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We study the onset of chaos and statistical relaxation in two isolated dynamical quantum systems
of interacting spins-1/2, one of which is integrable and the other chaotic. Our approach to identifying
the emergence of chaos is based on the level of delocalization of the eigenstates with respect to the
energy shell, the latter being determined by the interaction strength between particles or quasi-
particles. We also discuss how the onset of chaos may be anticipated by a careful analysis of the
Hamiltonian matrices, even before diagonalization. We find that despite differences between the two
models, their relaxation process following a quench dynamics is very similar and can be described
analytically with a theory previously developed for systems with two-body random interactions.
Our results imply that global features of statistical relaxation depend on the degree of spread of the
eigenstates within the energy shell and may happen to both integrable and non-integrable systems.
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I. INTRODUCTION

In recent years, a great deal of attention has been paid
to the issue of thermalization in isolated quantum sys-
tems caused by interparticle interactions [1–12]. Apart
from theoretical aspects, this interest has been triggered
by remarkable experimental progresses in the studies of
quantum systems with ultracold gases trapped in optical
lattices (see, e.g., [13]).

A necessary condition for the onset of thermalization
is the statistical relaxation of the system to some kind of
equilibrium, which is followed by further fluctuations of
the observables around their average values. In classical
mechanics, as discussed in Ref.[14], there are two mecha-
nisms leading to the emergence of statistical behavior in
dynamical (deterministic) systems.

The first scenario, known since the early days of sta-
tistical mechanics, is the thermodynamic limit in which
the number of particles diverges, N → ∞. In this case,
the statistical description is valid even in the absence
of chaos. A completely integrable system, such as the
Toda-lattice, can manifest perfect statistical and thermo-
dynamical properties for a finite, although large number
of particles (practically, for N ≫ 1 [15]). Even though
there are initial conditions which correspond to solitons,
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they are rare and can be safely neglected in practice.
This first mechanism, termed “linear chaos” in Ref.[14],
is at the core of the foundation of statistical mechanics.

The other mechanism, which is more recent, is based
on the concept of local instability of motion in phase
space. The understanding is that an isolated dynam-
ical system can behave in a statistical way even for a
very small number of interacting particles, N ≥ 2, pro-
vided the motion is strongly chaotic (see, e.g. [16, 17]).
Chaoticity does not imply “true” randomness in the
equations of motion, but a “pseudo-randomness” (or, de-
terministic chaos), which depends on the number of par-
ticles and the strength of the interparticle interaction.
Ergodicity is not essential here, provided the measure of
initial conditions corresponding to regular motion is very
small. In this case, an apparent irreversibility of motion
emerges, since any weak external perturbation gives rise
to non-recurrence of the initial conditions.

It should be stressed that, although the two mecha-
nisms above are different, in both cases the time depen-
dence of the observables can be described by an infinite
number of statistically independent frequencies (see de-
tails in Ref.[14]).

In quantum systems, the notion of trajectories and
thus of their local instabilities loses its meaning. Yet,
it has been argued that thermalization may still happen,
even if the system is finite and isolated, provided it is
chaotic. Chaos at the quantum level refers to specific
properties of spectra, eigenstates, and dynamics of the
system. They were initially observed in quantum sys-
tems whose classical counterparts were chaotic, but were
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soon found also in quantum systems without a classical
limit and in quantum systems with disordered potentials.
Nowadays, the term quantum chaos is used in a broad
sense when referring to those properties, irrespectively of
the existence of a true classical limit.

After intensive investigation, the properties of one-

body quantum chaos became well understood (see, e.g.,
Refs. [18–20]). In contrast, the theory ofmany-body chaos
with respect to quantum systems of interacting Fermi or
Bose particles is far from being complete. In fact, even
in the classical limit, a proper analysis of chaos becomes
complicated due to the large number of interacting par-
ticles and, therefore, large dimensionality of the phase
space.

Initial studies of quantum chaos in many-body systems
focused on the statistics of the energy levels. But it soon
became clear that crucial information is contained in the
eigenstates. Typically, the eigenstates are written in the
basis corresponding to non-interacting particles. This
corresponds to using a picture where the total Hamil-
tonian of the model is separated into a sum of two terms,
H = H0+V , whereH0 describes the non-interacting par-
ticles (in a more general context, quasi-particles), and V
absorbs the interparticle interactions. In nuclear physics
the latter term is referred to as “residual interaction”.

The separation of the Hamiltonian into two different
parts is, in fact, nothing but the mean-field (mf) ap-
proach, widely used in atomic and nuclear physics. In
many cases, the choice of unperturbed mf-basis in which
H0 is diagonal is not well-defined (not unique). However,
this choice is usually well supported physically, especially
when the interaction between particles can be considered
small. Examples include interactions between outer shell
electrons in atoms, electrons in quantum dots, and inter-
actions between spins.

The key point of many-body quantum chaos is that
the eigenfunctions (EFs) in the mf-basis spread as the in-
teraction between particles increases and may eventually
have a very large number of contributing components.
However, contrary to full random matrices, where the
eigenstates are completely extended independently of the
choice of basis, in isolated systems with finite-range in-
teractions, the perturbation couples only part of the un-
perturbed basis states |n〉. Therefore, only a fraction of
the coefficients Cα

n composing the full Hamiltonian eigen-
states |α〉 =

∑

n C
α
n |n〉 can be essentially different from

zero. In the energy representation, this fraction consti-
tutes the energy shell of the system, which can be partly
or fully filled by the exact eigenstates [21, 22]. When the
number of non-zero elements Cα

n is small, the eigenstates
are localized, while a large number implies either sparse

or ergodic states [23]. In ergodic eigenstates, the coeffi-
cients Cα

n become random variables following a Gaussian
distribution around the “envelope” defined by the energy
shell. This latter scenario is used as a rigorous defini-
tion of chaotic eigenstates and occurs when the interac-
tion exceeds a critical value [2–5, 21, 22]. An example of
such chaotic eigenstates was reported in Ref.[24], where a

careful analysis of experimental data for the cerium atom
revealed that excited states with fixed total angular mo-
mentum and parity Jπ = 1+ are random superpositions

of a restricted number of basis states.

The energy shell is associated with the limiting form
of the strength function (SF) written in the energy rep-
resentation [21, 22]. This function is obtained by pro-
jecting the unperturbed states onto the basis of exact
eigenstates. It is also known as the local density of states

and is broadly used in nuclear and solid state physics.
SF contains much information about global properties of
the interactions. It has been shown, for example, that its
shape changes from Breit-Wigner (Lorentzian) to Gaus-
sian as the interparticle interaction increases [2, 3, 5, 25–
27].

