell model [18];

and (iii) the 5D single compartment Purkinje neuron model [13]. All three models (see Appendix)

are referred to as square-wave bursters, named for the resemblance of the shape of the envelope of

bursts in the voltage traces [8].

The inhibitory synaptic current I
(ij)
syn from the presynaptic cell j, flowing into the postsynaptic

cell i, is recast as follows

I(ij)syn = g(ij)syn (Vi − Esyn)S(Vj), (2)
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where g
(ij)
syn is the maximal conductance of the synapse. In other words, the maximum possible

strength of the synaptic coupling from pre-synaptic neuron j to post-synaptic neuron i is given

by g
(ij)
syn . Unless stated otherwise, the connections are assumed to be symmetric such that g

(ij)
syn =

g
(ji)
syn = gsyn. The reversal potential is set so that Esyn < Vi(t) at all times t to ensure the inhibitory

nature of the current. Specifically, Esyn = −0.0625 V is fixed for the leech heart interneuron model,

and Esyn = −0.08 V is set for the Sherman β-cell and Purkinje cell models. In this study, we

employ four distinct models of the synaptic function S(Vj), representing fast non-delayed synapses.

Multiple phase locked states turned out to be a common feature of HCO networks regardless of any

particular choice of S(Vj) considered in this paper.

1. “Heaviside" synapse:

This is the simplest representation of the synapses [17, 21]: S(Vj) = H(Vj − Θsyn) with

H = {0, 1}. The synapse activates instantaneously, S(Vj) = 1, as soon as the membrane

potential Vj of the presynaptic neuron exceeds the synaptic threshold Θsyn, and deactivates

instantaneously, S(Vj) = 0, after Vj drops below Θsyn. The synaptic threshold Θsyn is chosen

to ensure that every spike of the bursting cell crosses the threshold (Fig. 1A). The actual

value for Θsyn is determined for each model individually. Unless specified otherwise, we fixed

Θsyn = −0.0225 V for the leech heart interneuron model, Θsyn = −0.03 V for the Sherman

model, and Θsyn = −0.036 V for the Purkinje cell model.

2. Fast threshold modulatory (FTM) synapse:

The coupling function is modeled by the sigmoidal,

S(Vj) = 1/[1 + exp{−1000(Vj −Θsyn)}]. (3)

This coupling form was introduced and called the fast threshold modulation by Somers and

Kopell [17]. It is a smooth version of the Heaviside coupling function with the same rise

and decay times (compare panels A and B in Fig. 1). The FTM is a remarkable model of a

realistic fast synapse [17, 21], such as that in the leech heart CPG [37], as it yields a nearly

instantaneous response from the synapse on the post-synaptic neuron.

3. α-dynamical synapse:

In this frequently used model of the synapse [15, 16] the coupling function S(Vj) is described

by the following ODE:

S′(Vj) = α(1 − S)[1 + exp(−1000(Vj −Θsyn))]
−1 − βS. (4)
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FIG. 1. Four-spikes bursting in the leech heart interneuron HCO (6). Overlaid is the normalized synaptic

function S(t) for the synapse at the threshold Θsyn = −0.0225 and maximal conductance gsyn = 0.005 and

modeled by the (A) Heaviside function; (B) FTM coupling; (C) α-synapse and (D) leech heart dynamical

synapse.

Here, α = 1000 and β = 100 are set to match the rate of the synaptic onset, decay, and

maximum efficacy (S ≈ 1) similar to the FTM synapse (see Fig. 1C). Decreasing β causes

the synaptic current last longer.

4. Leech heart dynamical synapse:

The last model for fast synapses is from the leech heart CPG, introduced in [37], where

S(Vj) = Y M(Vj) is such that the fitted dynamics of the variables Y and M are governed by

the auxiliary ODE system:

Ẋ = [[1 + exp(−1000(Vj −Θsyn))]
−1 −X]/0.002,

Ẏ = (X − Y )/0.011,

Ṁ = [0.1 + 0.9[1 + exp(−1000(Vj + 0.04))]−1 −M ]/0.2.

(5)

We conclude this section with the remark that despite quantitative disparities due to the renormal-

ization, all four models of the fast synapses consistently demonstrate homogeneous outcomes for

all three neuron models of bursters in the HCO network. Moreover, we notice that the last model,

which is experiment-based [37], demonstrates fast decay of synaptic gating variable, S(t), such that

inhibition is completely turned off between spikes in the burst, a phenomenon captured also by
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the other models of nearly instantaneous synapses. However, many physiological synapses have

slower rate of neurotransmitter dynamics than that of the channels; generally referred to as the

slow synapses. As a result, such synapses slowly decay when the voltage in the presynaptic neuron

falls below the synaptic threshold, causing summation of the synaptic current during a burst. Our

results do not directly carry over to the slow synapses and are limited to the fast synapses whose

decay is comparable to the duration of presynaptic drive.

III. WEAKLY COUPLED HCO: MULTIPLE PHASE-LOCKED STATES

A. Phase definition and phase-locking

We begin with the HCO (1) composed of the leech heart interneurons (6) coupled by weak FTM

inhibitory connections (3). We reported earlier [35] that this HCO bursts, not only in antiphase

as predicted and generally accepted, but it also stably bursts in-phase. We will show that the

weakly coupled HCO possesses multiple, co-existent phase-locked states, in addition to in-phase

and anti-phase bursting. Then, we demonstrate that the co-existence of several phase-locked states

is due to spike interactions in overlapping bursts. To do so, we first introduce the phase and phase

lag of the periodic bursting orbit.

