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For a class of integrate-and-fire, pulse-coupled networks with complex topology, we study the
dependence of the pulse rate on the underlying architectural connectivity statistics. We derive the
distribution of the pulse rate from this dependence and determine when the underlying scale-free
architectural connectivity gives rise to a scale-free pulse-rate distribution. We identify the scaling
of the pairwise coupling between the dynamical units in this network class that keeps their pulse
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I. INTRODUCTION

Pulse-coupled network models have found applications
in fields ranging from engineering to biology [1-9]. The
topology of the couplings between the interacting dynam-
ical units of such networks is typically highly complex and
can only be captured statistically. These networks are de-
scribed as directed graphs, with the dynamical units as
the nodes or vertices and their couplings as the edges.
The basic statistical quantities of the graph topology,
which is also known as the network’s architectural connec-
tivity, are given in terms of the distributions of the node
degrees and edge types. Each node in a directed graph has
an incoming and outgoing degree, which are the numbers
of directed edges that terminate at and originate from
this node, respectively. The total degree of a node is the
sum of its incoming and outgoing degrees. The edge type
of a specific edge refers to the degrees (incoming, outgo-
ing, or total, depending on the desired description) of the
nodes it connects.

In many networks of scientific or practical importance,
the node-degree distributions are believed to satisfy sim-
ple asymptotic laws, such as power laws. For example, if
the exponent v in a negative power law stays in the inter-
val 2 < v < 3, the network satisfying this distribution is
called scale-free [10-13]. Scale-free network architecture
is particularly appealing in that it describes networks
with many low-degree nodes but also a few large-degree
hubs, each of which is connected to a substantial portion
of the network.

Pulse-coupled models of integrate-and-fire (IF) type [5,
6] have been used successfully as dynamical units de-
signed to capture a number of robust network effects in
large-scale neuronal assemblies, for example in the pri-
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mary visual cortex [14-19]. While the bulk geometric
features of the architectural connectivity in such assem-
blies are quite well known experimentally [20-28], the
statistics of the neuronal connectivity degrees are typi-
cally unknown and are largely guessed from an indica-
tor of functional connectivity [29-36]. Such an indica-
tor is any measurable quantity, for example the firing
rate or subthreshold membrane-potential correlations in
neuronal networks, which is believed to depend on the
underlying node-connectivity degrees in a monotonically
increasing manner. The relationship between networks’
architectural and functional connectivities is not yet well
understood, and deserves a closer look. Therefore, it
is important to understand how an indicator of func-
tional connectivity, such as the pulse-rates of its dynam-
ical units, depends on the architectural connectivity of a
given complex IF network.

The description of large pulse-coupled networks fre-
quently simplifies in the infinite-network limit. However,
crucial dynamical properties of such networks, for ex-
ample their units’ pulse rates, may only remain within a
physically relevant regime and therefore yield a meaning-
ful theoretical description in this limit if the strengths of
the couplings among the dynamical units in the network
obey an appropriate scaling law, which decays with in-
creasing network size. For all-to-all coupled IF networks,
this scaling law is inversely proportional to the network
size [37, 38]. For IF networks with complex topologies,
the question of its precise form has, to our knowledge,
not yet been systematically addressed.

In this paper, we address both the question of the
dependence of an IF network’s pulse rate on its archi-
tectural connectivity, and the scaling of the network
coupling that yields a meaningful description of this
dependence in the large-network limit. We use the
conductance-based IF model [5, 6] to describe the pulse-
coupled dynamics of the dynamical units located at the
network nodes. Comparing with numerical simulations



of this model, we find that an explicitly solvable coarse-
grained, mean-field limiting description [37-40] of the
model network renders asymptotic scaling laws connect-
ing the external input, node-degree, and the pulse rates of
the dynamical units with high incoming degrees. Instru-
mental in this analysis is the observation that these units
operate in the regime in which they receive strong com-
bined driving from the external input and other units in
the network. We also, in this paper, derive a generaliza-
tion of the mean-field IF network description of [37-40] to
the case of networks with complex connectivity topology,
which we use in our investigation.

Throughout this paper, we use several terms from neu-
roscience, because these terms are standard and well-
suited for pulse-coupled networks of IF type, and also
because our study was motivated by complex neuronal
networks. In particular, for simplicity, we will call the
directed couplings between dynamical units synapses or
synaptic connections, with the presynaptic node origi-
nating and the postsynaptic node receiving pulses along
their connection.

The main results of this paper address the question of
how the pulse-rate of the dynamical units depends on the
underlying connectivity statistics in three example com-
plex IF networks of increasingly complex topology, which
include an uncorrelated network [11] and two scale-free
networks grown through preferential attachment [41-43].
While these networks are sufficiently idealized to allow for
explicit solution, they also progressively incorporate fea-
tures conjectured to be present in realistic neuronal net-
works, including scale-free distribution of incoming node-
degrees and clustering [32-34, 36, 44-47]. We contrast
the dependence of the units’ pulse-rate on the underly-
ing connectivity statistics in these three networks with
the corresponding dependence in the all-to-all connected
IF network. In the process, we also derive the edge-type
distribution function for the scale-free network of [41].

For the uncorrelated network [11] and the network of
[41], we find that the pulse rates of their k-nodes de-
pend linearly on the incoming degree k in the high-k
range. We also find that the slope of this dependence
is controlled by the average degree of the nodes presy-
naptic to a k-node in the uncorrelated network, and the
effective version of this degree in the scale-free network
of [41]. This effective degree is induced dynamically by
the topological correlations in the network. In both cases,
this degree also governs the scaling of the coupling coeffi-
cient that preserves finite pulse rates in the large-network
limit. Moreover, for the network of [41], we observe that
the mean-field model describes averages over ensembles
of such networks rather than individual network realiza-
tions, and discuss how this model can be modified to ap-
ply to each individual realization. For the asymmetric,
tree-like, unidirectionally scale-free network of [42, 43],
we find a superlinear power-law dependence of the pulse
rate on the incoming node-degree k, and the absence of
any need for scaling the coupling coefficient in the large-
network limit. Finally, for both scale-free networks, we

derive that their pulse rates are also distributed accord-
ing to a power law.

In general, for pulse-coupled networks of IF type, we
derive that the growth of the pulse rates as a function
of the growing node-degree can only be linear or super-
linear in the asymptotic limit of large node-degrees. We
then identify a large class of IF networks with properties
plausibly mimicking realistic neuronal networks, which
we term boundedly-correlated and statistically-symmetric
(terms to be defined in Sec. V) and for which we can
derive an upper bound on the network coupling strength
that guarantees bounded pulse rates of all the dynamical
units and another upper bound that is necessary for the
pulse rate averaged over the network to remain bounded
in the large-network limit. Using the uncorrelated net-
work [11] and the scale-free network of [41], we find that
these bounds are the sharpest possible. As mentioned
above, we use the asymmetric, unidirectionally scale-free
network that we had studied in [43] to demonstrate su-
perlinear asymptotic pulse-rate dependence on the un-
derlying node degrees, and to illustrate that the coupling-
strength scaling does not have to decrease towards zero
as the network size approaches infinity in a network that
is not statistically symmetric.

The remainder of the paper is organized as follows.
In Sec. I, we introduce the two main statistical quanti-
ties we use in the network connectivity description. In
Sec. III, we describe IF networks with complex topology,
the mean-field model used to describe their pulse rate,
the linearization of this model for large input values, and
the formal solution of the resulting linear model by a
Liouville-Neumann series. In Sec. IV, we apply this gen-
eral theory to three specific networks: all-to-all coupled
in Sec. IV A, uncorrelated in Sec. IV B, and scale-free
in Sec. IVC, and also find the scalings for their cou-
pling coeflicients that keep the pulse rates of their nodes
bounded. We describe an additional scale-free network
whose properties contrast those of the first three net-
works in Sec. IVD. In Sec. V, we derive a linear lower
bound on the pulse rate as a function of the node-degree
and generalize the coupling-coefficient scalings found in
the previous section to two broad classes of networks. In
Sec. VI, we briefly discuss the pulse-rate distributions in
our example networks. In Sec. VII, we conclude the pa-
per with a discussion of the results. Technical derivations
are relegated to the Appendix. In particular, in App. A,
we derive the mean-field model for computing the net-
work pulse rate. In App. B, we derive the edge-type dis-
tribution function for the scale-free network describe in
Sec. IV C. In App. C, we derive the leading-order pulse-
rate behavior for the scale-free network of Sec. IVD. Fi-
nally, in App. D, we derive the scaling bounds for the
network coupling needed to ensure that the individual
nodes’ and network pulse rate remain bounded, presented
in Sec. V.



II. NETWORK DESCRIPTION

To investigate the pulse rates of the nodes in the net-
work, we must use information about their incoming de-
grees. This is because the total network pulse train re-
ceived by a node is the sum of the pulse trains originating
at all its presynaptic nodes, and that is one of the most
important factors in determining the node’s pulse rate.
The most fundamental quantity describing the network
statistics that is used in determining the nodes’ pulse
rates is therefore the distribution of the network nodes’
incoming-degree, k, denoted by P, (k). In what is to fol-
low, we will frequently refer to P, (k) simply as the node-
degree distribution, and to nodes with incoming degree k
as k-nodes. In addition to the node-degree distribution,
in order to compute the nodes’ pulse rates, we also need
to know the distribution of the types of edges present in
the network. This distribution is usually given by the
function that describes the probability, T'(n, k), of find-
ing an edge that originates at an n-node and terminates
at a k-node [48]. The distribution T'(n, k) is also known
as the degree-correlation function [11].

For a network of size N + 1, evaluating the probability
of an edge terminating at a k-node allows us to relate
the node-degree and edge-type distributions, P, (k) and
T(n, k), by the equation

/N T(n, k)dn = kp““(k), (1)
0 14
where
N
p= /0 K Po (k) dk (2)

is the mean node-degree in the network. In particular,
Eq. (1) states that the probability of finding an edge that
terminates at a k-node is proportional to the probability
of a k-node existing in the network, times k, the num-
ber of edges that terminate at a k-node. Moreover, this
interpretation of the right-hand side of Eq. (1) and an
application of the Bayes formula imply that the condi-
tional probability, P(n|k), of an edge to originate at an
n-node given that it terminates at a k-node equals
pT (n, k)

P(n|k) = IRTR (3)

provided that k # 0. Clearly, P(n|0) = 0, since a 0-node
receives no synaptic input from other nodes in the net-
work. In what is to follow, we therefore will consistently

interpret the right-hand side of formula (3) as vanishing
for £ = 0.

III. PULSE RATE OF k-NODES

In a network of N + 1 coupled nodes, described by the
conductance-based, all-excitatory integrate-and-fire (IF)

point-neuron model [5, 6], the activity vé(t) of the ith
node is governed by the equation

do?

T =~ = V) - GO~ V), (4)

until it reaches the threshold value, Vi, when it is instan-
taneously reset to the reset value, V.. At that moment,
the ith node sends a pulse to every other node in the
network, as described below. The remaining parameters
in Eq. (4) include Vg, the reversal activity value, 7, the
activity time constant, and G*(t), the pulse train

Git) = fZG(t — i) + SZZG(t — 5, (5)

in which the sums extend over all the pulses that the
ith node receives. Here, the pulse shape G(t) is given
by an a-type function, described further below and in
Appendix A.

The first sum in the pulse train G*(¢) in Eq. (5) corre-
sponds to pulses generated by the external drive at times
t;;, which we assume to form a Poisson train with rate v.
We assume the Poisson pulse trains generated by the ex-
ternal drive arriving at different nodes to be statistically
independent. The second sum in the pulse train G*(t)
in Eq. (5) corresponds to pulses arriving at the ith node
from its presynaptic network nodes along the directed
edges determined by the specific network topology. The
time t; corresponds to the jth time the x;th presynaptic
node of the i¢th node emitted a pulse. Since the nodes in
a complex network differ from each other in the number
of incoming connections, k, if the ith node is a k-node,
the index k; in the second sum of Eq. (4) will run over its
k presynaptic nodes. The coupling strengths are set to f
for the pulses arriving through the external drive and S
for those arriving from the network nodes.