When the eigenstates are chaotic and the quantum sys-
tem has a well defined classical limit, the shapes of both
EFs and SFs in the energy representation have classical
analogs [21–23]. The first matches the distribution of the
projection of the phase space surface of H onto H0, and
the second the projection of the surface of H0 onto H .
The onset of delocalization of EFs in the energy shell is
then directly related to the chaotization of the system in
the classical limit [23] and provides a tool to reveal the
transition to quantum chaos even for dynamical quantum
systems without a classical limit.

The emergence of chaotic eigenstates has been related
to the onset of thermalization in isolated quantum many-
body systems [1–11]. It has been shown, for instance,
that when the eigenstates become chaotic, the distri-
bution of occupation numbers achieves standard Fermi-
Dirac or Bose-Einstein forms, thus allowing for the in-
troduction of temperature [4–7]. In particular, an an-
alytic expression connecting the increase of temperature
with the interaction strength and the number of particles
was obtained using a two-body random matrix model [5].
Therefore, the interparticle interaction plays the role of
a heat bath for the isolated system. Another important
aspect is that since the components of chaotic eigenstates
can be treated as random variables, the eigenstates close
in energy are statistically similar. This fact is at the
heart of the so-called Eigenstate Thermalization Hypoth-

esis (ETH) [1] and has been employed to justify the
agreement between the expectation values of few-body
observables and the predictions from the microcanonical
ensemble [1, 8, 10, 11].

The aim of the present work is to analyze the emer-
gence of statistical properties in isolated quantum many-
body systems. We consider two dynamical models of in-
teracting spins-1/2; one is integrable for any value of the
perturbation and the other undergo a transition to chaos.
Our approach is based on the concept of the energy shell,
in which the eigenstates undergo a transition from local-
ized or sparse to delocalized and random. Strictly speak-
ing, chaotic eigenstates filling completely the energy shell
appear only for the nonintegrable model. However, even
for the integrable system, chaotic-like eigenstates, where
a large number of mf-basis contributes to the state, may
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be found in the limit of strong interaction. We demon-
strate that the critical strength of the interaction above
which the eigenstates may be considered chaotic-like cor-
responds to the point where the shape of SF becomes
Gaussian.
We show that in comparison with the chaotic model,

the lack of ergodicity of EFs in the integrable system
leads to larger fluctuations of the results for delocaliza-
tion measures and for the overlaps between neighboring
eigenstates. This coincides with recent results obtained
for bosonic and fermionic systems [10, 11]. In the spirit
of ETH, these findings were used to explain the better
agreement between eigenstate expectation values of few-
body observables and thermal averages for systems in the
chaotic domain.
Despite differences in some static properties, the relax-

ation process for both models after a quench dynamics
is found to be very similar, as inferred from the study of
the time dependence of the Shannon entropy for initial
states corresponding to mf-basis states. Our numerical
data agree very well with analytical predictions devel-
oped for two-body random matrices [28], when the in-
teraction strength is strong. In this case, the entropy
shows a linear growth before reaching complete relax-
ation. Crucial for this behavior is that the eigenstates
are delocalized (although not necessarily ergodic) in the
energy shell, which may occur even when the system is
integrable.
We also discuss how one can predict the onset of

chaotic-like eigenstates by analyzing the structure of the
Hamiltonian matrices without resorting to their diag-
onalization. Remarkably, the estimates coincide very
closely with the critical values obtained from energy level
statistics and the shapes of SF and EF.
The paper is organized as follows. Section II describes

the models studied, their symmetries, and the structure
of the Hamiltonian matrices. Section III analyzes the
fluctuations of the energy spectrum and quantifies the
level of chaoticity of the system based on the level spac-
ing distributions. Section IV investigates the integrable-
chaos transition from the perspective of the eigenstates.
We study the shape of the strength functions, the spread-
ing of the eigenstates in the energy shell, delocalization
measures, and a new signature of chaos based on correla-
tions between neighboring eigenstates. Section V focuses
on the time evolution of the Shannon entropy for both in-
tegrable and nonintegrable models aiming at identifying
the conditions for statistical relaxation. Both numerical
and analytical results are provided. Concluding remarks
are presented in Sec. VI.

II. SYSTEM MODEL

We consider isolated one-dimensional (1D) systems of
interacting spins-1/2. These prototype quantum many-
body systems are employed in the studies of a variety of
subjects, ranging from quantum computing [29–31] and

quantum phase transition [32] to the transport behav-
ior in magnetic compounds [33–39]. The recent viabil-
ity to experimentally realize such models in optical lat-
tices [40–43] have further increased the interest in them.
In 1D, these systems may remain integrable even in the
presence of interaction; while the crossover to chaos can
be induced by different integrability breaking terms [44–
49]. This particularity turns them into natural testbeds
for the analysis of the integrable-chaos transition and for
comparative studies between the two regimes.
Two 1D spin-1/2 systems are investigated in this

work. Model 1 has only nearest-neighbor (NN) cou-
plings and is integrable for any value of the interaction
strength. Model 2 includes nearest and next-nearest-
neighbor (NNN) couplings, and it becomes chaotic when
the strengths of the two are comparable. Both are dy-
namical systems, that is they are devoid of random el-
ements. The source of chaos in such scenarios is the
complexity derived from the interparticle interactions.

A. Hamiltonian

The Hamiltonians for Model 1 and Model 2 are respec-
tively given by

H1 = H0 + µV1, (1)

H0 =

L−1
∑

i=1

J
(

Sx
i S

x
i+1 + Sy

i S
y
i+1

)

,

V1 =
L−1
∑

i=1

JSz
i S

z
i+1,

and

H2 = H1 + λV2, (2)

V2 =
L−2
∑

i=1

J
[(

Sx
i S

x
i+2 + Sy

i S
y
i+2

)

+ µSz
i S

z
i+2

]

.