The algorithm for identifying phase lags between the bursting neurons of the HCO is based

on the observation that solutions of the two individual neurons of the HCO belong to the same

orbit, therefore pass through a reference point in the phase space with some delay. We set the

reference point to be on the auxiliary threshold Θth = −0.0425 V (see Fig. 2A), halfway between

the spiking and quiescent voltage values. The phase of the bursting neuron is initiated/reset every

cycle after the voltage, V (t), increases above Θth. The phase lag, ∆φ(n), on the n-th bursting cycle

is defined through the delay, τn, between the burst initiations V1(tn) = Θth and V2(tn + τn) = Θth

(see Fig. 2B), which is further normalized over the recurrence period, T (n) = t(n) − t(n−1), of the

HCO. A detailed account of the routine for the computations of the sequence {∆φ(n) = τ (n)/T (n)}

is given in [36].

We consider the case of the weak inhibitory coupling gsyn = 0.005 between the neurons in the

HCO. Such weak coupling does not drastically change the phase lags, ∆φ(n), between the neurons

over a bursting cycle thereby allowing us to follow “continuous" evolution of the phase lags, ∆φ(n),

as the number, n, of bursting cycle progresses. A word of caution: such continuous evolution may

be hard to achieve when the individual neuron is defined by parameters close to a bifurcation such
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V1

V2

FIG. 2. (color online). (A) Periodic bursting orbit in a 3D projection of the phase space of the leech

heart HCO. Dark and lighter spheres represent, schematically, the densely distributed initial phases, φ0, for

neuron 1 (reference) and, φ0 + ∆φ(0), for neuron 2 across the bursting orbit of a normalized 1-period. (B)

The sequence, {∆φ(n)}, for every initial phase lag, ∆φ(0), (out of 7,200) is identified from the traces at the

instances when the ascending voltage V1,2 passes through an auxiliary threshold Θth shown in (A).

as the one underlying slow transition from bursting to tonic spiking or quiescence. Slow evolution

of the phase lags, however, lets us systematically single out all co-existing stable phase-locked states

and identify the separating thresholds (unstable states), as we evaluate the convergence rates given

by ∆φ(n+1)−∆φ(n). Figure 3A represents the evolution of the phase lags, ∆φ(n), plotted against the

number of burst cycles, n, for the leech heart HCO generating four-spikes per burst. By assessing

convergent tendencies of ∆φ(n), as n increases, in the figure one can clearly identify four stable phase

locked states (non-linear thick curves), which include the synchronous state, ∆φ(n) = 0. Unstable

states are invisible, but they exist between every pair of stable states. We see four unstable states,

which include the anti-phase state ∆φ(n) = 0.5 (constant thick curve). Panel B of Fig. 3 depicts the

voltage traces for bursting patterns corresponding to the states: anti-phase (B1) through in-phase

(B5). In what follows, we give an explanation for causes of these multistable states.
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FIG. 3. (color online). (A) Exponential convergence of initial phase lags to four co-existent phase-locked

states over 200 burst cycles of the leech heart HCO. Parameters are Θsyn = −0.0225, V shift
K2 = −0.022,

and gsyn = 0.005. ∆φ(n) = 0 and 0.5 correspond to stable in-phase and unstable anti-phase bursting,

respectively. The right panel shows the established bursting cycles (dark and light/green colors for neurons

1 and 2, respectively) corresponding to the selected phase-locked states (thick lines in Panel A). Symbols ×

and � are the same in Figs. 4C-D.

B. The mechanism of multistability: two opposite roles of inhibition

In this section, we argue that the cause of multistability is a dual role of inhibition. Since the

periodic orbit does not significantly deform the shape in the limiting case of the uncoupled network,

motion along the orbit is integrative, that is displacement due to action of synaptic current, normal

to the orbit, adds up along the trajectory. However, due to the oscillatory nature of spiking, the

inhibition from a pre-synaptic neuron can either speed up (add to) the post-synaptic neuron on

the downstroke (decreasing further V ′ < 0) or slow it down (subtract) on the upstroke (decreasing

V ′ > 0) as one can see from the modeling equations Eqs.(1). Because the inhibition is reciprocal

in the HCO, this argument also applies to the other neuron. As a result, depending on timing, the

phase lag between the neurons can shrink or widen during the spiking period of bursting, thereby

giving rise to multiple phase locked states. The mechanism is illustrated in Fig. 4A, depicting the

momentary phases of the reference neuron 1 on the upstroke (above the synaptic threshold) and

the two relative positions of neuron 2 both on the downstroke along the bursting orbit in the active,

spiking phase. In the first case, the initial distance (upper arch of the spiking helix) or the phase lag
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between neurons 1 and 2a widens because the phase 1′ is slowed on the upstroke by inhibition from

the neuron 2a while the phase 2′a is accelerated on the downstroke due to the reciprocation from the

neuron 1. In the second case, the reciprocal inhibition makes the distance (low arch) between the

neuron 1 and 2b shrink instead, thus narrowing the phase lag (arch between 1′ and 2′b) with each

cycle. Note that during simultaneous upstrokes and downstrokes, discrepancies in inhibition are

less significant. The overall cells’ convergence to or divergence from the given phase-locked state

depends on the initial conditions that in turn define a fragile balance between the two competing,

slowing and speeding, forces over the bursting period. The above mechanism is dependent on the

assumption of weak coupling where non-integrative motion that is not tangential to the cycle can

be neglected.