In our numerical simulations, we solve Eqs. (4) using
the modified second-order Runge-Kutta algorithm of [49].
For the pulse shape G(t), we use the function

t
— et/ (6)

where ©(-) is the Heaviside function and 7, is the pulse
decay rate. For the network parameters, we use the fol-
lowing dimensionless values:

Vi =0,

Vr =1, Ve =14/3, (7a)

7 =0.02, T4 = 0.003. (7h)
The activity constants are taken to be shifted and non-
dimensionalized versions of the typical neuronal reset,
threshold, and excitatory reversal potentials of —70 mV,
—55mV, and 0 mV, respectively, rounded to a close ratio-
nal number. The time scales are taken to be the typical
neuronal leakage-conductance time scale of 20 ms, and
the AMPA-conductance decay rate of 3 ms.



For a time-independent Poisson rate, v, of the exter-
nal drive, when the input fluctuations induced by both
the external-drive and network pulses are small, one can
describe the network dynamics by the nodes’ pulse rates
alone using a mean-field model. In a complex network,
the average pulse rate per node, myg, of the k-nodes has
to be considered separately for every incoming degree k.
A kinetic-theoretic derivation, described in Appendix A,
yields for the pulse rate my the mean-field equation

1+ gk
Tmg = , 8a
9:(Ve = V)=V +V,
with
gk = fv + Sk, (8b)
and
N
i = / P(n|k)my,dn. (8¢)
0

Here, g is the average input to a k-node, uy, is the aver-
age input that a k-node is expected to receive from any
other type of a node, and P(n | k) is the conditional prob-
ability of an edge to originate at an n-node given that it
terminates at a k-node, described in Eq. (3). Note that
here we approximate n and k as continuous variables.

We are interested in the influence of the network topol-
ogy statistics on the distribution of the pulse rates my
corresponding to the nodes with different connectivity
degrees, k. The properties of this distribution can be
brought out most simply in the high-g; limit, i.e., when
the average inputs gj, to the nodes are strong, g, > 1. We
can then Taylor expand the right-hand side of Eq. (8a)
in 1/gx, and keep only the O(1) terms, to obtain the fol-
lowing linear asymptotic approximation of the original
system (8a):

1-A
InA=1+ —+ 9
mgT In + hA + gk, 9)
where
Ve -V,
A= ——. 10

Note that in the numerical simulations, we use

14
A= =12727, (11)

and the parameter values in Eqs. (7a), (7b).

For a feedforward node, i.e., one whose input consists
only of its external drive, we have g, = fr, and so its
pulse rate equals

1+4(1-A)/InA+ fv

¥ = Tln A

(12a)

Using this feedforward-node pulse rate, and the rescaled
coupling constant

S
A= A (12b)
we rewrite Eq. (9) as
N
my =1+ )\/ K (k,n)mydn, (13)
0
where the kernel,
K (k) = kP(n| k) = k) (14)

Pu(k)’

gives the average number of edges that a k-node receives
from n-nodes, i.e., the average number of n-nodes presy-
naptic to a k-node.

Equation (13) is a Fredholm integral equation of the
second kind. Formally, its solution can be obtained using
the Liouville-Neumann series [50]

me = Noi(k), (15)
=0

in which ¢9 = 1, and all the subsequent terms are given
by the recursively-defined integrals

N
oi(k) = / K;(k,n)ydn, (16a)
0
with the first iterated kernel defined as
Ki(k,n) = K(k,n), (16b)
and the rest as
N /N N
o Jo 0
X K(yl, yg) e K(yi—lu n)dy1 . dyi—l- (16C)

Trivially, ¢1 (k) = ¥k.

Note that, analogously to the kernel K (k,n), the ith
iterated kernel K;(k,n) represents the average number of
n-nodes from which pulses reach a k-node via precisely
i synaptic connections. Thus the terms of the series in
Eq. (15) possess a clear physi(ologi)cal meaning: The
ith term represents the contribution to the pulse rate
my, of the external drive transmitted through precisely
i synaptic connections. In particular, as expected, v is
the portion of the pulse rate due to the external drive
alone, and thus also the pulse rate of the 0-nodes, i.e.,
those that do not receive any input from other nodes.
Therefore, mg = .

In what is to follow, we will use the series (15) to ana-
lyze the linear asymptotes of the pulse rates my in three
different networks, of which the third has a nontrivial
topology. Therefore, this last network also has nontriv-
ial distributions P, (k) of node degrees and T'(n, k) of



edge types, the latter of which we evaluate in App. B. In
addition, we will see how the convergence properties of
the series (15) imply important bounds on the scaling of
the network coupling constant, .S, in order for the nodes’
pulse rates to remain bounded in the large-network limit.

Finally, we mention that one way of quantifying the
network activity is the gain function of the entire net-
work, i.e., the functional dependence of the mean pulse
rate across the network,

N
= / i Pon (k) R, (17)
0

on the external input strength fr. We will investigate
the properties of this quantity for the networks studied
below, as well.

IV. SPECIFIC NETWORKS

In this section, we apply the general approach devel-
oped in the previous section to analyzing the dependence
of the pulse rates mj on the node and edge statistics in
four different networks of increasing complexity. In the
next section, we then generalize the properties of the first
three networks to obtain bounds on the scaling of the
network coupling, A or S, such that the individual pulse
rates, my, and the average pulse rate in the network, m,
remain bounded in the large-network limit, N > 1.

A. All-to-All Coupled Network

For an all-to all coupled network of IF nodes, N + 1
in total, with each pair of nodes connected by a pair of
directed edges, the system in Egs. (8) simplifies consid-
erably. In particular, all the nodes in the network have
the same degree, k = N, which is thus the only degree
we need to consider in Eqs. (8). As a consequence, the
only nonzero pulse rate and average input are my and
gn, respectively. We also have P(n|N) = d(n— N) (and
P(n|k) = 0 for all other degrees k), signifying the fact
that the only possible presynaptic nodes are N-nodes.
Therefore, Egs. (8) simplify to [38]

1+gn
TMmN = , 18a
gNn(Ve = Vr)=Vr+V,
with
gn = frv+SNmy. (18b)

While the system (18) cannot be solved explicitly for
the average pulse rate my of the nodes in terms of the
external driving strength fv, the gain curve depicting the
relationship of these two quantities can be parametrized
exactly by using the input gy as a parameter [51]. The
pulse rate my is parametrized via Eq. (18a), and the

driving strength fr using the parametrization of my and
Eq. (18b), with gy > A — 1. The resulting gain curves
for different values of the coupling strength S are shown
in Fig. 1. They rise from the point (fv,my) = (A —
1,0), at least at first slope backwards, and eventually
tend towards the straight-line asymptotes

fr+1-(A-1)/InA
N TInA - SN '

Note that the backwards-sloping segments of the gain
curves are unstable and are not observed in simula-
tions. Instead, when a gain curve has both backwards-
and forwards-sloping segments, simulations exhibit hys-
teretic, bistable behavior [37, 38, 51]. The coupling value

TIn A
N

corresponds to a critical case with a vertical asymptote
in the gain curve. For larger values of S there is no
nontrivial stable equilibrium solution of Eq. (18).

my (19)

S = (20)

FIG. 1. Gain curves depicting the pulse rate my as a func-
tion of the driving strength fr in the mean-driven limit of
the all-to-all coupled network. The parameter values are (7)
and (11). The coupling strengths SN along the gain curves
are (left to right): 0.096, 0.08, 0.064, 71n A = 0.04823, 0.032,
0.016, and 0. The gain curves approach straight-line asymp-
totes; their equations are given by Eq. (19). The asymp-
tote of the gain curve corresponding to the coupling strength
SN = 7In A is vertical. Numerical simulations in [51] indi-
cate that backwards-sloping segments of the gain curves are
unstable.

The kernel K (k,n) in Eq. (14) for the all-to-all coupled
network is only nonzero for k£ = N, in which case it equals
K(N,n) = Né(n — N), again signifying the fact that all
presynaptic nodes are N-nodes. The asymptotic integral
equation (13) in this case becomes

my =1+ ANmy, (21)

with the parameters ¢ and A as in Egs. (12a) and (12b),
respectively, and the solution

Y

BEESY (22)

mn



which is easily seen to be the same as the straight-line
asymptote (19). This solution becomes singular when
A = 1/N, which is the same as Eq. (20), and is consis-
tent with the commonly used scaling in the mean-field
analysis of all-to-all coupled networks. The factor N in
the denominator of Eq. (22) can be interpreted in sev-
eral different ways; the most fruitful is as the number of
presynaptic nodes to any given node, as can be seen from
the discussion following Eq. (15).

The above discussion of the linearized equation (21)
again shows that in the limit of large network size,
N > 1, the network coupling coefficient, S, must scale
as O(1/N) so that a nontrivial interval of S-values will
exist in which the network has a stable, nonzero steady
state for sufficiently large values of the external driving
strength, fv. As shown in [51], the network is stable in
this state in the sense that the pulse rate remains steady
and does not grow in time without a bound.

B. Uncorrelated Network

In this section, we use the Liouville-Neumann se-
ries (15) to obtain the exact solution of Eq. (13) for un-
correlated networks [11, 52-55], i.e., those in which

kP (k)nPmy(n)

T(n, k) = 2

(23)

For uncorrelated networks, Eq. (3) immediately im-
plies that the conditional probability P(n | k) for an edge
to originate from an m-node given that it terminates at
a k-node equals P(n|k) = nPy(n)/u, and thus is in-
dependent of the degree k. This, in turn, implies that
the kernel in Eq. (14) equals K (k,n) = knPn(n)/p, i.e.,
k times the probability of an edge terminating at an
n-node. Therefore, for the ith coefficient ¢;(k) in the
Liouville-Neumann series (15), we find from Egs. (16)
the expression

where

(n2)y = /O n2 P (n)dn (25)

is the second moment of the incoming-degree distribu-
tion, Pi,(n). From Egs. (3) and (23), we note that, in
an uncorrelated network, the ratio (n?)yx/u in Eq. (24)
equals the average incoming degree of the nodes presy-
naptic to a k-node,

<n2>N.

1

N
/0 nP(n|k)dn = (26)

Clearly, this expression is independent of the postsynap-
tic node’s incoming degree k, and thus is the same for

all nodes in the uncorrelated network. (The exception,
of course, are the 0-nodes, which have no presynaptic
nodes.)

From Eq. (24), it follows that the average pulse rate
my, of a k-node satisfies the asymptotic relation

Ak
. A<n2>N/u> | 27)

From Eq. (12a), we immediately note that the asymptotic
pulse rate my in Eq. (27) depends on both the driving
strength fr and the incoming node-degree £ in a linear
fashion. In particular, the slope of the linear asymptote
approached by the m-versus- fv gain curve for the average
pulse rate my of a k-node is proportional to its degree k,
with the k-independent proportionality constant equal-
ing \/[rIn A(1 — X(n?)n/p)]. All these slopes become
infinite at the same value of the coupling parameter A,
namely, A\ = pu/(n?)y, the reciprocal of the average in-
coming node-degree of the nodes presynaptic to any node
in the network.

In the large-N limit, we have to rescale the coupling
coeffcient A (or, equivalently, S) by the reciprocal av-
erage presynaptic node-degree, 11/(n?)y, in order for a
bounded, nonzero, steady pulse-rate solution to exist for
nonvanishing coupling values. Clearly, this scaling also
follows directly from the convergence criterion for the
Liouville-Neumann series leading to the pulse-rate solu-
tion (27).

Averaging the pulse rates my, in Eq. (27) over the in-
coming node-degree distribution, P,,(k), yields the ex-

pression
A
) %)

for the average pulse rate of the nodes in the network. We
see that, under the scaling of the coupling parameter A by
the reciprocal average presynaptic node-degree p/(n?)n,
this pulse rate remains bounded for N > 1 due to the
inequality (n?)y > p?.