Above, ~ is set to 1, L is the number of sites, and
Sx,y,z
i = σx,y,z

i /2 are the spin operators at site i, σx,y,z
i

being the Pauli matrices. The coupling parameter J de-
termines the energy scale and is set to 1. The Zeeman
splittings, caused by a static magnetic field in the z di-
rection, are the same for all sites and are not shown in
the Hamiltonians above. We refer to a spin pointing up
in the z direction as an excitation.
(i) In Model 1, H0 corresponds to the unperturbed part

of the Hamiltonian and µ is the strength of the perturba-
tion. The unperturbed part is known as the flip-flop term
and is responsible for moving the excitations through
the chain. A system described by H0 is integrable and
can be mapped onto a system of noninteracting spinless
fermions [50] or hardcore bosons [51]. It remains inte-
grable with the addition of the Ising interaction V1, no
matter how large the anisotropy parameter µ is. The
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total Hamiltonian H1 is referred to as the XXZ Hamil-
tonian and can be solved with the Bethe Ansatz [52–54].
We assume J and µ positive, thus favoring antiferromag-
netic order.
(ii) The unperturbed part of Model 2 is the XXZ

Hamiltonian. The parameter λ refers to the ratio be-
tween the NNN exchange, as determined by the pertur-
bation V2, and the NN couplings, characterized by H1.
A sufficiently large λ leads to the onset of chaos.
With respect to symmetries, conservation of total spin

in the z direction, Sz =
∑L

i=1
Sz
i , occurs for all param-

eters of Hamiltonians (1) and (2). Our analysis is thus
restricted to a particular Sz-subspace. In order to deal
with a reasonably large sector without resorting to very
large system sizes, other symmetries [55] are avoided as
follows.
• We deal with open boundary conditions, instead of

closed boundary conditions, to prevent momentum con-
servation.
•We choose subspaces filled with L/3 up-spins to guar-

antee that Sz 6= 0. The Sz = 0 sector, which appears
when the chain size is even and has L/2 up-spins, shows
invariance under a π-rotation around the x-axis. The di-
mension of the Sz-subspace that we consider is therefore
DL/3 = L!/[(L/3)!(L− L/3)!]. Unless stated otherwise,
all figures are obtained for L = 15.
• We use µ 6= 1 throughout to circumvent conservation

of total spin, S2 = (
∑L

i=1
~Si)

2. Different values of µ are
studied for Model 1, but for Model 2, where the main
interest is in the effects of the integrability breaking term
V2, we fix µ = 0.5.
• Parity is not avoided. We take it into account by

analyzing even and odd eigenstates separately. The di-
mension of each parity sector is DP ∼ DL/3/2.
Since our numerical studies require all eigenvalues and

eigenvectors of the systems, exact full diagonalization is
performed. However, as it will be clear along the text,
much information can be obtained just from the Hamil-
tonian matrix itself.

B. Structure of the Hamiltonian matrix and

strength of the perturbation

An essential point for the study of the Hamiltonian ma-
trix is the basis considered. In general, the choice of basis
is made on physical grounds, depending on the question
being addressed. In the case of the Fermi-Pasta-Ulam
model, for example, one focuses on the equipartition of
energy among normal modes [56]. When studying spa-
tial localization, on the other hand, the most appropriate
basis is the coordinate basis, which in the case of lat-
tice systems corresponds to the site-basis. For systems
(1) and (2), the site-basis corresponds to arrays of spins
pointing up and down in the z direction.
Here, our goal is to understand the effects of the resid-

ual perturbations V1 and V2. They add complexity to
the system, without necessarily bringing it to the chaotic

domain. It becomes then essential to select a basis as-
sociated with the uncoupled particles (or quasiparticles)
with which we may separate regular from complex be-
havior. This is the role of a mf-basis, which appears in
various contexts of many-body physics. The derivation of
Fermi-Dirac or Bose-Einstein distributions, for instance,
requires the selection of a mf-basis. The same is true
when studying the structures of nuclear and atomic sys-
tems, as well as their transition to quantum chaos. Nev-
ertheless, there is not a well defined mathematical recipe
to identifying the mf-basis; this is done based on the
physical properties of the system. For the total Hamilto-
nians H1 and H2, we choose it as the unperturbed basis
states, |n〉, corresponding to the eigenstates of H0 and
H1, respectively.
To give an idea on how to extract information from

the Hamiltonian matrix, we show in Figure 1 the den-
sity plot of the absolute values of the matrix elements for
Model 1 (left panel) and Model 2 (right panel). The ma-
trices are written in the mf-basis, the latter being ordered
from lowest to highest energy. Light colors indicate large
values. Only elements associated with even states are
shown, so no trivial symmetries are present. Both matri-
ces have large diagonal elements and significant couplings
even between distant basis vectors. It is only far from
the diagonal that the elements fade away, as expected
for realistic physical models. More zeros are found in the
matrix of Model 1, which is thus more sparse than the
matrix of Model 2. Both matrices are obviously sym-
metric with respect to the diagonal, since Hnm = Hmn.
In addition to this, Model 1 shows an impressive regu-
lar structure which must be related to its integrability;
various curves of high density suggest strong correlations
between the matrix elements. For example, for the lines
in the middle, such as mid = 121, 122, . . .135, we find
that several elements, but not all, satisfy the relation
|Hmid,1+k| = |Hmid,DP−k|. We leave it for a future pub-
lication the interesting exercise of identifying the sources
of such correlations.

FIG. 1: (Color online.) Absolute values of the matrix ele-
ments of Model 1 (left panel) and Model 2 with λ = 0.5 (right
panel) for L = 12 [therefore DP ∼ 250] and µ = 0.5. The mf-
basis is ordered in energy. Only even states are considered.
Light color indicates large values.

Further details about the matrices may be obtained
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with the help of Figs. 2 and 3.
(i) The diagonal elements Hnn are shown in the top

panels of Fig. 2. Changes are seen as the perturbation
increases, especially for Model 2. This indicates that con-
tributions to Hnn come not only from the unperturbed
part of the Hamiltonians, but also from the perturbation.
Also noticeable is an asymmetry between low and high
energies, which is enhanced for larger perturbation. For
Model 1, larger values of |Hnn| are reached for negative
energies, while the opposite occurs for Model 2. This
imbalance is carried to various other properties of the
systems, as will be seen later.

FIG. 2: (Color online.) Information about the matrix ele-
ments of Model 1 (two left columns) and Model 2 (two right
columns). The matrices are written in the mf-basis, which
is ordered from lowest to highest energy. The perturbation
strength for each column is shown in the top panels. Top
panels: diagonal elements. Bottom panels: average values of
the absolute values of the off-diagonal elements vs the dis-
tance k from the diagonal.