An average effect of instantaneous spike interactions on phase lags per burst cycle can be assessed

from Fig. 4B, showing the dynamics of the net synaptic current, ∆IPSC = I
(12)
syn −I

(21)
syn for several

initial phase lags. The vertical axis represents the difference between the average synaptic currents,

∆ < IPSC >, generated by both neurons. The figure shows that ∆ < IPSC > settles down

to a constant value after a number n of bursting cycles when a phase-locked state is achieved.

The rate of change of ∆ < IPSC > approaches zero when all spikes with a burst are aligned.

The attracting phase locked states are represented by the horizonal lines indicating the levels of

∆ < IPSC > on established HCO configurations. While the zero level corresponds to two opposite

states: unstable anti-phase and stable in-phase bursting with four spikes, nonzero states correspond

to other configurations such as (B3) and (B4) spike offsets marked by × and � in Fig. 3. This

presents a very peculiar observation that overlapping bursting can generate non-zero amounts of

average net inhibition for phase locked states to maintain (locally) the stability, even forcibly, that

gives rise to the nonlocal multistability of the HCO.

To conclude, we emphasize the ability of inhibition to speed up or slow down depending on

whether the driven postsynaptic neuron is on the down- or upstroke, respectively. Note that the

neurons become decoupled during the spiking phase as soon as the voltage drops below the synaptic

threshold. When the spikes are aligned, the relative phases speed up and slow down simultaneously

thus causing small variations in the phase lag. As a result, a weak coupling and a high synaptic

threshold combined can give rise to the occurrence of multiple phase-locked states. This property

is uniquely attributed to bursting cells with spikes as opposed to relaxation oscillator-type neurons

without fast spikes that are capable of producing only anti-phase bursting.
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FIG. 4. (color online). (A) Illustration of the dual, slowing and speeding, roles of reciprocal inhibition on

evolution of the phase lags during the spiking phase on the bursting orbit, sketched as a helix segment in

R
3 with the voltage on the vertical axes. Spheres 1, 1′ denote the reference neuron 1 on the upstroke, while

spheres 2a, 2
′

a, 2b, 2
′

b denote the instant phases of the neuron 2 on downstrokes. Arrows indicate the direction

of inhibition at the current phases of the neurons that make the phase lags widen (upper arch between 1

and 2a) or narrow (low arch between 1 and 2b) along the bursting orbit. (B) Transients of the averaged

net synaptic current ∆〈IPSC〉 converging to two non-zero equilibrium levels representing the (B3:×) and

(B4:�) phase-locked states. Transients converging to the zero level for the stable in-phase (dotted) phase

locked state, as well as unstable anti-phase state (dashed).

C. Stability diagrams

To analyze and quantify the stability of the phase-locked states (Fig. 3), we employ 1D stability

diagrams (shown in Fig. 5) representing snapshots of the n-th iterate of the difference between the

current and preceding phase lags, i.e.,
[

∆φ(n+1) −∆φ(n)
]

, plotted against the initial distribution

0 ≤ ∆φ ≤ 0.5. For dense enough initial distribution, n can be taken as small as 2, which would

give a scalar number corresponding to every initial phase lag. Observe that
[

∆φ(n+1) −∆φ(n)
]

can

also be viewed as the change rate over a single burst cycle on the n-th step. If the change rate

does not vary for some initial phase lag ∆φ∗, then the latter corresponds to a fixed point of the

iterative process. A zero of the graph
[

∆φ(n+1) −∆φ(n)
]

vs. ∆φ is a fixed point. The stability of

the point is determined by the derivative d[∆φ(n+1)−∆φ(n)]/d∆φ at ∆φ∗. The fixed point is stable

if the derivative is negative, or unstable if the derivative is positive. The basins of the stable states
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FIG. 5. (color online). (A) Two graphs (black and blue/grey) of the 1D stability diagram: zeros of the

stationary distribution of the phase lag difference
[

∆φ(n+1) −∆φ(n)
]

over the range ∆φ = [0, 0.5] are

phase-locked states: four stable (solid dark circles) separated by repellers in the four spikes bursting HCO at

V shift
K2 = −0.022 at gsyn = 0.005 and gsyn = 0.01, respectively. (B) Normalized effective potential (integral)

for gsyn = 0.005: different wells implying uneven robustness of the stable phase-locked states whose basins

are separated by the thresholds. Solid grey circles indicate intermediate (saddle-node) states. (C) Zeros

indicated by solid circles corresponding to seven stable phase-locked states, in the eight spikes bursting HCO

at V shift
K2 = −0.024, in the 1D stability diagram.
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(four total as in Fig. 3) of the HCO network are separated by the unstable ones in this 1D phase

portrait. Panel A of Fig. 5 shows the two 1D phase portraits of the leech heart HCO with a weak

gsyn = 0.005 (black graph), and a stronger gsyn = 0.01 (blue/grey graph) coupling. In both cases,

the fixed points are located at the same zeros of the graph of
[

∆φ(n+1) −∆φ(n)
]

. However, local

(in)stability of the fixed point becomes quantitatively stronger with an increased coupling strength.