Finally, the average per-node input rate, g, to a node
with incoming degree k can be computed using Egs. (23),
(8¢), and (3) as

mk—1/)<1+

m=v(1+

_ Y
[— AnZ)n/n

Since this rate is independent of the node degree k, one
can see that the average input to a k-node, gy in Eq. (8b),
is a linear function of k. This implies that, for moder-
ate external drive strength, fr, the drive of the nodes
with low incoming degrees has a substantial feedforward
component, i.e, a substantial direct contribution from
the external drive. On the other hand, the drive of the
nodes with high incoming degrees is largely feedback in
that they are predominantly driven by the pulses arriving
from their presynaptic nodes.

For scale-free uncorrelated networks [11, 55], the sec-
ond moment (n?) v of the node-degree distribution P, (n)

Hk (29)



diverges logarithmically in the large-network limit, N >
1, while the average node degree p remains bounded.
In this limit and under the O (u/(n?)y)-scaling of the
coupling parameter A, the pulse rates my in Eq. (27) ap-
proach the pulse rate ¥ of a feedforward node for any
fixed node-degree k£ in such a network. The influence
of the network pulses is only felt by nodes with degrees
k 2 O({n®)n/u), ie., comparable to or larger than
the average presynaptic node-degree. Additionally, the
O (p/(n*)n)-scaling of X implies that the average pulse
rate m of the nodes in the network approaches that of
feedforward nodes for N > 1. In other words, in a
scale-free, uncorrelated network, any node with a fixed
incoming degree k only feels the input of the feedforward
external drive in the large-network limit, and only nodes
with incoming degrees comparable to or larger than the
average presynaptic node-degree feel the influence of the
network.

C. Scale-Free Network

We now calculate the asymptotic pulse rates for a
pulse-coupled network with a scale-free architecture. We
recall that scale-free networks are defined as those with
a power-law asymptotic behavior of the incoming degree
distribution, P,(n) ~ n~7, where 2 < v < 3. In such
networks, the mean, u, of the distribution P,,(n) remains
finite, while its second moment, (n?)y, diverges as the
size of the network increases, i.e., for N > 1.

Since pulse-coupled networks are directed, we must
construct this scale-free network in two steps: we first
construct the corresponding undirected network follow-
ing a modified version of the algorithm described in [41],
and then randomly assign a direction to each of its undi-
rected edges. The undirected network of [41] grows in
stages: Its first stage is an all-to-all connected network
consisting of ¢ nodes, which are said to be active. At
each subsequent stage of the network growth, a new ac-
tive node is first attached to every active node via an
undirected edge, and then an active node is deactivated
with the probability ~ 1/n, where n is its current total
degree, i.e., the number of all undirected edges emanat-
ing from it. A direction is assigned randomly to every
edge, with probability 1/2.

For the resulting directed network, as we show in Ap-
pendix B, if the initial number of active nodes, ¢, is
large, ¢ > 1, the incoming-degree distribution is well-
approximated by a scale-free form

f2

Pin(k) = 515

(30)

for the incoming-degree values £/2 < k < N/2, and can
be taken to vanish for £ < £/2 and k > N/2. Note that,
up to terms that decay with N > 1, for this network

<n2>N = —1n7, (31)

so that its mean node-degree is indeed bounded and its
second moment diverges logarithmically with increasing
network size.

The derivation of the edge-distribution function
T(n,k) for this network is also given in Appendix B,
where for £ > 1 we find that it is well-approximated
by the expression

_ Pu(k)Pu(n)

T(n,k) .

(n+k—p), (32)

when £/2 = p/2 < n,k < N/2, and can be taken to
vanish otherwise.

We again construct the solution for the average pulse
rate, my, of a k-node using the Liouville-Neumann se-
ries in Eq. (15). First, Eqgs. (30), (32), and (3) imply
that the conditional probability P(n|k) for an edge to
originate from an n-node given that it terminates at a
k-node equals P(n|k) = Pn(n)(n + k — p)/k. There-
fore, the kernel K (k,n) in Eq. (14) becomes K (k,n) =
Pn(n)(n+ k — p). After recalling from Sec. IIT that the
first two coefficients in this series equal ¢o(k) = ¥ and
¢1(k) = ¢k, we show by induction using Eq. (16¢) that
the ith coefficient has the form ¢;(k) = ¥[A;k + B;]:

N/2
bura()) = | Pu(n)lnt k= p)(Am o+ B =
2

=1 [(udi + Bi)k + 0°A;] = [Aip1k + Bisa], (33)

where 02 = (n?), — p? is the variance of the incoming
degree distribution P,,(n). Equation (33) immediately
implies the recursion relation

Aiy1 = pAi + 0% A, (34)

whose solution, together with the equation B; 1 = 02 4;,
yields the coefficients ¢; (k).

From the form of the coefficients ¢o(k) = ¢ and
¢1(k) = ¥k, we find the initial conditions Ay = 0,
Ay =1, Bp =1 and B; = 0. Assuming the solution
to the recursion relation in Eq. (34) as A; = r%, we find
that r satisfies the quadratic equation 2 — ur — o2 = 0,
and that A; and B; satisfying this recursion relation and
the initial conditions are given by the expressions

1 . .
A= —— (i —p), i=0,1,... (35
. (352)
o’ i—1 i—1
By =1, Bi:m(hr —r),
i=1.2, ... (35b)
re = (£ p?+402)/2. (35¢)

Finally, the pulse rate my is given by
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Just as for the uncorrelated network, the asymptotic
slopes of the individual gain curves connecting the pulse
rate my to the external driving strength fv are linear in
both fr and the node-degree k. All their slopes become

infinite simultaneously at the coupling value A = r,.
(Note that the Liouville-Neumann series in Eq. (36)
ceases to converge at the lower value A = —r_.) Again,

in order to retain a nonzero stable steady state in the
large-network limit, N > 1, one must rescale the cou-
pling parameter A in Eq. (12b), and therefore the cou-

pling strength .S, but now by an O (1/<n2>%2)—quantity,
since 4. = O (<n2>}\{2)

It is instructive to compare the expression for the pulse
rate my, of this scale-free network, given in Eq. (36), to
the corresponding expression for the uncorrelated net-
work, given in Eq. (27). In particular, we see that the
incoming node-degree k in Eq. (27) is replaced by the
effective node degree, kog = k + A\o?, in Eq. (36). Like-
wise, in the denominator, from Eq. (27), we would expect
the coupling constant A to be multiplied by the average
incoming degree of a k-node’s presynaptic nodes,

N/2 o2
/ nP(n|k)dn =pu+ —, (37)
/2 k

(as computed from Egs. (30), (32), and (3)). However,
this is not the case. For this correlated network, an ef-
fective average presynaptic node-degree appears as the
factor instead, which equals k%5" = p 4+ Ao?, and is in-
dependent of the node-degree k. Note that, in fact, kb
equals the average of the effective node degree keg over
the network, kby° = (keg) . In addition, on account of
the scaling of A, the effective node-degree kLg is only of

size O (<n2)}v/2), which is a much smaller quantity than

its O ((n*)n/p) counterpart in Eq. (27) for an uncorre-
lated network. The effective node- and average presy-
naptic node-degrees, keg and kY;°, depend on the cou-
pling strength, A, for this correlated network, and are
a consequence of the dynamical effects induced by the
topological correlations, that is, the fact that the edge-
distribution function T'(n,k) in Eq. (32) is not of the

form (23).
We find the network gain curve by averaging Eq. (36)

—ZMW) +1+0°A (iw; —iwiﬂ =
i=0

=0

(36)

over k:

o Y
"= 1— A — A202° (38)

Under the above scaling of the coupling parameter A,
this formula shows that the network-averaged pulse rate
of the nodes remains bounded in the large-network limit,
N> 1

The average per-node input rate to a k-node, ug, is
calculated using Eqs. (36), (8¢), and (3) as

B P o2
i = 1_ /\‘u — 2252 (1 + L ) (39)

and the average input to a k-node, g in Eq. (8b), there-
fore equals

PYATIn A (k + Ao?)
1—Apu— X202

gk = fv+ (40)

with the constant A as in Eq. (10). Note that the effec-
tive node-degree, keg, also enters gi as a factor. There-
fore, unlike in the uncorrelated network, while gy is still
a linear function of the node-degree k in this correlated
network, even the input to the nodes with low incom-
ing degrees has a substantial feedback component aris-
ing from network interactions. As mentioned above, this
feedback component is also reflected in the pulse rates
my in Eq. (36), as well as the effective degrees kg and
K.

Note that the average input rate that a k-node receives
from any of its presynaptic nodes, as given in Eq. (39), is
a decreasing function of k. This may be a consequence of
this network’s disassortative nature [13], i.e., the prop-
erty that the average incoming degree of a k-node’s presy-
naptic nodes, given in Eq. (37), decreases with the degree
k.

To determine how well our theoretical findings, valid
in the large-network limit, can describe pulse-coupled dy-
namics of finite-size networks, we compare them with the
results of direct numerical Monte-Carlo simulations of
Eq. (4). The top panel in Fig. 2 reveals that the mean-
pulse-rate formula in Eq. (38) is highly accurate on av-
erage, i.e., not for any given network, but for a large
ensemble of networks. In particular, m in Eq. (38) de-
scribes the gain curve expressing the dependence of the
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FIG. 2. (Color online) Gain curves for the network discussed
in Sec. IVC, size N = 10%, initial size £ = 50. Top: The
dots (red online) represent the dependence of the mean net-
work pulse rates, m, on the external driving strength, fv, for
an ensemble of 100 network realizations. The network size
was 10%. The solid curve (black online) represents the aver-
age m-versus-fv gain curve over the ensemble. The dashed
curve (green online) represents the linear gain-curve asymp-
tote predicted by Eq. (38). Bottom: Gain curves depicting
the average pulse rate m as a function of the external driving
strength fv for three individual realizations of a network with
10* nodes are represented by dots (red online). The dashed
lines (green online) represent the linear gain-curve asymptote
predicted by Eq. (38) with the variance o2 in Eq. (31) replaced
by the realization variance o2 in Eq. (41). The parameter val-
ues are those in (7), (11), S=4-107%, f =5-107".

average pulse rate of the nodes in such an ensemble on
the external driving strength fr with great precision.

The bottom panel of Fig. 2 reveals that Eq. (38) also
describes the gain curves of the individual network re-
alizations very well, provided the node-degree variance
02, as given in Eq. (31), is replaced by the value of the

node-degree variance, o2, of the particular realization in
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FIG. 3. (Color online) Pulse rate my as a function of the in-
coming node-degree k for the network discussed in Sec. IV C,
size N = 10*, initial size £ = 50. Top: Gray solid line (green
online) represents my, averaged over all k-nodes in 500 net-
work realizations. Dashed line (red online) represents my, as
computed numerically from Eq. (8a), truncated at N = 104,
with T'(n, k) given by Eq. (B31), using the approximation de-
scribed at the end of Appendix B. Black solid line represents
the exact solution (36) of Eq. (9), with & > ¢/2. Bottom:
Gray solid line (green online) represents my averaged over all
k-nodes in a single network realization of size N = 10*. Black
solid line represents the solution (36) with & > £/2 and the
variance o2 in Eq. (31) replaced by the realization variance
o2 in Eq. (41). On both panels, the oscillations exhibited by
the simulation results at large values of k are a consequence
of the poor statistics due to the scarcity of large-degree nodes
in a finite network. The parameter values are those in Egs.
(7), (11), S =4-107°, f =1.8-107°, v = 2-10* (fv = 0.36).

question. This value is given by the formula
N
Uf:NZni—uz, (41)
j=1

where the sum runs over all the nodes in the network
and n; denotes the jth node’s incoming degree. Since o
diverges with large network size N + 1, the value of its



counterpart o2 over different network realizations varies
greatly, as Fig. 2 shows. The mean node-degree, on the
other hand, converges to p in the large-network limit, and
therefore can readily be replaced by p in each sufficiently
large network realization. It can thus be kept in Eq. (38)
when evaluating the gain curve for an individual network
realization.