(ii) The bottom panels of Fig. 2 show the average val-
ues of the absolute values of the off-diagonal elements,

〈Hn,n+k〉 = [
∑DL/3−k

n=1 |Hn,n+k|]/(DL/3 − k), vs the dis-
tance k from the diagonal. They are significantly smaller
than the diagonal elements and decrease slowly as we
move away from the diagonal. Thus, even though the
Hamiltonians in the site-basis have only NN and NNN
couplings, long range (but finite) interactions become
present in the mf-basis.

FIG. 3: (Color online.) Connectivity of each line n for Model
1 (left) and Model 2 (right).

(iii) Figure 3 shows the values of the connectivity Mn

of each line n, that is the number of directly coupled ba-
sis vectors in each row. We present results for µ, λ = 0.5;
they do not change much for larger values of the per-
turbation. To compute Mn, we discard the off-diagonal

elements Hnm for which |Hnm| < η, where η is the vari-
ance of the absolute value of all off-diagonal elements.
This is done, because the Hamiltonian is initially written
in the site-basis and then numerically transformed into
the mf-basis, which causes all matrix elements to become
nonzero.
The connectivity for the integrable model is signifi-

cantly lower than for the chaotic system. For Model 2 in
the middle of the spectrum, almost all basis vectors with
the same parity are coupled. On average, for the middle
of the spectrum, we find

Model 1: 〈Mn〉 ∼ DP /4,

Model 2: 〈Mn〉 ∼ DP . (3)

This confirms that H1 is more sparse than H2, as already
observed in Fig. 1. Also in connection to that figure, we
see here an interesting structure of separated layers for
the values of the connectivity of Model 1, which must
be related to its integrability. For Model 2, on the other
hand, Mn has a smoother behavior with n.
From the Hamiltonian matrix we can estimate also

the relative strength of the perturbation. For this, we
compare for each line the average value of the coupling
strength vn with the mean level spacing dn between
directly coupled states. Taking into account that not
all unperturbed states are directly coupled, we define
vn =

∑

m 6=n |Hnm|/Mn and compute the mean level

spacing from dn = [εmax
n − εmin

n ]/Mn, where ε
max
n (εmin

n )
is the unperturbed energy Hmm corresponding to the
largest (smallest) m where Hnm 6= 0. Strong pertur-
bation is achieved when vn/dn & 1.

FIG. 4: (Color online.) Ratio of the average coupling strength
vn to the mean level spacing dn between directly coupled
states for each line n of Model 1 (left panels) and Model 2
(right panels). Horizontal (green) line stands for vn/dn = 1.

Figure 4 depicts the ratio vn/dn for Model 1 (left
panels) and Model 2 (right panels). The critical values
above which the perturbation becomes strong are approx-
imately µcr ∼ 0.5 and λcr ∼ 0.5. As we will show later,
these estimates coincide with values obtained using the
eigenvalues and eigenstates of the systems. Interestingly,
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the ratio is not flat; it increases with n for Model 1 and
decreases with n for Model 2. This is a reflection of
the asymmetry of the diagonal elements, already seen in
Fig. 2, and it will reappear in Sec. IVC when we discuss
the level of delocalization of the eigenstates.

III. SIGNATURES OF QUANTUM CHAOS:

EIGENVALUES

Different quantities exist to identify the crossover from
integrability to quantum chaos. Level spacing distribu-
tion, level number variance, and rigidity [19, 57–59], for
example, are associated with the eigenvalues, the first be-
ing the most commonly used signature of chaos. In this
section, we show briefly some results for the level spacing
distribution after having a look at the density of states.

A. Density of states

We denote the eigenvalues of the system by Eα and
the eigenstates by |α〉. The density of states ρ(Eα) for
both models are seen in Fig. 5. Since the Hilbert space is
finite, ρ(Eα) consists of two parts. On the left side of the
spectrum, ρ(Eα) increases with energy; there the micro-
canonical temperature is positive. The right side corre-
sponds to negative temperatures. The point of maximum
density of states has infinite temperature.
Independently of the domain, the distributions are very

close to Gaussians, as typical of systems with few-body
interactions (two-body in our case) [60, 61]. This is to
be contrasted with ensembles of full random matrices,
where the density of states is semicircular [19, 58, 59].
The fact that the density of states vanishes at very low
and very high energies implies that ergodic states are not
expected to be found in the edges of the spectrum, even if
the system is chaotic. Our analyses of the shapes of the
eigenstates, developed in the next section, concentrate
thus on the middle of the spectrum.

B. Level spacing distribution

The analysis of the level spacing distribution requires
unfolding the spectrum of each symmetry sector sepa-
rately. Unfolding the spectrum consists of locally rescal-
ing the energies, so that the mean level density of the new
sequence of energies is unity [19, 58, 59]. Here, we discard
20% of the energies located at the edges of the spectrum,
where the fluctuations are large, and obtain the cumula-
tive mean level density by fitting the staircase function
with a polynomial of degree 15.
Quantum levels of integrable systems are not prohib-

ited from crossing and the distribution is typically Pois-
sonian,

PP (s) = exp(−s),
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FIG. 5: (Color online.) Density of states for Model 1 (left
panels) and Model 2 (right panels); bin size = 0.1. The solid
(black) line gives the best Gaussian fit: µ = 0.1 → 〈E〉 =
0.034, σ = 1.330; µ = 0.4 → 〈E〉 = 0.131, σ = 1.375; µ =
1.5 → 〈E〉 = 0.363, σ = 1.857; λ = 0.1 → 〈E〉 = 0.157, σ =
1.400; λ = 0.4 → 〈E〉 = 0.051, σ = 1.494; and λ = 1.5 →
〈E〉 = 0.037, σ = 1.920

where s is the normalized level spacing. This is the dis-
tribution obtained for Model 1 with any value of µ, as
shown in the left top panel of Fig. 6. In chaotic systems,
crossings are avoided and the level spacing distribution
is given by the Wigner-Dyson distribution, as predicted
by random matrix theory. Ensembles of random matri-
ces with time reversal invariance, the so-called Gaussian
Orthogonal Ensembles (GOEs), lead to

PWD(s) = (πs/2) exp(−πs2/4).