In addition to local stability, the robustness of the stable phase-locked states can be characterized

in terms of an effective potential, which is a normalized integral numerically evaluated from the

stability diagram in panel A, and is given by the formula:
∆φ
∑

∆φ=0

(∆φ(n+1)−∆φ(n))/
0.5
∑

∆φ=0

(∆φ(n+1)−

∆φ(n)). In panel B, the normalized effective potential plotted against the phase lag distribution

∆φ, reveals the profile of the potential wells corresponding to the attraction basins of stable states,

and the barriers corresponding to the unstable states in the leech HCO network. This diagram

allows us to identify the most robust phase-locked state by differentiating the depth and width of

the wells. Observe from this figure that the steepness of the potential well yields non-local rate of

convergence to the phase-locked states. This figure also shows that fast convergence to the in-phase

(∆φ∗ = 0) state does not make it the most robust, as its basin is not as deep as those of other

stable phase-locked states.

The comparison of Figs. 5A and 5B with the corresponding four spikes bursting trace (Fig. 6A),

suggests that there is a (direct) correlation between the number of spikes per burst and the number

of stable phase-locked states. To support the hypothesis we present Fig. 5C showing a similar 1D

stability diagram for the eight spikes bursting trace (Fig. 6C): now the leech HCO possesses seven

attractors corresponding to the stable phase-locked states. The relation between number of spikes

and that of phase locking is still consistent because there are only six spikes that fall in the range

0 ≤ ∆φ ≤ 0.5 and the anti-phase state is located at ∆φ = 0.5, which has switched stability.

The qualitative examination of the stability of the fixed points for the phase lags, together with

the quantitative observation, lets us hypothesize that spikes do matter for the emergence of multiple

phase-locked states. The number of spikes per burst does yield an estimate for the number of phase

locked states. However, complexity of the spike interactions due to timing, and irregularities of

the spike characteristics, slow convergence due to weak coupling and the sensitivity of the two-time

scales bursting solutions may cause inaccuracies in some models. Moreover, multistability of weakly

coupled HCO becomes harder to describe properly as the duty cycle becomes greater, resulting in

a long burst train with a larger number of spikes (Fig. 6G-H). Meanwhile, the attraction basins

of the phase locked states become narrower and less clearly identifiable, which means that the
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accurate numerical simulations would require unrealistically high resolution. We have presented

the most tractable cases so far, and next, will introduce an alternate way of thoroughly examining

multistability in all the cases considered so far in this paper. This method reduces the problem of

finding and characterizing stability of phase-locked states to studies of 1D Poincaré return mappings.

D. Phase return maps

Identifying multiple phase-locked states of the bursting HCO can effectively be reduced to that

of finding stable fixed points in 1D Poincaré return mappings defined as: ∆φ(n) → ∆φ(n+k),

where k is the degree of the mapping. For a non-stationary phase lag, either ∆φ(n+k) > ∆φ(n)

or ∆φ(n+k) < ∆φ(n) for k = 1, but the change is small because of the "continuity" condition

mentioned earlier: the case of the weak coupling, which results in slow and smooth dependence of

∆φ(n) on the burst cycle number n (Fig. 3A). As a result, the slope of the mapping at a stable

fixed point is 1 − ǫ (for k-degree mapping the slope (1 − ǫ)k → 0) and at an unstable fixed point

it is 1 + ǫ (k-degree slope (1 + ǫ)k → ∞). Hence, the integer k may be chosen relatively large for

the basins of attractions to be well identified. Specific values of k depend on the individual cell

model in question as they have distinct rates of the convergence to the phase-locked states. So,

(k− 1) is the number of successive burst cycles skipped in the traces to generate the mappings. By

choosing the degree to be k, the mapping reveals robust phase-locked states that are represented

by stable fixed points, located at intersection points of the flat sections (slope 0) of the mapping

graph with a 45-degree line. Due to the large values of k, the unstable fixed points corresponding

to the threshold separating the attraction basins reside at the discontinuity points (slope ∞) of the

mapping graph.

Figure 6 presents four pairs of panels each representing bursting rhythms and the corresponding

return mappings for the four HCOs under consideration. Panels A-B and C-D depict, respectively,

the voltage traces and the mappings ∆φ(n) → ∆φ(n+k) of degrees k = 345 and k = 40 for the weakly

coupled leech heart HCOs, which robustly produce four and eight spikes per bursting cycle. Panels

E-F and G-H are for the HCOs made of the Sherman pancreatic β-cell models, and the Purkinje cell

models, respectively. The frames overlaid on top of the bursting traces denote half-period windows,

0 ≤ φ ≤ 0.5, with the spikes determining the number of phase-locked states. By construction, the

phase lag, ∆φ, is symmetric about the half-period point such that the phase lags outside and inside

of the half-period frame are equivalent. This implies that only the spikes within the frames are

critical for spike interactions leading to phase-locked states.
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FIG. 6. Bursting cycles generated by the HCO composed of the leech heart interneuron models (panels A

and C), and the Sherman models (E) and the Purkinje cell models (G). Overlaid boxes indicate the reference

half-period frames defining the spikes that effectively determine the number of phase-locked states in the

networks; the horizonal lines set the synaptic thresholds in the HCOs. Panels B, D, F, and H show the

corresponding 1D return mappings: ∆φ(n) → ∆φ(n+k) of degree k (k = 345, 40, 80 and 35, reps.). (B) and

(D): Four and seven stable fixed points in the mapping imply the coexistence of the same number of phase

locked states in the bursting leech heart HCOs (gs = 0.005). (E-F): The Sherman model HCO (gs = 0.001)

generating six-spike bursting possess the same number of stable fixed point in the mapping. (E) Zoom of the

mapping (H) for the the Purkinje cell HCO (gs = 0.001) generating 62-spikes burst trains reveals multiple

phase locked states within [0.4, 0.5] range accumulating to anti-phase bursting.