The dependence of the individual pulse rate my on
the incoming node-degree k is described by Eq. (36) in a
similar manner. In particular, Eq. (36) provides an accu-
rate description for the average pulse rate of k-nodes in
a large ensemble of networks, as shown in the top panel
of Fig. 3. In addition to the comparison of Eq. (36) to
direct numerical Monte-Carlo simulations of Eq. (4), we
also compare it to a finite truncation of the mean-field
system (8), with the average input u; in Eq. (8¢) eval-
uated using the more precise formulas (B26) and (B31),
as described at the end of Appendix B, rather than using
Egs. (30) and (32). (The truncation size is taken equal
to one half of the size of the network realizations.) Equa-
tion (36) and this last procedure give results that are
virtually indistinguishable. For an individual network
realization, Eq. (36) also provides an accurate descrip-
tion of the relationship between the average pulse rate
my, over all k-nodes in the network and the node-degree
k, provided the variance o2, given in Eq. (31), is again
replaced by the realization variance o2, given in Eq. (41).

D. Asymmetric Scale-Free Network

The final network that we present has asymmetric
incoming- and outgoing-degree distributions. Just as the
network in the previous section, this network is again
grown in stages, beginning with two nodes and one
synaptic connection [42]. At every subsequent stage, one
new presynaptic node is connected to one existing net-
work node, which becomes postsynaptic to the new node.
The probability that this new node is connected to any
given existing node is proportional to this latter node’s
total connectivity degree. We investigated this network
previously in [43].

As a result of this construction, every node in the net-
work has the outgoing degree 1. On the other hand, as
derived in [42], the nodes’ incoming-degree distribution
is given by

4
(k+1)(k+2)(k+3)’

Pin(k) = (42)
and their edge-type distribution is given by

T(n,k) =

4k { 1 n 3 ]
n+Dp+2)p+3)(p+4) [n+2 p+1]’
(43)
with p = n + k. The distribution (42) is asymptotically
scale-free for large values of the incoming node-degree k.
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Note that the mean node-degree equals

k

M:4kz::0(k+1)(k+2)(k+3):1 (44)

as a conseqeunce of the network’s tree like topology re-
sulting in many nodes with incoming degree 0. (Equa-
tion (44) can be shown by decomposing the terms in the
sum into partial fractions.) Note also that the second
node-degree moment (n?) y diverges logarithmically with
the network size N > 1.

For this network, due to the complicated nature of the
distribution functions (42) and (43), using the Liouville-
Neumann series (15) for analyzing the steady state of the
network is impractical. Instead, in the asymptotic limit
of high incoming node-degree, k, and large network size,
N > 1, we find a power-law dependence of the pulse
rate my on k. This dependence is induced dynamically
by the underlying asymptotic power-law incoming-degree
distribution in the network architecture. In particular, as
we describe in Appendix C, inserting into Eq. (13) the
ansatz

my ~ BE7, v > 1, k>1, (45)
an application of residue calculus, and a large-k expan-
sion yield the the following relation between the exponent
~ and the network coupling coefficient A:

~ 2sin(my)
™y =2)(y =3)

We must require that v < 4 so that the pulse rate my,
as computed via Eq. (13), remains finite, and v > 1 so
that the network coupling is nonnegative, A > 0. These
two requirements single-out two possible branches of the
dependence of the exponent v on the coupling param-
eter A in Eq. (46), as shown in Fig. 4. The lower of
these two branches is stable, which we have observed in
direct numerical simulations of the IF network (4). Note
that numerical solutions of the fully nonlinear mean-field
model in Eq. (8), as well as the direct numerical simula-
tions of the IF system (4), indicate the existence of these
stable gain curves my versus fv at every point along this
branch, which extends above v = 2, as can be seen from
Fig. 4.

The asymptotic power-law behavior (45) of the pulse
rate my, for large node-degree values k is shown in Fig. 5,
which also indicates that this behavior is independent
of either the network size in the direct numerical sim-
ulations of Egs. (4) or the numerical truncation size of
the mean-field model (8). Numerical solution of the fully
nonlinear mean-field model (8) further indicates that the
dependence of the leading-order coefficient, B, in the
power-law solution (45) is asymptotically linear in both
the parameters, ¢ (i.e., in the external-drive strength fv)
and A (i.e., the network coupling ), as depicted in Fig. 6.
The linear dependence of B on v and A can be deduced
form the linear relation exhibited in the each panel of

A=

(46)
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FIG. 4. (Color online) The power « in the asymptotic rela-
tionship (45) as computed from Eq. (46) (dashed line, black
online), and extracted from the results of the numerical so-
lution of Eq. (8), truncated at N = 10" (solid line, green
online) and direct numerical simulations of one network re-
alization of size N = 7 x 10° (dots, red online). The ansatz
my = mo + Bk” was used as a fit. Note that both the solu-
tions of Eq. (8) and the results of the numerical simulations
extend beyond v = 2 (A = 1). The rest of the parameter
values are those in Egs. (7), (11), v =2-10*, f = 1.8-107°
(fv =10.36).

Fig. 6, and also the fact that all the curves in the oppo-
site panel with sufficiently large values of ¥ or A overlap
with one-another; the curves that do not, correspond to
values of ¥ or \ sufficiently small that nonlinear effects
take over (cf. the gain curves in Fig. 1.)

The independence of the exponent ~ from the coeffi-
cient v (i.e., the driving strength fv), as predicted by
Eq. (46), is confirmed in Fig. 7 both using the numerical
solution of Eq. (8) and network simulations. In particu-
lar, for different values of fr but the same value of the
network coupling constant S, on the logarithmic scale,
the dependence of the pulse rate my on the node degree
k asymptotes towards parallel straight lines for large k,
signifying the same 7. On the other hand, for the same
value of fv but different values of S, the asymptotic slope
of the two asymptotes differs, signifying two different val-
ues of . Figure 7 also confirms the agreement between
the numerical solution of Eq. (8) and network simula-
tions.

In addition to being able to find its asymptotic k-
dependence of its pulse rate my, we can derive this net-
work’s mean pulse rate, m in Eq. (17), exactly. In par-
ticular, even more generally, let us consider any network
in which the outgoing node-degree is a constant num-
ber ¢, while the incoming degree follows a distribution
Py, (k). This is certainly the case for the network at hand,
for which ¢ = 1. For such a network, the probability
fON T (n, k)dk of finding an edge originating at an n-node
clearly equals the probability P, (n) of finding such a
node, regardless of the outgoing degree ¢q. This obser-
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FIG. 5. (Color online) Pulse rate my, as a function of the in-
coming node-degree k for the network discussed in Sec. IV D.
Dark gray solid line (red online) represents the results of di-
rect numerical simulations averaged over 500 realizations of
the network of size N = 10%; light gray solid line (green on-
line) represents averages over 50 realizations of the network
of size N = 10°. Dashed line (black online) represents my,
as computed numerically from a finite truncation of Eq. (8a),
with T'(n, k) given by Eq. (43). Inset: The pulse rate ms on
the incoming node-degree k, as computed from a finite trun-
cation of Eq. (8a), does not depend on the truncation size.
The truncation sizes used in the computations were: N = 10*
(dashes, red online), N = 10° (solid gray line, green online),
N = 10° (dashes, black online). The parameter values are
those in Egs. (7), (11), S =10"3, f =1.8-107°, v =2 10*
(fv =0.36).

vation, together with the definition of the mean network
pulse rate in Eq. (17), Eq. (13), and Eq. (14) imply the
equation

N N
m=1+ /\,u/ mndn/ T(n,k)dk
0 0

N
0
= + Aum. (47)
Therefore, we find

Y

mzl_u/\.

(48)

As shown above, for the network at hand, p = 1, so
that the mean pulse rate m becomes singular at A = 1.
Notice, however, that the individual pulse rates my are
still bounded at A = 1, and therefore the origin of the
singularity in Eq. (48) is not a singularity in my. (Recall
that the boundedness of my, follows from Egs. (45) and
(46), and is confirmed by both the numerical solution of
Eq. (8) and numerical simulations of Eqgs. (4) with v > 2,
ie., A > 1, depicted in Fig. 4.) Instead, we see from
Eq. (46) that v — 2 as A — 1, which implies that that
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FIG. 6. The dependence of the coefficient B in Eq. (45) on
the external drive through the feedforward pulse rate ¢ in
Eq. (12a) and the network coupling constant A in Eq. (12b),
as computed from the mean-field model (8a). The ratios B/\
and B/ are used to test for linearity. Left: The values of
A along the curves from top to bottom are 0.21, 0.41, 0.62,
and 0.83, corresponding to the values of the network coupling
S=1x10"22x%x10"3,3x 1073, and 4 x 1073, The bottom
two curves lie on top of each-other. Right: The values of ¥
along the curves from top to bottom are 387, 283, 180, 76,
and 47, corresponding to the values of the external driving
strength fv =2, 1.5, 1, 0.5, and 0.36. The top four curves lie
on top of each-other. The truncation size is N = 10*. The
rest of the parameter values are those in Egs. (7) and (11).

then the integral in m = fON myP(k)dk ~ In N diverges
in the limit of large network size. This is in contrast with
the networks of Secs. IVB and IV C, whose mean-pulse-
rate gain-curves become singular precisely when those for
the individual pulse rates my do.

The discussion in the previous paragraph further shows
that no scaling of the coupling constant is needed for this
network in the large-size limit in order to maintain stable
pulse rates. This is again in contrast with the networks
discussed in the preceding sections, and will be further
discussed in the next section.

V. SCALING BOUNDS FOR NETWORK
COUPLING

In this section, we show that the network coupling scal-
ings which we found in Secs. IVB and IV C are not ac-
cidental. In fact, for a large class of pulse-coupled net-
works, they represent the strongest coupling that still
guarantees the existence of a stable, nonvanishing, steady
state of the network, and the strongest coupling that may
still allow for the mean pulse rate of the nodes in the
network to remain bounded, respectively, in the large-
network limit. In addition, we first derive a linear lower
bound on the dependence of the nodes’ pulse rate on
the node-degree, which implies that this dependence can-
not exhibit sublinear asymptotic behavior at large node-
degrees in any pulse-coupled network.
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FIG. 7. (Color online) For the same value of the coupling
parameter S and two different values of the external drive
fv, the logarithmic dependence of the pulse rate my on the
node degree k approaches a pair of parallel straight lines for
large k. This verifies that the exponent v in the asymptotic
relationship (45) is independent of fv. Displayed is the ver-
ification for two different values of S. Gray solid line (green
online) represents the results of direct numerical simulations
of one realization of the network of size N = 7 x 10°. Dashed
line (black online) represents numerical solutions of the mean-
field equations (8), truncated at N = 10*. From top to bot-
tom, the values of fv and S along the curves are: fr = 2.0,
S=2x10"%; fr=20,8=10"% fr=0.36, S =2 x 10°3;
and fv = 0.36 S = 1073. The rest of the parameter values
are those in (7), (11), and v = 2 - 10*.

A. Lower Bound on Pulse Rates

One iteration of Eq. (13) reveals a lower bound on the
asymptotic pulse rate my, which is

my > (1 + Ak). (49)

A detailed derivation is presented in Appendix D. The
meaning of the inequality in Eq. (49) is that the pulse
rate of any k-node must equal or exceed its part stem-
ming from the external drive and monosynaptic interac-
tions mediating the external drive alone. Note that the
estimate (49) prevents sublinear growth of the pulse rate
my, with the node-degree k.

B. Sufficient Estimate for Bounded Pulse Rates

The scaling found for wuncorrelated networks in
Sec. IVB guarantees the existence of a stable, nonva-
nishing, steady state of the network in a larger class of
networks, which we can characterize as boundedly corre-
lated. (The expression originates from degree-correlation
distribution, which is used synonymously with edge-type
distribution for T'(n, k).) In this network class, the node-
degree and edge-type distributions, Py(n) and T'(n, k),



must satisfy the condition

T (n, k)
R (Bl i

for some constant 7 > 1, independent of all incoming
degree values, k and n, and all network sizes, N. The fact
that only the inequality n > 1 is admissible is seen easily
if we multiply the inequality (50) by the denominator of
its right-hand side, and integrate over the node-degrees k
and n. Recall that n = 1 corresponds to an uncorrelated
network.