This is the distribution obtained for Model 2 in the
chaotic limit, as shown in the right top panel of Fig. 6.
Notice, however, that our systems, contrary to GOEs,
have only finite-range-two-body interactions and do not
contain random elements. Practically, P (s) is not ca-
pable of detecting these differences and the same is ex-
pected for other signatures of quantum chaos associated
with the energy levels, such as rigidity and level num-
ber variance. For an idea of how the results for the level
number variance would look like, we refer the reader to
Fig.5 in [10], where an equivalent system is considered.
More details about the system are found in the proper-
ties associated with the eigenstates, as further discussed
in the next section.
The parameter β, used to fit P (s) with the Brody dis-

tribution [61],

PB(s) = (β+1)bsβ exp
(

−bsβ+1
)

, b =

[

Γ

(

β + 2

β + 1

)]β+1

,

can be used to quantify the level of chaoticity of the sys-
tem reflected by the spectrum statistics. For the inte-
grable Model 1, β is close to 0 for any value of µ (left
bottom panel of Fig. 6), while for Model 2 (right bottom
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FIG. 6: (Color online.) Top panels: Level spacing distribu-
tion. Bottom panels: Parameter β of the Brody distribution
vs the perturbation strength. Left panels: Model 1; right
panels: Model 2.

panel), it changes from 0 to 1 as λ increases [62]. The
crossover from integrability to chaos is fast and occurs
for λcr ∼ 0.5. This value coincides with the estimate
derived from the Hamiltonian matrix in Fig. 4. It is im-
pressive that the latter procedure, which does not require
the diagonalization of the Hamiltonian, can give such sat-
isfactory result.

IV. SIGNATURES OF QUANTUM CHAOS:

EIGENSTATES

In this section we explore the features of the eigenstates

|α〉 =
∑

n

Cα
n |n〉

written in the mf-basis |n〉 for both integrable and chaotic
regimes. As will soon become clear, more information
about the system may be found in the structures of EFs
than in the eigenvalues.
Standard perturbation theory applies when the pertur-

bation is weak, vn/dn ≪ 1. In this limit, the eigenstates
are very similar to the mf-basis states, having a very small
number of very large components Cα

n . As the perturba-
tion increases, |α〉 spreads in the unperturbed basis, and
the number of principal components, Npc, eventually gets
very large. This transition is illustrated in Fig. 7. The
eigenstates are shown as a function of the unperturbed
energy εn rather than in the basis representation, follow-
ing the one-to-one correspondence between each unper-
turbed state |n〉 and its energy εn.
Notice that even for very large perturbation, not all

vectors |n〉 contribute to the eigenstates. The restricted
number of participating basis states is a consequence of
the finite range of the interactions; only part of the un-
perturbed states is directly coupled and therefore able
to integrate the eigenstates. The limited spread of EFs
is clearly seen in Fig. 8, where the squared amplitudes

FIG. 7: (Color online.) Examples of eigenstates from the
center of the spectrum for Model 1 (left) and Model 2 (right).
They become more extended from top to bottom.

|Cα
n |

2 are depicted. In the figure, the basis representation
is used. Each horizontal line corresponds to an eigenstate
of energy Eα in the unperturbed basis. Vertical lines are
the unperturbed states with energy εn projected onto the
basis of exact states. Light colors represent large |Cα

n |
2.

The widths of participating states in the vertical and hor-
izontal lines are similar; they are broader in the middle of
the spectrum and spread further as the perturbation in-
creases. As µ and λ increase, the differences in magnitude
between diagonal and off-diagonal elements become less
pronounced. The asymmetry between the edges of the
spectrum observed in Figs. 2 and 4 is seen here again, lo-
calization being more enhanced for low energies in Model
1 and for high energies in Model 2 (see bottom panels).
Also noticeable is a difference in sparsity between EF and
SF depending on the system. For Model 2, just contrary
to what was observed for Wigner band random matrix
models [22], EFs seem to be more sparse than SFs.

A. Strength function and energy shell

In the energy representation, the strength function cor-
responds to the dependence of |Cα

n |
2 on the exact energies

Eα for each fixed unperturbed energy εn. It is given by
the expression,

Pn(E) =
∑

α

|Cα
n |

2δ(E − Eα), (4)

where the sum is performed over a small energy window
centered at E.

For an initial state |n0〉, Pn0
identifies the energies Eα

that become available to the state when the perturbation
is turned on. The width of SF is therefore associated with
the lifetime of |n0〉. This is clearly seen by the relation
between the probability Wn0

(t) for the system to remain
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FIG. 8: (Color online.) Matrix of squared components of the
eigenstates for Model 1 (left): µ = 0.5 (top) and µ = 1.5
(bottom); and Model 2 (right): λ = 0.5 (top) and λ = 1.0
(bottom). Only even states are shown, L = 12. Light color
indicates large values.

in the state and SF, as given by

Wn0
(t) =

∣

∣〈n0|e
−iHt|n0〉

∣

∣

2
=

∣

∣

∣

∣

∣

∑

α

|Cα
n0
|2e−iEαt

∣

∣

∣

∣

∣

2

≈

∣

∣

∣

∣

∫

dEPn0
(E)e−iEt

∣

∣

∣

∣

2

, (5)

where

Pn0
(E) = |Cα

n0
|2ρ(E) (6)

is SF after replacing the sum over a large number of eigen-
states by an integral, the bar stands for an average in a
small energy window, and ρ(E) is the density of exact
eigenstates.
An important aspect of SF is the possibility of measur-

ing it experimentally. In nuclear physics, this is done by
exciting an unperturbed state and studying its decay. In
solid state physics, SF corresponds to the local density of
states, since it gives the density of states for an electron
on position |n〉.
SFs, just like EFs, become more spread as the pertur-

bation increases, as illustrated in Fig. 9. We show with
filled curves the average shape of SF for 5 even unper-
turbed states in the middle of the spectrum. SF starts
as a delta function. As the interparticle interactions in-
crease, it acquires first a Breit-Wigner (Lorentzian) shape
(middle panels), and eventually becomes Gaussian (bot-
tom panels). This agrees with previous studies of quan-
tum many-body systems [2, 3, 5, 63].
(i) According to those studies, the Breit-Wigner func-

tion is given by

Pn(E) =
1

2π

Γn

(εn + δn − E)2 + [Γn/2]
2
, (7)

where the width Γn is given by the Fermi Golden Rule,

Γn ≈ 2π|Hnm|2ρm, (8)

δn is a correction to the unperturbed energy εn due to the
residual interaction, |Hnm|2 is the mean squared value of
nonzero off-diagonal elements of the Hamiltonian, and
ρm is the density of basis states |m〉 directly coupled to
the initial state |n〉 via Hnm.
(ii) The Gaussian form is

Pn(E) =
1

√

2πσ2
n

exp

(

−(E − εn)
2

2σ2
n

)

, (9)

where

σn =

√

∑

m 6=n

|Hnm|2. (10)