Figure 6 suggests that the CPG models under consideration possess the same universal prop-

erties, which are due to spike interactions contributing to the emergence of multiple phase-locked

states. There are some distinctions as well, for example, wide asymmetric spikes produced non-

homogeneously by the leech heart interneuron model can result in more subtle attraction basins and

less robust phase-locked states, including meta-stable states near saddle-node equilibria (Fig. 6) or

tangent fixed points (Fig. 6). Those meta-states have vanished, and phase-locked states gain ro-

bustness, as the number of spikes per burst becomes larger. Furthermore, narrow symmetric spikes

produced evenly by the bursting Sherman model HCO contribute to the occurrence of robust phase-

locked states with well defined (separated) basins of attraction (see Fig. 6E-F). Remarkably, the

number of the spikes occurring within the half-period windows in the leech heart and Sherman

β-cell HCOs accurately determines the number of coexisting stable phase-locked states.
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The Purkinje model generates long bursts with multiple, nearly instantaneous spikes at the

chosen parameter values. Because of that, it is hard to identify a large number of all phase-locked

states with rather narrow attraction basins in the weakly coupled (gsyn = 0.001) HCO case due

to slow convergence. To take fewer spikes into consideration, we lowered the synaptic threshold,

Θsyn, so that spikes occurring closer to the end of the burst cycle can actually cross it (Fig. 6G).

As a result, the corresponding Poincaré mapping ∆φ(n) → ∆φ(n+k) (here k = 80) has an array of

fixed points, within the range, [0.4, 0.5], near the phase-locked state corresponding to anti-phase

bursting produced by the HCO. Additionally, this demonstrates the significance of the choice for

the synaptic threshold in modeling studies of larger network models, like specific central pattern

generators that are often comprised of several HCOs.

To conclude this section of the paper, we point out that we have demonstrated how various

intrinsic properties of the HCOs, including correlations between the number of spikes and the

temporal characteristics of bursting, including the spike frequency, duration and duty cycles, as

well as the level of the synaptic threshold, all combined, may determine the number of co-existing

phase-locked states. While the strength of the synaptic coupling modulates the amplitude of the

synaptic current, and hence influences the spike interaction, our simulations suggest that variations

of the coupling strength do not essentially influence the number of stable phase-locked states as

long as the coupling remains weak, which in turn guarantees the relatively slow convergence to

either phase locked state. A significant increase in the coupling strength makes most phase-locked

states disappear so that anti-phase bursting will solely persist in the HCO, which is the general

convention. In the next section, we show that in-phase bursting can also persist as stable, though

comparably less robust, in strongly coupled HCOs.

IV. QUASI-STRONGLY COUPLED NETWORKS: STABLE IN-PHASE BURSTING

We define quasi-strong inhibition through coupling that is sufficiently strong to establish anti-

phase bursting rapidly, indicated by the convergence rate of the phase-lags presented in the previous

section. The rapid transitions appear as non-smooth time evolution of phase-lags leading to anti-

phase bursting. This occurrence precedes or coincides with the hold-then-release mechanism (due

to a saddle-node bifurcation) [11], which happens to be functionally similar to synaptic release

mechanism, common for relaxation oscillator-type spiking neurons [2, 15, 34]. The hold-then-release

mechanism implies that the active pre-synaptic neurons temporarily lock down the inactive post-

synaptic cell at the hyperpolarized state during the half-oscillator bursting cycle. Fast inhibition
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implies that as soon as the active neuron ceases firing and becomes inactive, the other cell is

released from inhibition, so they switch roles to produce the second half-oscillator bursting cycle.

This cyclic switching between active and inactive phases in the HCO gives rise to highly robust anti-

phase bursting. The details on emergent anti-phase rhythms in HCOs made of bursting neurons

can be found in [12] and the references therein.

Although it is possible for the HCO to establish in-phase synchrony coexisting with the anti-

phase synchrony induced by the hold-then-release mechanism, the attraction basin for in-phase

synchrony tends to shrink with increased synaptic coupling. Previously [35], we considered a synapse

to be strong as soon as the hold-then-release mechanism was able to engage. However, if the

conventional definition of strong inhibition is assumed, then we have a quasi-strong coupling case, in

which the in-phase synchrony has not completely lost its stability, even though anti-phase synchrony

has emerged via the hold-then-release mechanism.

When the coupling is quasi-strong and the initial conditions of bursting cells are set so that

one cell is active (above the synaptic threshold) while the other is inactive, then fast non-delayed

reciprocal inhibition leads ultimately to anti-phase bursting in any HCO, independent of the choice

of models of individual bursters and fast synapses. Once achieved, anti-phase bursting remains

highly resistant to external voltage perturbations; however, this is not true when long [periodic]

inhibition is forwarded to both cells from an external source. As shown in [11], this external

inhibition establishes in-phase synchronization in the HCO.