As we derive in Appendix D, condition (50) implies
that the sum of the Liouville-Neumann series (15) for
the pulse rate my can be bounded by

1

v o (e )l

(51)
which shows that scaling the coupling coefficient A by an
O (u/n <n2>N)-quantity will ensure that my is finite over
an entire A-interval in the N > 1 limit. Moreover, for
the network-averaged pulse rate, m, the node-degree k is
replaced by the mean node-degree i in the estimate (51),
and since <n2> N > u2, this rate will also be finite under
the above scaling.

Note that the networks in Secs. IVB, IVC, and IVD
are all boundedly-correlated. Nevertheless, only for the
uncorrelated network in Sec. IV B must the coupling pa-
rameter A\ be scaled by the ratio p/ <n2>N in order to en-
sure finite pulse rates along an interval of A in the infinite-
network limit. For the scale-free network in Sec. IV C,
A only has to be scaled by a much larger quantity of

0] (1 / <n2>;{2), and for the unidirectional scale-free net-

work in Sec. IV D, it need not be scaled at all. This
shows that scaling A by a factor of size O (,u/ <n2>N) is
sufficient to ensure finite pulse rates in the N > 1 limit
along an interval of \ for boundedly-correlated networks,
but not necessary. In addition, the uncorrelated network
in Sec. IV B shows that this scaling must be used and
thus is necessary for at least one network.

We now combine the estimates in Eqgs. (49) and (51),
and use the rescaling

,)‘<n2>N o kp
T Ty W

to parametrize the gain curves. From this parametriza-
tion, in a boundedly-correlated network, we see that for
fixed external drive ¢ the curves representing the depen-
dence of the pulse rate m on the rescaled degree x reside
in the wedge between the lines

m =11+ kA)

n*A
1—nA

and

m=¢{1+m[l+
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that is contained in the first quadrant, provided A < 1/n,
regardless of the network size. This geometric considera-
tion shows that the (average) growth of the pulse rate my
with the node-degree k can only be linear in this case. If
my, is monotonically increasing in a boundedly-correlated
network, this growth must in fact be asymptotically lin-
ear in k, with the slope bounded by the corresponding co-
efficients in the inequalities (49) and (51) with the scaled
coupling A replacing .

Note that the estimate (51) only holds for coupling
values A < pu/n(n*) . At A = pu/n(n?), the right-hand
side of Eq. (51) becomes infinite. For A > u/n <n2>N,
the argument leading to Eq. (51) is invalid, and so (51)
ceases to provide a valid estimate. Nevertheless, for some
boundedly-correlated networks, the firing rates my may
still remain bounded even for such large coupling values,
and in fact superlinear growth of mj may be permitted
in this case. An example is the network discussed in
Sec. IVD.

C. Necessary Estimate for Bounded Mean
Network Pulse Rate

The scaling found in Sec. IV C can be generalized to
statistically symmetric networks, i.e., those for which the
expected outgoing degree of a node equals its incoming
degree. In particular, if the function P,y¢|in({|7) denotes
the probability for the outgoing degree of a given n-node
in such a network to be [, then this node’s expected out-
going degree must equal

N
| Pttt = . (53)
0

For networks with the property (53), the analog of the
relation in Eq. (1) holds when we integrate over the in-
coming degree of the postsynaptic node, k, rather than
over the incoming degree of the presynaptic node, n. This
relation is the proportionality

N N
/ T(n, k)dk o Po(n) / Pl [ m)dl, (54)
0 0

with the integral on the left-hand side corresponding to
the probability of a randomly chosen edge to originate
at an n-node, and the right-hand side stating that this
probability is given by the probability of finding an n-
node in the network multiplied by the expected number of
edges originating at an n-node. After taking into account
Eq. (53) and normalization, Eq. (54) becomes

N
/ T(n, k) = () (55)
0 K
In Appendix D we show that, for such statistically sym-
metric networks, iterating the integral equation in (13)
twice and averaging it over the node-degree distribution
Pin(n) yields the estimate

m =1+ pAu+PpA* (n%)  + O(N?), (56)



where the O(\3)-term is non-negative. Consequently, for
the average pulse rate m to remain bounded as the net-
work size N increases without a bound, it is necessary
that at least the second and third terms on the right-
hand side of Eq. (56) remain bounded. The third term
will remain bounded if the network coupling parameter

A scales as O (1/ <n2>j\;2) Since <n2>N > 12, the sec-

ond term on the right-hand side of Eq. (56) will also be
bounded under this scaling.

For any network that is both boundedly-correlated and
statistically-symmetric, the above estimates imply that
the scaling of its coupling coefficient A must fall some-
where in the range

O/ (n?)y) SA50(1/ (%) 67

for there to be a finite-size A-interval on which the net-
work has a stable, steady regime with finite pulse rates.
The scale-free network in Sec. IV C is both statistically
symmetric and boundedly correlated. We should note

that the O (1/ <n2>%2)—scaling suffices to keep its pulse

rates bounded within a finite interval of the coupling pa-
rameter for this network. Therefore, this largest possible
scaling in fact suffices for this particular network.

Unsurprisingly, for the all-to-all coupled network of
size N + 1, the node-degree average and second moment
equal = N and (n?) ,, = N?, so that both of the above
scaling estimates of the coupling constant S equal the
O(1/N)-scaling derived in Sec. IV A. On the other hand,
in scale-free networks, u stays finite and <n2> N Brows
with growing N, so that the ratio of the two extreme
scalings in Eq. (57) becomes unbounded.

The network in Sec. IV D presents a three-fold example
that puts the results in this section in a sharper focus.
First, it shows that the scaling of the coupling coefficient
A by the ratio p1/(n?) y is sufficient but by no means nec-
essary for a boundedly-correlated network to have sta-
ble, bounded pulse rates my or mean pulse rate m in the
large-N limit. Second, the pulse rates mj exhibit super-
linear growth in k for finite A, i.e., for A > pu/ (n?), for
which the estimate (51) is no longer valid, as described
at the end of Sec. VB. Note however, that v — 1 as
A — 0, so that asymptotically the linear growth of my
in k, as enforced by the estimate (51), is restored if A is
scaled to vanish as N — oco. And third, the example of
the network in Sec. IV D shows that, in the absence of
statistical symmetry, the coupling coefficient A\ does not
need to be scaled by 1/ <n2>}v/2 in order for the mean net-
work pulse rate m to remain finite with increasing N. In
fact, we recall that if A is not scaled, there is a range of
A-values for which the mean pulse rate m remains finite.
Note that this range is followed by a A-interval in which
all the pulse rates my are finite but their mean, m, is
infinite.
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VI. PULSE-RATE DISTRIBUTION

One motivation for the present study is the desire to
understand how the distribution of the nodes’ pulse rates
reflects the underlying network topology. The interpre-
tation of the probability density function as the deriva-
tive of the cumulative probability distribution function,
together with the chain rule, imply the formula for the
distribution of the pulse rate

dk

P(m) = Pu(k) 3

(58)
in which the node-degree k is obtained from the corre-
sponding pulse rate by inverting the dependence m =
mi.

For the networks in Secs. IV B and IV C, whose pulse
rates my depend on k linearly in the form my = (1 +
ak), with a = a(N, A), Eq. (58) yields the equation

P(m) = iﬂn (é (% = 1>> : (59)

with ¢ as in Eq. (12a). For the scale-free network in
Sec. IV C, Eq. (59) implies the asymptotic relation

62 )\21/)2
~ 2(1 = A — A202)2m3’

P(m) m> 1, (60)

with p = £ and 0? = (n?), — p? = *[In(N/€) — 2]/2 as
in Eq. (31). In other words, the distribution (60) of the
pulse rate m over the network is scale-free, reflecting the
underlying scale-free network topology.

Similarly, for the asymmetric network in Sec. IV D,
Eqgs. (42) and (58) yield the asymptotic relation

P(m) ocm™%/771, (61)

This relation implies a scale-free distribution of the pulse
rates as long as A < 1, i.e., v < 2. However, when A > 1,
ie., v > 2, while the pulse-rate distribution P(m) in
Eq. (61) does follow a power law, it is not scale-free under
the strict definition of the term because the exponent of
the pulse rate exceeds —2, and so the mean pulse rate
becomes unbounded in the large-network limit.

VII. DISCUSSION

The question of how network activity reflects the
underlying architectural connectivity of a given pulse-
coupled network is important for the experimental de-
termination of such networks’ coupling architecture, and
ties in with the broader question of how to determine
a network’s architectural connectivity from an indica-
tor of its functional connectivity [29-36, 47]. Scale-free
functional connectivity of brain networks [33, 44] and
hippocampal-slice networks [46] was recently observed
using functional magnetic resonance, and a combination



of two-photon imaging and electrophysiological measure-
ments, respectively. While architectural connectivity of
brain networks may be measured directly using diffusion
magnetic resonance tractography imaging [34], methods
for deducing architectural connectivity from functional
connectivity, such as the neuron firing rate, are not yet
well developed, and as a first step in that direction, one
should at least understand the easier reverse relationship.
Here, we have studied it for three idealized IF networks
by deriving the explicit dependence of a node’s pulse rate
on its incoming degree and the external drive. Interest-
ing numerical examples of the types of IF networks that
give rise to scale-free distributions of firing rates were
presented in [56].

For the scale-free IF networks we have investigated,
our mean-field approach and simulations show that their
pulse rates reflect the underlying power-law architectural
connectivity distribution. This appears to perhaps be a
manifestation of an, as yet unexplored, universal phe-
nomenon exhibited by a number of pulse-coupled-type
networks with very different dynamical units. For exam-
ple, for traffic of particles, such as vehicles or internet
data, on networks [7, 57-83], diffusion-type analysis of
non-interacting particles [75, 78] and simulations of in-
teracting particles [64, 77] both indicate scale-free dis-
tributions of the amount of traffic passing through the
nodes on scale-free networks in the free-flowing regime.
One thus might conjecture the existence of a limiting,
asymptotic, coarse-grained description that would ap-
ply to nodes with high incoming degrees, and therefore
high pulse-rates, independently of the detailed behavior
of the underlying dynamical unit, in a large class of pulse-
coupled networks. While ascertaining the existence of
such a description and determining the class in which it
is valid would be important, it is far outside the scope of
this paper, and will be relegated to future work.

As we show in Sec. IV D, in the large-network limit,
even in networks with a finite expected node-degree, the
mean pulse rate per node may become unbounded if the
network coupling becomes too strong. Nevertheless, this
may not disqualify the IF network in question from being
an adequate model of pulse-coupled dynamics as long as
the individual pulse rates of the nodes and inputs to them
remain bounded.

For both boundedly-correlated, statistically-symmetric
IF networks of Secs. IVB and IV C, the gain-curves de-
picting their mean pulse rates become singular at the
same coupling strength as the gain-curves of all the k-
node pulse rates. An interesting question that arises is
whether this is a universal phenomenon in this class of
IF networks. In other words, in this IF network class,
is it true that the network-averaged pulse rate can only
become singular when at least one of the k-node pulse
rates does? The answer is a trivial yes for finite net-
works, but in the infinite-size limit, it is unknown. The
network of Sec. IVD is a counterexample to this claim
for more general IF networks, as that network lacks sta-
tistical symmetry.
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Finally, we would like to point out that, in this pa-
per, we have addressed the statistical steady state of
pulse-coupled IF networks in which the network pulse-
trains are asynchronous as reflected in the assumption
that the total network output pulse-train follows Poisson
statistics. A special limit of such networks, in which the
time scale of the a-function describing the pulse shape
becomes infinitely short and the response amplitude in-
finitely large, exhibits a strong tendency towards syn-
chronous oscillations. During those oscillations, differ-
ent nodes’ activity variables rise independently in a ran-
dom fashion under the external drive, but then all the
nodes fire at once, with this pattern repeating at approx-
imately regular time-intervals. An analytical theory of
these oscillations for all-to-all coupled networks was de-
veloped in [84, 85]. We are in the process of developing
an analogous theory for networks with complex architec-
tural connectivity, which will be described in a compan-
ion paper [86].
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Appendix A: Derivation of the Mean-Field Model

In this appendix, we describe a derivation of the
mean-field approximation to the IF pulse-coupled net-
work model, as given in Eq. (8), which we have used
to describe the pulse rates of the interacting dynamical
units in the body of the paper. Since this is a well-known
mean-field neuronal network model [37-40, 87-90], our
derivation will proceed in the framework of, and use the
standard terminology from, the theory of neuronal net-
works. Thus, only in this appendix, we will refer to the
k-nodes also as k-neurons, to the activity variable v’ (t)
in Eq. (4) as the neuronal voltage or membrane poten-
tial, to the pulse train G'(¢) in Eq. (5) as the neuronal
conductance, and to the k-nodes’ pulse rate my, as the k-
neurons’ firing rate. Nevertheless, the derivation, as well
as all the findings in this paper, should be applicable to
all pulse-coupled networks that can be described by the
conductance-based IF model.