In the following we will assume that, in the center of
the band where maximal chaos is realized, Γn = Γ and
σn = σ.
The transition from one shape to the other is deter-

mined by the relation between Γ and σ [25]. Equa-
tion (7) holds when the perturbation is small, but non-
perturbative, Γ ≪ σ, while for Γ & σ, SF becomes close
to a Gaussian, as in Eq. (9).
The maximal shape of SF, as given by Eq. (9), is

reached when the diagonal elements of the Hamiltonian
matrix become negligible. In this case, SF coincides with
the energy shell. The latter corresponds to the density
of states obtained from a matrix filled only with the off-
diagonal elements of the perturbation [21, 22]. It mea-
sures the maximum number of basis states coupled by
the perturbation.
We computed the energy shells numerically and ver-

ified that they agree very well with the Gaussian func-
tions (9) with dispersion (10). The solid lines in Fig. 9
represent these functions. As follows from Eq. (10), σ2 is
obtained without any diagonalization. That expression
is derived from the distribution of exact eigenvalues Eα

for each unperturbed state |n〉, according to [5]

σ2 = 〈E2
α〉 − 〈Eα〉

2 =
∑

α

|Cα
n |

2E2
α −

(

∑

α

|Cα
n |

2Eα

)2

=
∑

m

〈n|H |m〉〈m|H |n〉 − ε2n =
∑

m 6=n

|Hnm|2.

As seen in Fig. 9, it is only at large perturbation that
SF acquires a Gaussian form and approaches the energy
shell. When SF becomes Gaussian with the same width
of the energy shell, maximal ergodic filling of the energy
shell is realized and a statistical description becomes pos-
sible. The agreement between SF and the energy shell
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FIG. 9: (Color online.) Strength functions for Model 1 (left)
and Model 2 (right) obtained by averaging over 5 even un-
perturbed states in the middle of the spectrum. The average
is performed after shifting the center of SFs to zero. Cir-
cles give the fitting curves. Middle panels: Breit-Wigner with
ε+ δ = −0.015, Γ = 0.302 (left) and ε+ δ = 0.072, Γ = 0.345
(right). Bottom panels: Gaussian with 〈E〉 = −0.072,
σ = 1.322 (left) and 〈E〉 = −0.022, σ = 0.936 (right). Solid
curves correspond to the Gaussian form of the energy shells
with σ = 0.090 for µ = 0.1; σ = 0.359 for µ = 0.4; σ = 1.345
for µ = 1.5; σ = 0.103 for λ = 0.1; σ = 0.412 for λ = 0.4; and
σ = 1.029 for λ = 1.0.

is another way to find the critical values µcr and λcr.
We fitted our numerical data with both functions (cir-
cles in Fig. 9) and verified that the transition from Breit-
Wigner to Gaussian happens for the same critical values,
µcr , λcr ≈ 0.5, obtained before from vn/dn in Fig. 4 and
from the transition to a Wigner-Dyson distribution in
the case of Model 2. At large perturbation we then have
an excellent agreement between the Gaussian fit and the
Gaussian describing the energy shell which depends only
on the off-diagonal elements of the Hamiltonian matrices.
As seen in the bottom panels, these two curves become
practically indistinguishable.
Notice that even at very large perturbation, the width

of the energy shell, and thus of the maximal SF, is nar-
rower than the width of the density of states (cf. Fig. 9
and Fig. 5), especially for Model 2. This contradicts
the equality between Pn(E) and ρ(E) found in previ-
ous works [64] and may be due to the fact that here
the perturbation acts also along the diagonal (such ef-
fect is typically removed by considering a renormalized
mf-Hamiltonian that takes into account the diagonal con-
tributions of the perturbation).

B. Emergence of chaotic eigenstates

The energy shell determines the maximum fraction of
unperturbed states that are accessible to EFs. Therefore,
notions of localized (Npc ∼ 1) or delocalized (Npc ≫ 1)

eigenstates make sense only with respect to the energy
shell. When the perturbation is not very strong, large
values of Npc may already be found, but in this case EFs
are sparse and the components fluctuate significantly. It
is only at strong perturbation that the eigenstates can fill
the energy shell ergodically, becoming in this way chaotic
states [21, 22] and allowing for a statistical description
of the system. In this limit, the coefficients Cα

n become
random variables from a Gaussian distribution and |Cα

n |
2

fluctuate around the envelope defined by the energy shell.
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FIG. 10: (Color online.) Eigenstates for Model 1 (left) and
Model 2 (right) obtained by averaging over 5 even perturbed
states in the middle of the spectrum. The average is per-
formed after shifting the center of EFs to zero. They are
shown with filled curves. Solid curves correspond to the Gaus-
sian form of the energy shells.

The top panels of Fig. 10 show strongly localized
states. For Model 2, the EFs are also sparse. The tran-
sition to extended states in the energy shell occurs again
at the same critical parameters µcr , λcr ≈ 0.5, confirm-
ing the predictions based on the estimates obtained from
vn/dn and the Gaussian form of SFs. Notice, however,
that EFs from Model 1 never become completely ex-
tended, not even for µ = 1.5, although they do fill a
large part of the energy shell. We may argue that EFs
become chaotic-like, but not truly chaotic. This lack of
ergodicity has its roots in the integrability of the system.
For Model 2, on the other hand, EFs fill the shell ergod-
ically when the perturbation is strong, being therefore
truly chaotic.

Distinctions between integrable and chaotic regimes
are thus not captured by SFs, which are ergodic for both
models when µ and λ are large. Therefore, ergodicity in
SFs implies extended but not necessarily chaotic eigen-
states. By comparing EFs and SFs, it becomes evident
that even though their structures should be related, since
both are derived from |Cα

n |
2, differences do exist.
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C. Delocalization measures

Measures quantifying the level of delocalization of indi-
vidual EFs reveal further differences between integrable
and nonintegrable models. Overall larger fluctuations ap-
pear for the integrable case, which agrees with recent re-
sults obtained for bosonic and fermionic systems [10, 11].
Delocalization measures [3, 65], such as the inverse par-

ticipation ratio (IPR) or the Shannon (information) en-
tropy S, determine the degree of complexity of individual
states. For eigenstates in the mf-basis, they are respec-
tively defined as

IPRα ≡
1

∑

n |C
α
n |

4
(11)

and

Sα ≡ −
∑

n

|Cα
n |

2 ln |Cα
n |

2. (12)