In the previous section, we have stressed that the coexistence of multiple phase-locked states is

a peculiar paradigm of the weakly, reciprocally inhibitory coupled HCO made of (nearly) identical

cells. Increasing the coupling strength makes most, but not all, phase-locked states disappear

eventually. Nevertheless, both weakly and quasi-strongly coupled HCOs exhibit anti-phase bursting,

generally, and the emergent mechanisms are different: a fragile balance between spike timing and

IPSCs in the weak coupling case and the robust hold-then-release mechanism in the quasi-strong

coupling case.

It is important to emphasize that the quasi-strong coupling considered in this section is far from

being weak. In contrast to the classical weak coupling case where the periodic orbit of the coupled

neuron does not differ significantly from that of the uncoupled neuron, the quasi-strong coupling can

essentially change the dynamics of the coupled neuron. More precisely, the quasi-strong coupling,

preserving co-existent in-phase and anti-phase bursting, can generate extra spikes in the coupled

square-wave bursting neuron.

A peculiar feature of the quasi-strong coupling is the robustness of in-phase bursting that coexists
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FIG. 7. (A) Bursting cycle of the leech heart HCO at gs = 0.4 is phase-parameterized on the interval [0, 1]:

dots indicate some reference phases used for identifying the attraction basins of in-phase bursting. The

horizontal line across the spikes sets the level of the synaptic threshold Θsyn = −0.0225. Attraction basins

of the in-phase state plotted against the phase along the bursting cycle for four models of inhibitory synapses:

(B) Heaviside, (C) FTM coupling; (D) heterogeneous FTM coupling with g
(12)
s = 0.4 and g

(21)
s = 0.44; (E)

α-dynamical synapse; (F) leech heart dynamical synapse. All cases reveal that the widest synchronization

zone occurs during the tonic-spiking period of bursting, while quiescent period yields a narrow basin. In

all panels the range of ∆φ is scaled between [−0.05, 0.05]. Color bars represent degree of phase synchrony

(left) or spike synchrony (right).

with anti-phase bursting [35]. In-phase bursting emerges over a wide range of dispersed initial

conditions chosen within the spiking phase of both cells. Initial conditions corresponding to the

activity of one cell and inactivity of the other lead to the emergence of anti-phase bursting via the

above hold-then-release mechanism [11]. In [35], we demonstrated that the impact of inhibition on

the bursting cells drastically depends on whether both cells are above the synaptic threshold, Θsyn.

More specifically, we analyzed the variational equations for the stability of synchronized bursting

and showed that inhibition instantaneously switches from desynchronization to synchronization as

long as both cells become active. That is, if both bursting cells are initially active in the spiking

phase of bursting, the inhibition, instead of desynchronizing them, will force the cells’ states to
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come together resulting in stable synchronized bursting.

The synchronizing effect of the fast inhibition is specifically due to spike interactions of the cells

during the active phase of bursting. This property is linked to the presence of two competing, desyn-

chronizing and synchronizing, synaptic terms in the variational equations [35]. That is, whenever

one cell gets close to the threshold Θsyn, the other cell receives a short-term desynchronizing kick

that causes the divergence between the cells. However, when both cells rise above the threshold,

the inhibition switches its role and the cells converge. In this respect, inhibition acts as excitation

during the time interval of simultaneous cell activity when both cells are above the synaptic thresh-

old. This synchronization property of inhibitory bursting cells with spikes is in contrast with the

HCO made of cells exhibiting spike-free relaxation-type bursting, such as plateau-bursting where

the fast inhibition carrying only desynchronizing effects makes stable synchrony impossible. More

details on the mechanism of the inhibitory synchronization can be found in [35].

In this section, we demonstrate that in-phase bursting, co-existing with anti-phase bursting,

is a generic property of the HCO, composed of endogenously bursting (nearly identical) neurons,

reciprocally coupled by fast non-delayed inhibitory synapses. This property is independent from

the model of the fast non-delayed inhibition, be it the instantaneous Heaviside or FTM synapse or

a dynamical synapse with the synaptic constants comparable with the duration of the presynaptic

spike.

In what follows, we reveal the stability and robustness of in-phase bursting with respect to

transversal perturbations against the phase mismatch (off-set) between two neurons in the HCO.

More specifically, we examine how the shape of the attraction basin of in-phase bursting varies

along the in-phase bursting orbit. To do so, we first parameterize the bursting cycle with respect

to a phase, defined on modulo 1, as described in the previous section. Next, the in-phase bursting

cycle is discretized with a mesh, comprised of reference phase values (see Fig. 7A). Each reference

phase is employed to identify a local basin of attraction by gradually advancing, ∆φ > 0, or

delaying, ∆φ < 0, the initial phase of the perturbed or the non-reference member of the HCO. In

the remaining panels of Fig. 7, we plot the initial perturbations, ∆φ, that resulted in spike and/or

burst synchrony, against phase, φ, for the leech heart HCO with mutually inhibitory synapses

described by the four models given in Sec. 2.