We begin our derivation by adding to Eq. (4) for the
neuronal membrane-potential dynamics another differen-
tial equation modeling the neuronal conductance dynam-
ics. The simplest such equation is

dG*

TQW: Gi+f;5(t—tij)+S;;5(t_t;¢),

(A1)



where 6(-) denotes the Dirac delta function. We refer to
the train of the delta functions on the right-hand side of
this equation as the spike train arriving at the ith neuron.
Equation (A1) yields the conductance in Eq. (5) with the
a-type function G(t) of the form G(t) = O(t)e /s /7,
where O(-) is the Heaviside function and 7, is the con-
ductance time constant.

In our numerical simulations, we used G(t) as in
Eq. (6) for the conductance time-course instead, in or-
der to achieve second-order accuracy [49]. This choice of
the a-function requires a second-order system instead of
Eq. (A1), however, the final mean-field description turns
out to be the same as for the network using Eq. (Al).
For clarity of explanation, we therefore use Eq. (A1) to
describe the network conductances.

We derive the mean-field description (8) of the net-
work (4), (A1) using tools from nonequilibrium statistical
mechanics, in particular, kinetic theory [37, 38, 91-107].
In what is to follow, we first derive a Fokker-Planck equa-
tion that gives the statistical description of the membrane
potentials and conductances of the k-neurons, and then
derive the mean-field model (8) from this equation in the
limit of vanishing input fluctuations.

1. Fokker-Planck Equation

To investigate the statistical behavior of the net-
work (4), (Al), we employ a statistical ensemble com-
posed of many copies of this network that are identical
in every aspect except their initial voltages V;(0) and
conductances G;(0),7=1,..., N + 1, and their external
inputs. Each input is an independent set of N + 1 inde-
pendent realizations of the Poisson spike train with the
same rate v(t), with each realization driving a different
neuron.

We coarse-grain the neurons in the network accord-
ing to their incoming degree and study the probability
that, at time ¢, the membrane potential and conductance
of a neuron with incoming degree k lie in the rectangle
with sides (v,v 4+ dv) and (g, g + dg) in the (v, g) phase
space. This probability is given as pi(v, g,t)dvdg, where
pr(v,g,t) is the corresponding probability density func-
tion. Within the time interval (¢, ¢+ dt), this probability
changes due to (i) the smooth streaming of phase points
through the sides of this rectangle, governed by the dy-
namics of Egs. (4) and (Al) in the absence of spikes,
and (ii) the spike-induced jumps in the neuronal conduc-
tance, governed by the sums of the Dirac delta functions
in Eq. (Al).

Equations (4) and (A1) imply that, to the lowest order
in dv, dg, and dt, the smooth streaming through the sides
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of the rectangle adds the change

{Kzﬂrdfﬂ) +yg (M%VE)] pi(v + v, g,t)
- [(v —TV> +g (v —TVE>:| pk(v,g,t)}dgdt (A2a)

+d
+ [g 9 o (v, g+ dg, t) — ipk(v,gi)] dodt.
Tg Tg

The jumps induced by the external spikes add the change

[pk (v, g — Ti, t) — pi (v, g, t)} dvdgdt (A2D)

g

at the time-rate v(t), and those due to the network spikes
the change

{pk (v,g - E,t> — Pk (v,g,t)] dvdgdt (A2c)
T

9

at the time-rate kuy(t), where py(t) in Eq. (8¢) is the
average firing rate of a neuron that is presynaptic to a
k-neuron.

It is important that the spike trains arriving at a given
neuron obey Poisson statistics, so that the probability of
a spike arrival over the time dt¢ indeed equals the product
of the respective spike rate and d¢t. This is true for the
external-drive train by assumption, but need not be true
for the train arriving from the network. In particular,
the spike train generated by any given neuron typically
does not obey Poisson statistics. Only the joint output
of many network neurons obeys these statistics asymp-
totically, and provided that each neuron fires at a low
rate and its spike times are mutually statistically inde-
pendent [108]. Therefore, only spike trains arriving at
k-neurons with high input-degree k£ can be assumed as
approximately Poisson, and the equations for the densi-
ties pi(v,g,t) with low node-degrees k are less accurate
than those for the densities with high node-degrees under
this assumption.

To derive the total change, dpg (v,g,t)dvdg, of the
probability density function py (v,g,t) during the time
interval (¢,t + dt), we add all the terms in Egs. (A2),
with the terms in Egs. (A2b) and (A2c¢) multiplied by
their corresponding time-rates. Dividing the resulting
equation by the product of differentials, dvdgd¢, in the
limit as dv — 0, dg — 0 and d¢t — 0, we find that the
evolution of the probability density pr = pk (v, g,t), cor-
responding to k-neurons, is governed by the Boltzmann

equation
o= {[(1515) o5(*5)] )
+u(t) [pk (v,g —~ Tit) — Pk (v,g,t)}

+aq (ipk>
Tg
g

() o (0.9 - 2.0) = pu (00,0 (430)

g



defined on the semi-infinite strip V, < v < Vp, 0 < g <
00.

In Eq. (A3), the conductance jumps are accounted for
by the terms on the last two lines of Eq. (A3a). If we
assume the jumps to be small, we can Taylor-expand the
corresponding jump terms to second order and derive the
Fokker-Planck-type equation

)] )

Oy ppe 8@{[(1}-%) +g(U—VE
T T

+0,[Lo-a@ n+ Eon] . ay
where
gk (t) = fu(t) + Skp(t) (Aba)

is the mean input to a k-neuron, and

ot) = o [120(t) + SPha(t)] (A5D)
27y
represents this neuron’s variance of the input fluctua-
tions. This equation is again defined on the semi-infinite
strip V,, <o < Vp, 0 < g < o0.
We recast Eq. (A4) in the conservation form

8tpk(vaga t) + a’u']Iy(vvgvt) + 89JkG(vvgvt) - 07 (AG)

with the membrane-potential and conductance probabil-
ity fluxes, J,y and JkG , defined in the obvious way, and
recal that when a neuron’s membrane potential crosses
the threshold Vi, it is reset to V,. instantaneously, with-
out changing the value of the conductance. From these
two pieces of information we deduce the boundary con-
dition connecting the membrane potential fluxes through
the threshold Vp and reset V.,

T (Vr,g.t)=JY (Ve,g,t), (ATa)

for 0 < g < co. Moreover, no negative or infinite neu-
ronal conductance values can exist. Therefore, pg(v,g <
0,t) =0 and

pr(v,g = 00, t) ~ 0, (ATb)

together with all its derivatives. Consequently, the con-
ductance flux J& must vanish at g = 0, and g = o0, so
that

J¢ (v,g=0,t) =0, J¢ (v,g = 00,t) =0, (ATc)

for V, < v < Vp. Finally, the average firing rate of a k-
neuron, my(t), equals the integral of the probability flux
JY (Vr, g, t) across the threshold over all the conductance
values, i.e.,

my(t) /JkV(VT,g,t)dg
0

Ll

s () | e g0y (a7a)
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Equations (A4), together with the boundary condi-
tions (A7a), (A7b), and (A7c) and the nonlinear self-
consistency conditions (A7d), give the complete formu-
lation of a Fokker-Planck-type kinetic theory for describ-
ing the neuronal network (4), (A1) as infinite system of
partial differential equations for the densities pi (v, g,t).
These equations are coupled nonlinearly through the co-
efficients (A5a) and (A5b), which couple through Eq. (8c¢)
all the firing rates obtained from the boundary terms ex-
pressed in Eq. (A7d). The main task of the next section
will be to reduce this kinetic theory to the much simpler
mean-field approximation in Eq. (8a) for the average fir-
ing rates my of the k-neurons alone.

2. Mean-Field Approximation

We now address the mean-driven operating regime of
the network (4), (A1), in which the input fluctuations of
any neuron become negligible as compared to its mean
input, i.e., o2 (t)/gr(t) — 0 for the quantities in Egs. (A5)
and all node-degrees k. In this limiting network, the in-
put to all k-neurons is the same, and the effect of the the
last two terms in Eq. (A1) is statistically equivalent to a
smooth input of the form gx(t) = fv(t) + Skur(t). As
can be deduced from Eqs. (4) and (A1) with this replace-
ment, neuronal membrane potentials in this limit grow
rapidly from reset to threshold and then fire. Therefore,
in a statistical sense, information about a given neuron’s
instantaneous conductance value provides little informa-
tion about its current membrane-potential value, and so
one should expect that the dynamics of conductance and
voltage are uncorrelated in this mean-driven limit.

In view of the discussion in the previous paragraph, in
the mean-driven limit of Eq. (A4), we can therefore first
assume the diffusion terms, which are multiplied by the
conductance-fluctuations variance, o3 (t) in Eq. (A5b), to
become negligible as compared to the rest of the terms
in Eq. (A4). Second, we can also assume the probability
densities of conductance and voltage to be statistically
independent [38], so that

pi(v,9,1) = o (0.9 (9.1). (A8)
Inserting the solution form (A8) into the resulting limit of
Eq. (A4), integrating over the conductance, and taking
into account the boundary condition (AT7c), yields the
equation

oo (5

+an) ()] o000 | (a0

where

(9)r(t) = /0 h 90 (9.1)dg



is the expected conductance value. Likewise, insert-
ing the solution form (A8) in the mean-driven limit of
Eq. (A4), multiplying by the conductance, integrating
over both the membrane potential and conductance, and
taking into account the boundary condition (A7a) yields
the equation

() = —= (e () — gn ()]

— A9b
dt Ty (A9b)

for the expected conductance (g)(t), where gp(t) =
fr(t) + Skug(t) is the mean input to a k-neuron, given
in Eq. (Aba). The boundary condition (A7d) translates

into
o[22
sl () | o (i) (400

In the stationary case, Eq. (A9b) relaxes to (9)r =
gk = fv+ Sy, and Eq. (A9a) can be integrated to yield

TMmMy

(v=V2)+gx(v —Vg)

o () = - (A10)

The normalization condition of p,(c”)(v) as a probability
density function then gives the implicit equation for the
firing rate my, Eq. (8a).

We now take a more careful look at the conditions
that ensure the validity and consistency of the mean-
field approximation. Intuitively, small input fluctuations
should occur in neurons that receive many spikes, each
of which induces a very small conductance jump. This is
ensured by the limit in which f — 0 and S — 0 on the
one hand, and at least one of v — oo or kuy — oo on the
other, but such that at least one of the products fr and
Sk remains bounded away from zero. An examinaton
of the mean input g and its variance of in Egs. (A5)
reveals that the ratio o7 /gy indeed vanishes in this limit.
Note that the rescalings of the coupling strength S by
factors that decay with the network size N in Secs. IV
and V ensure the limit S — 0, and also that then, in
fact, 07 /g, — 0 regardless of whether kuj, — oo, remains
bounded, or vanishes. Namely, in the latter two cases,
the relative smallness of the input fluctuations is due to
the external drive rather than the network drive.