These quantities measure how much spread the eigen-
states are in the unperturbed basis. To quantify the level
of delocalization of the mf-basis vectors with respect to
the compound states, we may simply compute the anal-
ogous quantities IPRn and Sn, where the sum over n in
Eqs. (11) and (12) are replaced by sums over α.
Complete delocalization occurs for GOEs, where the

amplitudes Cα
n are independent random variables from

a Gaussian distribution and the weights |Cα
n |

2 fluctu-
ate around 1/D, D being the dimension of the ran-
dom matrix. The average over the ensemble leads to
IPRGOE ∼ D/3 and SGOE ∼ ln(0.48D) [3, 65]. For the
realistic systems considered here, since their eigenstates
are confined to energy shells, the values of IPR and S
cannot reach those of GOEs [66].
Figure 11 shows S for the eigenstates of Model 1 (left

panels) and Model 2 (right panels). As expected from the
shape of the density of states (see Fig. 5), strong mixing
occurs in the middle of the spectrum, S being smaller at
the edges. Interestingly however, large values of S are
still found at the borders when the perturbation is very
strong. For Model 1 this happens at high energies and for
Model 2 at low energies; following the same asymmetry
verified before (cf. Figs. 2 and 4).
As the perturbation increases from top to bottom pan-

els in Fig. 11, the values of S increase and the fluctua-
tions decrease for both models. However, this reduction
is much more significant for Model 2. The smooth behav-
ior of S in the chaotic limit (bottom right panel) indicates
that the structure of eigenstates close in energy becomes
statistically very similar. This fact has suggested a close
relationship between chaos and the viability of thermal-
ization [67, 68], as numerically explored in [10, 11].
Differences between integrable and chaotic regimes, as

verified in the behavior of S and in the spreading of EFs
in the energy shell (see Fig. 10), appear to have their
origins in the results for the connectivity shown in Fig. 3.
The separated values of Mn seen in the integrable system

must lead to EFs with different levels of delocalization,
even when close in energy. This causes larger fluctuations
in the values of S. For Model 2, Mn’s are similar for
nearby states leading to the smooth behavior of S in the
bottom right panel of Fig. 11.

FIG. 11: (Color online.) Shannon entropy for all eigenstates
written in the mf-basis for Model 1 (left) and Model 2 (right).

The level of delocalization of SFs for the basis states
written in terms of the eigenstates also increases with the
perturbation, while the fluctuations decrease, as shown
in Fig. 12. Here however, the width of the fluctuations
are very similar for both models. This reinforces our
previous statement that the transition to chaos cannot
be captured by SF, which shows comparable behavior
for both integrable and nonintegrable regimes.

FIG. 12: (Color online.) Shannon entropy for the strength
functions written in the basis of the eigenstates for Model 1
(left) and Model 2 (right).
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D. Overlap between neighboring eigenstates

We define a new signature of chaos referred to as the
overlap between the probability distributions of neigh-
boring eigenstates |α〉 and |α′〉,

Ωα,α′ ≡
∑

n

|Cα
n |

2|Cα′

n |2. (13)

It corresponds to an alternative way to capture the tran-
sition to chaos by measuring how much similar the com-
ponents of neighboring states are.
For GOEs, since all eigenstates are simply normalized

pseudo-random vectors, one has Ω ∼ 1/D. These states
are completely delocalized and statistically very similar.
For the models studied here, the results are presented in
Fig. 13 and described below.

FIG. 13: (Color online.) Overlaps of neighboring eigenstates
for Model 1 (left panels) and Model 2 (right panels). The
two different colors indicate eigenstates of even or odd parity.
Horizontal (green) lines indicate the GOE prediction Ω =
1/D.

(i) In the limit of localized eigenstates, large fluctua-
tions are seen. Since there are few contributing compo-
nents, we find neighboring states where the probabilities
|Cα

n |
2 are nonzero and approximately the same for the

same basis vectors |n〉, but we have also pairs where the
effective basis vectors do not match. There are very cor-
related states leading to large overlaps, and there are
also uncorrelated states leading to values of Ω below the
threshold from GOEs, the values reached by Model 1 be-
ing significantly lower than for Model 2.
(ii) As the perturbation increases, and the number of

principal components becomes large, the maximum val-
ues of Ω decrease for both regimes, especially in the mid-
dle of the spectrum where the mixing is stronger. The
fluctuations in the values of the overlaps also decrease,
especially for Model 2. For the latter, a smooth behav-
ior with energy, similar to that obtained for the Shannon
entropy for EFs, is achieved.

(iii) Notice that in the limit of strong perturbation,
only Model 2 does not cross the GOE threshold. In the
integrable model, since EFs do not fill the energy shell
completely, we may still find neighboring states that are
statistically very different. At the edges of the spectrum,
the overlaps tend to be larger, since there are more cor-
relations due to finite effects.

V. TIME EVOLUTION OF THE SHANNON

ENTROPY: STATISTICAL RELAXATION

We now study the quench dynamics of the system by
focusing on the time evolution of the Shannon entropy
for initial states corresponding to unperturbed vectors
selected from the middle of the spectrum. For an initial
state |n0〉, the entropy in the mf-basis is given by

Sn0
(t) = −

DP
∑

n=1

Wn(t) ln [Wn(t)] (14)

where

Wn(t) = 〈n|e−iHt|n0〉 =

∣

∣

∣

∣

∣

∑

α

Cα
nC

α∗
n0

e−iEαt

∣

∣

∣

∣

∣

2

is the probability for the initial state |n0〉 to be found in
the state |n〉.
Numerical data are shown in Fig. 14. To reduce fluctu-

ations, an average is performed over 5 initial even basis
states excited in a narrow energy window in the mid-
dle of the spectrum. In the limit of strong interaction,
the results for both the chaotic and the integrable mod-
els agree very well with analytical expressions previously
found in the context of two-body-random ensembles [28].
These expressions can be derived when the shape of SF
is known, being either Breit-Wigner or Gaussian.