The vertical (dark) bars in the Fig. 7B-H panels, represent the largest deviation values of the

phase perturbation, ∆φ, reveal that the width of the “synchronization band" varies with the phase;

it is maximized during the active or spiking period, and shrinks during the quiescent period. For

larger initial phase mismatches, the cells of the HCO will settle in anti-phase bursting. Figure 7
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FIG. 8. Biparametric (Θsyn, gsyn)-diagrams depicting stability zones (dark) of in-phase bursting in the

leech heart HCO with inhibitory coupling due to (A) the Heaviside function based synapse; (B) the FTM

coupling; (C) the α-dynamical synapse; and (D) the leech heart dynamical synapse. Color bar showing the

maximal difference in the voltage values between the cells: zero for in-phase bursting and 0.08 for anti-phase

bursting. The parameters are Vshift
K2 = 0.02, Iapp = 0.006, ḡNa = 160, τK2 = 0.9.

also demonstrates that all selected models of inhibitory synapses agree, both quantitatively and

qualitatively. Furthermore, as expected, longer lasting inhibitory inputs of the α-dynamical (4)

and leech heart dynamical synapses (5) (cf. Fig. 1) ensure some wider synchronization zones.

Indeed, beyond the critical values after which the synapse is considered slow or slowly decaying

in time, anti-phase bursting becomes non-observable, thus leaving in-phase bursting as the only

stable state; this is a classic result [16]. On the contrary, when synapses are fast, anti-phase

bursting largely dominates over much weaker in-phase bursting in the inhibitory HCOs (1). In-

phase bursting necessarily requires close initial burst overlapping. Based on the analysis done in

the previous section, we conclude that spike interactions bound the attraction basin of in-phase

synchrony.

In addition to variations in the level of synaptic threshold, Θsyn, that of the synaptic strength,

gsyn, is used to examine the synchronization properties of in-phase bursting in quasi-strongly coupled

HCOs. Figure 8 presents bi-parametric sweeping of (Θsyn, gsyn)-bifurcation diagram for in-phase

bursting in the leech heart HCO with the four selected models of synapses. In the diagrams, shaded

areas correspond to stability islands of in-phase bursting. For the given leech interneuron model,
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the synaptic coupling with gsyn exceeding 0.02 is considered quasi-strong as it leads right away to

robust anti-phase bursting via the hold-then-release mechanism [11]. Note that within the plausible

range of values for the synaptic threshold, [−0.015, −0.005], the HCO possesses the largest stability

islands where it can exhibit in-phase bursting. In this range, the synaptic threshold crosses the

middle of all of the spikes, which ensures an optimal stabilizing balance for inhibiting synaptic

currents to promote in-phase bursting. Lowering or raising the synaptic threshold out of this range

makes in-phase bursting less robust, as the contribution of the spikes becomes less significant. After

the synaptic threshold is lowered below the minimum voltage level of the spikes, the HCO cells begin

bursting in antiphase, generally, similar to pairs of relaxation oscillators [2], such as Morris-Lecar

or FitzHugh-Nagumo spiking neurons, where the spike interactions play no functional role.

V. CONCLUSIONS

We have shown that fast non-delayed inhibitory HCOs composed of two endogenously bursting

neurons can generate multiple co-existent phase-locked states, in addition to stable anti-phase and

in-phase bursting. This is an extension of our previous result [35] that fast non-delayed reciprocal

inhibition synchronizes HCOs, which contrasts with the customary view that reciprocal inhibition

has to be slow or time-delayed to establish in-phase bursting. We have shown that the multistability

of the HCOs is due to spike interactions and independent of specific choice of models for endogenous

square-wave bursters and fast non-delayed synapses. Fast tonic spiking and fast inhibition are the

two necessary conditions for multistable bursting to exist in such HCOs. This is in contrast with

plateau-like bursting, where spike interaction is insignificant because of the slow frequency and

smoothed spiking magnitude relative to the plausible range of the synaptic threshold levels. We

have shown that the number and temporal characteristics of spikes determine the number of co-

existing phase-locked states in weakly coupled HCOs. Besides, spikes are also attributed to be the

necessary component for dynamically establishing the bi-stability in quasi-strongly coupled HCOs,

where robust anti-phase bursting co-exists with less robust in-phase bursting. This study emphasizes

the importance of detailed Hodgkin-Huxley models for credible modeling of larger CPG networks,

as opposed to employing relaxation oscillators, which might give rise to simplistic cooperative

properties.

Our study of multiple phase locking in the HCOs and co-existing dynamical rhythms can help

one better understand the origin of multistability and the nature of switching mechanisms between

various neuronal rhythms that a multi-functional CPG can generate in response to changes in sen-
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sory inputs and external perturbation. Recent experimental studies [6] suggest that leech crawling

and swimming can be generated by the same multifunctional CPG, capable of switching between

the two locomotor patterns with no change in the types or strengths of connections among the

coupled neurons. At the neuronal level, crawling is governed by the command neurons firing in

synchrony, whereas the CPG switches to the swimming rhythm when the neurons switch to anti-

phase bursting. The duty cycle of in-phase bursting, generating the crawling rhythm, is 7-10 times

longer than that of the swimming rhythm [6]. The duty cycle is conjectured to be the main control

parameter that determines the rhythms and can trigger the switching between the rhythms [36].