For the network in Sec. IV D, however, the coupling
strength S does not need to be scaled so that it decays
in the large-network limit, and thus there is no a-priori
reason why the mean-field model should even be applica-
ble to it. Nevertheless, comparison with numerical sim-
ulations depicted in Fig. 5 clearly shows that the mean-
field approximation is quite accurate for this network,
and therefore we included it in the present paper. Why
the validity of the mean-field model in this case extends
well beyond its formal range appears still to be an open
question, which will be addressed elsewhere.
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Appendix B: Derivation of the Edge-Type
Distribution Function in the Scale-Free Network

In this Appendix, we describe the derivation of the
edge-distribution function, T'(n,k) in Eq. (32), asso-
ciated with the pulse-coupled network studied in Sec-
tion IVC. We construct this directed network in two
steps: first we construct the corresponding undirected
network following the algorithm described in [41], and
then randomly assign a direction to each of the undi-
rected edges.

In the major part of this appendix, we will discuss the
calculation of the edge-distribution function, T, (n, k), in
the undirected network of [41]. Therefore, in what is to
follow, we will use the term “degree of a node” to de-
note this node’s total degree, i.e., the number of all the
(undirected) edges that emanate from this node. This
use of the term “node-degree” will be restricted to this
appendix only, as will be the notation P, (k) for the dis-
tribution of these degrees and T),(n, k) for the the distri-
bution of the edge types.

We grow the undirected network of [41] in stages: We
begin with an all-to-all connected network consisting of ¢
nodes, which are said to be active. In addition, in order
to avoid repeated node degrees, we modify the algorithm
of [41] by also attaching the jth of these initial active
¢ nodes to precisely j inactive nodes with degree 1. At
each stage of the network growth, a new active node is
attached to every active node via an undirected edge, re-
sulting in £+ 1 all-to-all connected, active nodes. At this
point, one of the active nodes is deactivated; a node with
the current degree n is deactivated with the probability
x 1/n. Once a node has been deactivated, it can never
become active again. The procedure is repeated for each
new node.

The network construction proceeds so that there are no
repeated degrees in the set of active nodes at any stage
of the network growth, as mentioned above, which can
easily be shown by induction. In particular, if we begin
with a set of £ active nodes with different degrees, all of
which exceed or equal ¢, then upon adding a new node,
we increase those degrees by one and end up with another
set of £ nodes with all different degrees exceeding ¢, plus
a node of degree . After one of these £+ 1 nodes is deac-
tivated, we are back to £ nodes with all different degrees
that exceed or equal ¢. Thus, except for the initial inac-
tive nodes with degree 1, for every node in the network,
its degree n exceeds or equals the initial number of active
nodes, £, i.e., n > {. Note that the initial inactive nodes
are not involved in the network construction, and can be
dropped at the end of it.

1. Master equation

We now construct a set of master equations to describe
the expected number of edges connecting two deactivated
nodes with degrees n and k after ¢ growth stages, denoted



by Cs(n, k,t), from whose large-t limit we will compute
the edge-type distribution Ty (n, k). The following quan-
tities are auxiliary in the computation of Cs(n, k,t): (i)
P(n,t), the probability that an active node, randomly
chosen after stage t, is an n-node, (ii) Cy(n,k,t), the
expected number of edges connecting nodes with de-
grees n and k, with both nodes active after stage ¢,
(iil) Ca(n, k,t), the expected number of edges connecting
nodes with degrees n and k, with the node with degree
n deactivated and the node with degree k active after
stage t. Recall that all the node-degrees involved in the
construction exceed or equal the initial number of active
nodes, n, k > (.

In order to construct the equations governing the evo-
lution of the probability P(n,t), n > £, we note that the
expected number of active n-nodes after the tth node has
been attached to the active nodes, but before one of these
nodes is deactivated, is (P(n — 1,¢t — 1). (Here we recall
that ¢ is the number of active nodes before the new node
has been attached; the expected number of nodes with
degree ( is 1, i.e., we are guaranteed the presence of the
new node whose degree is £.) At the same time, accord-
ing to the above rules of the network growth, there can
be at most one active n-node at any growth stage, and
therefore £P(n— 1,t— 1) also must equal the probability,
Prob(F), of the event F' that one of the active nodes has
degree n:

¢P(n—1,t—1) = 1- Prob(F)
+ 0 [1 — Prob(F)] = Prob(F). (B1)

At the end of the stage t, one of the £ + 1 nodes
is deactivated. Let us introduce an auxiliary quantity,
p(n,t), the probability that an active n-node is deacti-
vated at the completion of stage ¢t. (As mentioned above,
p(n,t) < 1/n.) We then obtain the expression for the
expected number of active n-nodes:

LP(n,t) =1-[1 = p(n,t)] Prob(F)
+0- p(n,t) Prob(F) 4 0 - Prob(F°), (B2)

where the superscript ¢ denotes the complement of the
given event. In other words, upon the completion of the
tth stage, the expected number of n-nodes is proportional
to the expected number of (n — 1)-nodes at the (¢ — 1)st
stage. From Eqs. (B1) and (B2), we thus find that P(n, )
evolves according to the equation

P(n,t) =P(n—1,t—1)[1 — p(n,t)]. (B3a)

To find the expression for the above probability p(n,t),
we count, as above, the expected number of active n-
nodes by ¢P(n—1,t—1), n > (. Realizing that the last
added active node is certain to be the only one with de-
gree £, and neglecting the certainty that the deactivated
n-node was among the active nodes, we find the approxi-
mate normalization factor in p(n,t). Thus, we derive for
p(n,t) the approximate formula

1
n (z S PG -1t —1) i + 1/6) '

pln.t) = (B3b)
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Using a similar argument, we can show that the evolu-
tion of the number of edges linking two active nodes with
degrees n and k, C1(n, k, t), is governed by the equation

Cl(n,k,t) = Cl(n— 1,k— 1,t— 1)
X [1 - p(nvt) - p(kvt)]v

where the factor Cy(n—1,k—1,¢t—1) corresponds to the
number of edges connecting nodes with degrees n and
k during the tth stage, before the next node is deacti-
vated, and the factor in the brackets is the probability
that neither of the two nodes is deactivated at this stage.

The evolution of the number of edges linking an active
node with degree k£ and an inactive node with degree n,
Cy(n, k,t), is govened by the equation

(B3c)

C2(n7 ku t) = C?(”u k— 1t - 1)[1 - p(kvt)]+
+Ci(n—1,k—=1,t—1)p(n,t). (B3d)
In the first term of the sum on the right-hand side, the
factor Co(n,k — 1,¢t — 1) corresponds to the number of
edges connecting an inactive node with degree n and an
active node with degree k during the ¢th stage before the
next node is deactivated, and the factor in the square
brackets gives the probability that the active node of de-
gree k is not deactivated at this stage. The second term
corresponds to the expected number of edges that con-
nected two active nodes with degrees n — 1 and k — 1 at
stage t — 1, where the node with degree n — 1 was de-
activated immediately after receiving an additional edge
from the newly added node.
Finally, the evolution of the number of edges linking
two inactive nodes with degrees n and k, Cs(n,k,t), is
govened by the equation

Cs(n,k,t) = Cs(n, k,t — 1) + Ca(n, k — 1,t — 1)p(k, t)
+ Cy(k,n—1,t —1)p(n,t). (B3e)

The first term on the right-hand side of Eq. (B3e) gives
the number of edges connecting two inactive nodes at
stage t — 1. This number is updated during the subse-
quent stage by an edge connecting what at stage t — 1
were an inactive node with degree n and an active node
with degree k — 1, or vice versa, with either active node
being deactivated during stage ¢ with probability p(k,t)
or p(n,t), respectively, after receiving an additional edge
from the newly added node.

The nonvanishing initial conditions for the quantities
in Egs. (B3) are

P(n,0)=1/¢, when n € [(,2¢ — 1], (B4a)
Cy(n,k,0) =1, when n,k € [(,20—1],n # k, (B4b)
C2(1,k,0) =k —0¢+1, when k € [(,2( — 1]; (B4c)

all the other initial conditions vanish. These conditions

correspond to the initial network with the ¢ all-to-all con-
nected active nodes and the ¢ inactive nodes of degrees
1,...,¢ connected to them.



The boundary conditions for Eqs. (B3) are

P(t,t) = [1 - p(6,1)] 1, (B5a)
Cl(n, f, t) = Cl(f, n, t)

=(P(n—1,t—1)[1 — p(n,t) — p(¢,1)], (B5b)
Ca(n,l,t) =tP(n—1,t—1)p(n,t), (B5¢)
Co(l,m,t) = Ca(lyn — 1,6 — 1)[1 — p(n,t)]+
+{LP(n—1,t—1)p(¢,t), (B5d)
C3(€,7’L,t) = C3(7’L,£,t) = C3(7’L,f,t— 1)
+Co(lyn—1,t—1)p(n,t), if n # ¢, (B5e)
Cs(¢,0,t) = 0. (B5f)

where p(-, t) can be computed from Eq. (B3b) using only
quantities known from stage t — 1. Arguments used to
obtain these conditions are similar to those used in the
derivation of the corresponding recurrence equations, ex-
cept that the expected number of active f-nodes just be-
fore the completion of a stage always equals 1. Thus,
the right-hand side of Eq. (B5a) equals the probabil-
ity that an active node picked at random with proba-
bility 1/¢ will be the ¢-node, given that this node has
not been deactivated. Likewise, the expected number of
edges connecting an active node with degree n to the
sole active node with degree ¢ just before the tth stage
is completed is now given by /P(n — 1,t — 1) rather than
by Ci(n — 1,k —1,t— 1) used in Egs. (B3c) and (B3d),
which hold when both n,k > (¢ + 1). Equation (Bbe) is
obtained in the same manner as Eq. (B3e), except taking
into account that no node with degree < ¢ exists, and so
Ca(n,l —1,t — 1) = 0. For the same reason, we must
have C3(¢,¢,t) = C5(¢,¢,t — 1), and since C5(¢,¢,0) = 0,
Eq. (B5f) follows.

2. Late-Stage Asymptotics

We study the equations (B3a), (B3c), (B3d), and (B3e)
in the limit of large ¢, in the approximation of continu-
ous n and k. In this limit, all the edges can be con-
sidered deactivated and their distribution is described
by the function Cs(n,k,t). The influence of the initial
conditions becomes lost in this limit. We drop the ar-
gument ¢ in all the dependent variables except Cs, so
that P(n) ~ P(n,t > 1), p(n) ~ p(n,t > 1), and
Ci(n,k) ~ Ci(n,k,t > 1), i = 1,2. Note that, in this
limit, the network size grows without a bound, so that
t — oo implies N — oo. In the rest of this appendix, we
will therefore assume that the network size N is large and
consistently neglect quantities that decay as N grows.
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a. P and p Asymptotics

In the large-t limit, after the probability density p(n)
is expressed through Eq. (B3b), Eq. (B3a) becomes

dP(n) P(n)

dn— n [0 [ Pk)dk/k+1/(] (B6)

where the difference P(n) — P(n — 1) has turned into the
derivative with respect to n, and the sum in the denomi-
nator on the right-hand side has become an integral. The
infinite upper limit is the result of the limit ¢ — oo.