A. Analytical expressions

We reproduce here the steps of the cascade model con-
sidered in Ref. [28] to obtain an analytical expression for
the time dependence of the entropy.
For very short times, t ≪ Γ/σ2, it has been shown that

the probability for the system to remain in the initial
state |n0〉 is [64, 69]

Wn0
(t) ≈ exp(−σ2t2), (15)

whereas for very long times, it becomes

Wn0
(t) ≈ exp(−Γt), (16)

which means that the decay rate from the initial state is
determined by

dWn0

dt
= −ΓWn0

. (17)
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Given the two-body interaction, |n0〉 spreads first intoN1

states directly coupled to it. This set is referred to as the
first class of states. Subsequently, states from the first
class populate those directly coupled to them, the N2

basis states from the second class. The process continues
successively like this as in a cascade. The number of
states in the k-th class is then

Nk = Mk . . .M1Mn0
≈ Mk

n0
, (18)

where Mk is the connectivity associated with the basis
states of the k-th class. This implies that the number
of states of one class is larger than the number in the
previous class, which justifies neglecting the probability
of return to a previous class and allows us to write, for
k > 1

dCk
dt

= ΓCk−1 − ΓCk, (19)

where Ck is the probability for the system to be in the k-
th class and C0 = Wn0

. The first term on the right-hand
side is the flux from the previous class and the second
term is the decay of the k-th class.
The solution of Eq. (19) is

Ck =
(Γt)k

k!
e−Γt. (20)

Since each k class contains several basis states, Ck ≈
NkWn ≈ NkM

k
n0
. Assuming an infinite number of

classes, Eq. (14) becomes

Sn0
(t) ≈

∞
∑

k=0

Ck ln

(

Ck
Nk

)

= Γt lnMn0
+ Γt− e−Γt

∞
∑

n=0

(Γt)n

n!
ln

(Γt)n

n!
.

The last terms on the right-hand side of this equation
are smaller than the first term, so they may be neglected,
leading to a simple linear time dependence of the Shan-
non entropy,

Sn0
(t) ≈ Γt lnMn0

. (21)

In the limit of strong perturbation, where Γ & σ and SF
is described by a Gaussian, we can write the entropy as

Sn0
(t) ≈ σn0

t lnMn0
. (22)

Note that Eq. (22) depends only on the elements of the
Hamiltonian matrix. Yet, as seen in Fig. 14, it repro-
duces very well the linear increase of the entropy for both
models in the regime where the eigenstates become delo-
calized in the energy shell.
To find an expression that describes the dynamics of

the system at both short and long times, Eq. (15) needs
to be taken into account. In Ref. [28], the following ex-
pression was proposed,

Sn0
(t) = − Wn0

(t) lnWn0
(t)

− [1−Wn0
(t)] ln

(

1−Wn0
(t)

Npc

)

, (23)
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FIG. 14: (Color online) Shannon entropy vs time for Model 1
(left) and Model 2 (right). Circles stand for numerical data,
dashed lines show the linear dependence (22), and solid curves
correspond to Eq. (23). The horizontal (orange) solid lines
represent the value of SGOE ∼ 6.58.

where Npc is the total number of states inside the energy
shell, that is the limiting value of the entropy after re-
laxation. In the results shown in Fig. 14, we obtained
Npc numerically from Npc = 〈eS〉, where the average 〈.〉
is performed over a long time interval after the entropy
saturates, t ∈ [100, 200].

Equation (23) is a good approximation when the total
number of classes is small, nc ∼ 1. This is indeed the
case for Models 1 and 2. The effective number of classes
in the cascade model can be obtained from

Mnc = DP , (24)

which, following Eq. (3), gives nc ∼ 1.2 for Model 1 and
nc ∼ 1 for Model 2.

In the regime of strong perturbation, Eq. (23) captures
all stages of the evolution: the initial quadratic growth,
as given by perturbation theory; the linear behavior; and
the final saturation. For small perturbation, the agree-
ment with Eq. (23) is poor.

The main aspects of the statistical relaxation process
are then the linear growth of S followed by its saturation
to a value close to that of a GOE: SGOE ∼ ln(0.48D). In
the limit of strong interaction, this is the behavior of the
chaotic system and, to a very good approximation, also
the behavior of the integrable model. This suggests that
chaoticity is not essential for the emergence of statistical
relaxation. The fact that EFs of both models in the limit
of large interaction show significant filling of the energy
shell indicates that the existence of extended eigenstates
is a sufficient condition for relaxation. However, to reach
a final statement, further numerical and analytical stud-
ies of one- and two-body observables are necessary.
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VI. CONCLUSION

We studied static and dynamic properties of two sys-
tems of interacting spins 1/2. Model 1 is integrable for
any value of the perturbation and Model 2 can transi-
tion to chaos. The analysis of the Hamiltonian matri-
ces, later combined with studies of spectrum statistics
and structures of eigenstates and strength functions, sug-
gested that aspects of the intricate behavior of complex
systems can be anticipated even before diagonalization.
It was shown that strength functions and eigenstates

delocalize as the perturbation increases, being, however,
always restricted to the energy shell. In the limit of
strong perturbation, strength functions of both models
in the middle of the spectrum become Gaussian and co-
incide with the energy shell. In the case of eigenstates,
the same occurs only for the chaotic model. For the inte-
grable system, the eigenstates become much spread, but
do not fill the energy shell completely.
We verified that the lack of ergodicity of the eigenstates

for the integrable model is reflected in larger fluctuations
of delocalization measures and of the overlaps between
neighboring eigenstates. The degree of overlaps between
neighboring eigenstates may be considered as a new sig-
nature of chaos. The transition to chaos occurs when the
values of the overlaps becomes inversely proportional to
the dimension of the Hilbert space.
We also studied the time evolution of the Shannon en-

tropy for initial states corresponding to mean-field basis
vectors. Knowledge of the shape of the strength functions
allowed us to describe the quench dynamics with analyt-
ical expressions originally developed and tested for sys-
tems with two-body-random interactions. They agreed
very well with our numerics. The linear growth of the
entropy was also well described by an expression involv-
ing parameters obtained from the analysis of the Hamil-
tonian matrices before diagonalization.
Our results indicate that the relaxation process is very

similar for integrable and nonintegrable systems, pro-
vided the eigenstates are extended in the energy shell.
On the other hand, we have seen that after saturation the
fluctuations of the entropy in the integrable domain are
slightly larger than for the chaotic system, as observed
also in [71] and in [8] in the context of observables.
An issue that deserves further investigation concerns

the fluctuations of static and dynamic properties. A care-
ful analysis of how they reduce with the number of par-
ticles and how the results compare for both regimes is
very important for further developments of the problem
of thermalization in isolated systems.
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Physica E 12, 267 (2002); L. Benet et al, J. Phys. A
36, 1289 (2003).

[24] B. V. Chirikov, Phys. Lett. A 108, 68 (1985).
[25] V. V. Flambaum and F. M. Izrailev, Phys. Rev. E., 61,

2539 (2000); Phys. Rev. E 64 (2001) 026124; F. M.
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