Our study of the spike interactions, whose number and frequency are controlled by the duty cycle,

together with previous studies of duty-cycle induced phase locking in larger inhibitory networks

[11, 12, 35], promise to shed light on the genesis of switching mechanisms for emergent bursting

patterns in real multifunctional CPGs and their realistic models.
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VII. APPENDIX: INDIVIDUAL NEURON MODELS

A. Leech heart interneuron model

This model including the fast sodium current, INa, the slow potassium current, IK2, and an

ohmic leak current, IL is given by [10]:

C
dV

dt
= −INa(V )− IK2(V )− IL(V )− Iapp,

INa = ḡNa n
3 h (V − ENa), n = n∞(V ),

IK2 = ḡK2 m
2(V − EK), IL = ḡL (V − EL),

τNa
dh

dt
= h∞(V )− h, τK2

dm

dt
= m∞(V )−m.

(6)
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Here, V is the membrane potential, n and h are the gating variables for sodium channels, which ac-

tivate and inactivate, respectively, as the membrane potential depolarizes: m is the gating variable

for potassium channels that activate slowly as the membrane potential hyperpolarizes. The sodium

current activates instantaneously. The time constants for the gating variables, maximum conduc-

tances and reversal potentials for all the channels and leak current, and the membrane capacitance

are set as follows:

τNa = 0.0405 sec, ḡNa = 200 nS, ENa = 0.045 V,

τK2 = 0.25 sec, ḡK2 = 30 nS, EK = −0.070 V,

C = 0.5 nF, ḡL = 8 nS, EL = −0.046 V.

The steady state values of the gating variables are given by the following Boltzmann functions:

n∞(V ) = [1 + exp(−150(V + 0.0305))]−1 ,

h∞(V ) = [1 + exp(500(V + 0.0333))]−1 ,

m∞(V ) = [1 + exp (−83(V + 0.018 + Vshift
K2 ))]−1.

An applied current, Iapp = 0 through the paper unless indicated otherwise (as in the quasi-strong

coupling case, see Fig. 8). In this study, Vshift
K2 is a primary bifurcation parameter that controls the

number of spikes per burst.

B. Sherman model of pancreatic beta cells

This model [18] is based on two fast currents: calcium, ICa, and persistent potassium, IK , and a

slow potassium current, Is. V is the membrane potential and m, n and s are the voltage dependent

gating variables for these currents. The model is given by the ODEs:

τ
dV

dt
= −ICa(V )− IK(V )− Is(V ),

ICa = ḡCa m
∞(V ) (V − ECa),

IK = ḡK n (V − EK), Is = ḡs s (V − EK),

τ
dn

dt
= λ[n∞(V )− n], τs

ds

dt
= s∞(V )− s.

(7)

The governing equations for the gating variables n and s are similar to those in (6), where the time

constants, maximum conductances and values of reversal potentials are set as follows:

τ = 0.02 sec, ḡCa = 3.6 nS, ECa = 0.025 V,

τs = 5 sec, ḡK = 10 nS, EK = −0.075 V,

λ = 1, ḡs = 4 nS.
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In the model, an additional scaling factor, λ, controls the time scale of the persistent potassium

channels. The steady state values of the gating variables are given by the Boltzmann functions:

m∞(V ) = [1 + exp(−83.34(V + 0.02))]−1

n∞(V ) = [1 + exp(−178.57(V + 0.016))]−1

s∞(V ) = [1 + exp (−100(V + 0.035245))]−1.

C. Purkinje neuron model

This model [13] includes five currents: the sodium current, INa, with slow inactivation, h, and

fast instantaneous activation, m∞; the delayed rectifier potassium current, IK, with activation, n;

the non-inactivating calcium current, ICa, with activation c; the muscarinic receptor suppressed

potassium current, IM, with activation M ; the leak current, IL, and an applied current, Iapp. The

individual cell model is given by:

dV

dt
= −INa(V )− IK(V )− ICa(V )− IM(V )− IL(V )− Iapp,

INa = ḡNam
3 h (V − ENa), m = m∞(V ),

IK = ḡK n4(V −EK), ICa = ḡCa c
2(V − ECa),

IM = ḡMM (V − EM), IL = ḡL (V − EL).

(8)

The governing equations for the gating variables h, n, c, and M are similar to those in (6) where

the values for maximum conductances and reversal potentials are set accordingly:

ḡNa = 152 nS, ENa = 50 mV,

ḡK = 10 nS, EK = −75 mV,

ḡCa = 1 nS, ECa = 125 mV,

ḡM = 0.75 nS, EM = −95 mV,

gL = 2 nS, EL = −70 mV.

Voltage dependent time scales for the gating variables, measured in msec, and governed by the

following functions:

τn = 0.25 + 4.35 exp(−0.1|V + 10|),

τh = 0.15 + 1.15[1 + exp(0.0667(V + 33.5))]−1,

τc = [αCa + βCa]
−1, τM = [αM + βM]−1,
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where

αCa = 1.6/(1 + exp(−0.072(V − 5))),

βCa = 0.02(V + 8.9)/(−1 + exp(0.2(V + 8.9))),

αM = 0.02/(1 + exp(−0.2(V + 20))),

βM = 0.01 exp(−0.0556(V + 43)).

The steady state values of the gating variables are given by the following Boltzmann functions:

n∞(V ) = [1 + exp(−0.1(V + 29.5))]−1

m∞(V ) = [1 + exp(−0.1(V + 34.5))]−1

h∞(V ) = [1 + exp(0.0935(V + 59.4))]−1

c∞(V ) = αCaτc, M∞(V ) = αMτM.

Here, the applied current is a bifurcation parameter, set for the cell to be a long burster, as

Iapp = −27 nA.
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