We look for a solution of Eq. (B6) in the form of P(n) =
an”, n > (. From the normalization [, P(n)dn =1 we
find that

a=—(y+ 1) 0F, (B7)

Substituting this P(n) anzatz in Eq. (B6), we then find
the value of v to be

2

YA (B8)

’7 =
which also implies that the denominator on the right-
hand-side of Eq. (B6) equals —v. Further substituting
this denominator in Eq. (B3b), we finally find the distri-
bution p(n) to be given by

(B9)

pln) = —=.

b. C1 Asymptotics

The asymptotic behavior of Cq(n,k) is found by ap-
proximating Eq. (B3c) in the continuos limit of n and k
with the partial differential equation

0C 4y 90

on (n7 k) + W(nv k) =-C; (nv k)[p(n) + p(k)]
1

=vCi(n, k) (% + E) , (B10)

where we used Eq. (B9). Using the method of character-
istics [109, 110], we find the solution of this equation to
be of the form

Ci(n, k) = Bk G(|n — k|), (B11)

where the constant /5 and the function G(-) are obtained
from the boundary conditions (B5). Note, in particular,
that there is never an edge connecting two active nodes
with the same degree, therefore Cy(n,n) = 0, which we
formally take into account by setting

G(ln—k|)=1-06(n—k). (B12)
From the boundary conditions (B5b), we find
Ci(n, £) = LP(n)[1 = p(n) = p()]
(1
_an£(1+n+£). (B13)



At the same time, from Eqgs. (B11) and (B12), we find
C1(n,l) = fn7¢7, and therefore for n > £ > 1

=t = —(v+ 1)@727 (B14)

and

Ci(n,k) = —(y+ D)2 "7E[1 — 6(n — k)] (B15)

c. Ca Asymptotics

Again, by treating n and k as continuous variables, we
approximate the difference in Eq. (B3d) by

0C,

=21, k) = ~Ca(n, k)p(k) + Ci(n, k)p(n).

Using Eqgs. (B9) and (B15), we can rewrite this equation

as

0C,

8—k(n7 k)

S gt - s b,

which, after being multiplied by k77, reduces to
[k7Ca(n, k)] e = —BnYHL = §(n — k)]

Integrating this equation over k and multiplying the re-
sult by k7, we obtain

Ca(n, k) = —yBn k714

+ &)Y + 2yBn T K H(n — k), (B16)

where H(-) is the Heaviside function and £(-) is an un-
known arbitrary function. Letting £k = ¢ and n # ¢ in
this equation, we find

Cy(n, £) = —yBnY 1O+ 4 ¢(n) 7
while the boundary condition in Eq. (B5c) gives
Ca(n, l) = —yalbn 1

which determines the unknown function as &(n) =
©n?~1, where ¢ is given by the expression

=7 (B0 - a). (B17)

Thus, the final expression for the number Cs(n, k) is

Ca(n, k) = —vBnY T oY TR+

+ 2980 YKV H (n — k), (B18)

where «, 8, and ~ are given by Eqgs. (B7), (B14), and
(B8), respectively.
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d. Cs Asymptotics

Finally, for continuous n and k and ¢t > 1, Eq. (B3e) for
the function C5(n, k,t) is approximated by the equation

%(n’ k, t) = CQ(na k)p(k) + Cz(k, n)p(n)7

where we have approximated n ~n—1and k ~ k — 1,
respectively. Integrating this equation over ¢ and using
Egs. (B9) and (B18), we find

C'3 (TL, ku t) Nt[CZ(nu k— 1)p(k) + 02(k7 n— 1)p(n)]
st ()
+ BT (=B + on?) (_%) -
— 29287

where the last term is the result of adding two Heaviside
functions. This expression finally simplifies to

Cs(n, k,t) ~ t4°3 (Tﬂ_lkV + kY — 2€k”_1n7_1) ,
(B19)
where the constants 3 and v are given in Egs. (B14) and
(B8), respectively.

3. Large Initial Network Approximation

For a large number, ¢, of initial active nodes, the
parameter v in Eq. (B8) satisfies the relationship v =
—2. Therefore, in this limit, Eq. (B19) for the edge-
distribution function T, (n, k) reduces to the equation

1 1 20
Cs(n, k,t) = m%( RcTe k3n3> . (B20)

n3k?
As shown in [41], the distribution of the node-degrees for
this network equals
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(B21)

with the mean degree p, = 2¢. Therefore, the edge-

distribution function, T, (n, k), which is obtained by nor-

malizing the function C5(n, k), is given by the formula
Tu(n,k) = AP,(n)Py(k)(n + k — 1) (B22)

where the constant A is obtained from the normalization
of the function T, (n, k),

1=/ / Tyu(n, k)dndk
e Je

= A/g /g Py(n)Py(k)(n + k — py)dndk = /1(;];1;3)
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FIG. 8. (Color online) The dependence of the conditional
probability P,(n|k) in the undirected network with ¢ = 50,
as derived from the edge-distribution function Ty (n,k) and
the incoming-degree distribution P, (k) using Eq. (3). Dots
(red online) represent averages over 10° network realizations
using Monte-Carlo simulations of the network of size N = 10%.
Dashed line (green online) represents the analytical result of
Egs. (B21) and (B24) with n, k > ¢. (Recall that P,(n|k) =0
for n,k < £.) Top to bottom on the right-hand side of the
figure: k = 50, 400, and 4000.

We thus conclude that

(B24)

up to terms that decay with the network size.

We have verified the accuracy of the approximation
in Eq. (B24) by comparing its results with those of di-
rect numerical Monte-Carlo simulations. The compari-
son is presented in Fig. 8, which shows a highly accurate
match provided the expressions in Eqgs. (B21) and (B24)
are normalized using sums over integers rather than inte-
grals. We present the conditional probability P, (n | k), as
derived from the edge-distribution function Ty, (n, k) and
the incoming-degree distribution P, (k) using Eq. (3), be-
cause the curves representing it are normalized and there-
fore easier to depict on one set of axes. Equation (3) holds
for total degrees just as it holds for incoming degrees, and
for the same reason.

4. Directed Network

Finally, we compute approximate expressions for the
node-degree and edge-type distribution functions in the
directed network from the corresponding distributions in
the undirected network. We will compute these approxi-
mate expressions in the limit of a large initial number of
active nodes, £ > 1. Recall that we obtain the directed
network by assigning the direction to every edge in the
undirected network randomly with probability 1/2.
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a. The Node-Degree Distribution

First, let us discuss how to obtain the incoming-degree
distribution in the directed network, Py(k), from the
total-degree distribution of the undirected network,

202
=
which was derived in [41]. We begin by determining the
number of ways in which a given n-node in the undirected
network can become a k-node in the directed network,
which equals (7). (Recall that (}) = 0 if & > n.) The
probability that an undirected edge emanating from this
node becomes an incoming edge for this node is 1/2, and
the same for an outgoing edge. Therefore, the probability
that an n-node in the undirected network can become a
k-node in the directed network equals

()

Using the law of total probability, if all node-degrees
were allowed in the undirected network, we would find
that the directed node-degree distribution P, (k) ob-
tained from the undirected node-degree distribution
P,(n) would be given by

Pult) = 3 () (%)nmn).

n==k

Py (k) (B25)

Since, in our case, the undirected network can only have
nodes with degrees v > /¢, then

Pat— 3 () (%)nmn).

n=max{/l,k}

(B26)

Note that we clearly can have k < £ in the directed net-
work.

The De Moivre-Laplace theorem [111] shows that the
binomial distribution can be approximated by the Gaus-
sian distribution for large n and k — n/2 = O(y/n) as

D) - (H555) o

(For other values of k, both sides are exponen-
tially small.) Using the undirected-network degree-
distribution (B25), we therefore find for the directed net-
work distribution (B26) the approximate expression

Pi (k) ~ 23/27'(71/262

N _ 2
X / n~ "% exp <—M) dn, (B28)
max{¢,k} n/2

and the substitution n = 2kv lets us transform this inte-
gral into the form

R (k) ~ 2_17T_1/2€2]€_5/2

(1—v)?

N/2k
X / v~ /% exp (—k 7> dv. (B29)
max{¢/2k,1/2} v



For large values of k, the right-hand side of Eq. (B29)
contains the type of integral whose asymptotic behavior
can be calculated using Laplace’s method by expanding
around the maximum of the exponent at v = 1. The gist
of this method is the realization that the exponential can
be approximated beyond all orders by a Gaussian cen-
tered at the maximum of the exponent, and that only an
O(1/+/k)-size neighborhood of this maximum counts in
the integration. Therefore, for k > ¢/2, we can move the
lower limit of integration in (B29) to any fixed number
below 1 while only incurring a negligible error at any or-
der of the expansion. On the other hand, when k < ¢/2,
the lower limit £/2k must be retained. Therefore, at the
leading order, we can fix the lower limit in (B29) at ¢/2k.
Moreover, the v-variations in the powers multiplying the
exponential can be ignored in both cases. Therefore, af-
ter making the coordinate change x = v — 1, we can
approximate the integral in Eq. (B29) by

N/2k—1
Pn(k) ~ 27171'71/262]{375/2/ exp (—kz?) dx

0/2k—1

a5
)}

where erf(+) is the complementary error function erf(z) =
(2/ /) fg e dt.

For 1 « ¢/2 <« k <« N/2 we find the final asymptotic
approximation for the function in Eq. (B30) to be as in
Eq. (30), while for 1 < k < ¢/2 or k 2 N/2 the function
in Eq. (B30) has an O(Vk)-wide transition layer near
k =1¢/2 or k = N/2, respectively. For k = O(1) < ¢,
one must scale the integration variable in Eq. (B28) by ¢
instead of k, and perform a similar Laplace-type asymp-
totic analysis. However, the result of this analysis and
Eq. (B30) both give P, (k) which is exponentially small
in ¢ and thus negligible for k¥ = O(1) < £. Therefore,
using Eq. (B30) all the way down into this regime gives
an acceptable uniform asymptotic approximation of the
density Py, (k). In fact, in view of the sharp transition in
the density P, (k) near k = £/2 between the expression in
Eq. (30) and an exponentially small quantity, we approx-
imate P, (k) even more simply by Eq. (30) for nodes with
incoming degrees k > ¢/2 and 0 for those with degrees
k < £/2. Likewise, we approximate P, (k) as vanishing
for k£ > N/2. This is the approximation that we use in
the body of the paper.

(B30)

b. The Edge-Type Distribution

We use a similar procedure to approximate the edge-
type distribution function in the directed network. The
probability that an edge connecting a v-node to a x-node
in the undirected network becomes a directed edge con-
necting an n-node to a k-node in the directed network
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is computed as follows: First, let us assume that the v-
node becomes the n-node and the x node becomes the
k-node. Note that the probability is 1/2 that the direc-
tion of the edge is chosen to point from the v-node to the
k-node. We therefore know that the v node must acquire
one outgoing edge and so must still get n incoming edges
chosen from the total of ¥ — 1 undirected edges. Like-
wise, the k£ node must acquire one incoming edge, and
so must still get £ — 1 incoming edges from among x — 1
undirected edges. Altogether, the number of ways this
can be accomplished is thus

()65

and the conditional probability for this to happen is

v—1\ (r—1\ (1"
n k-1 2
given that the direction of the edge was chosen from the

v-node to the k-node. The total probability for this to
happen is therefore

v—1\[(k—1\ /1"
n k—1 2
Likewise, if the v-node in the undirected network be-
comes the k-node in the directed network and the k-node
in the undirected network becomes the n-node in the di-

rected network at the two ends of the given edge, the
probability for this event is

v—1\[r—1\ (1)}
k—1 n 2
Therefore, altogether, the probability that an undi-
rected edge connecting a v-node to a x-node in the undi-

rected network becomes a directed edge connecting an
n-node to a k-node in the directed network is

v—1\/rk—-1 1\t
n k—1 2
(N (P (L et
k—1 n 2
If all the node-degrees in the undirected network

were allowed, the expression for the distribution Ty;(n, k)
would thus be

Td(n, k)
N

S S e

v=n+1rk=k

22 (NG e

v=k k=n+1

SR e

v=n+1k=k



where we have taken into account that the distribution
T.(v, k) is symmetric with respect to interchanging its
arguments. Since only degrees v,k > ¢ are allowed in
our undirected network, this formula becomes

N N

Taln, k)= Y 3 <”; 1>

v=max{l,n+1} k=max{(,k}

(D)

To find the large-¢ approximation for the edge-type
distribution Ty(n, k) in Eq. (B31), we again begin by ap-
proximating its coefficients using the DeMoivre-Laplace
formula (B27), replacing the sums by appropriate inte-
grals, and applying Laplace’s method. While the calcu-
lation is considerably more involved than that leading to
the directed edge distribution, the end result is indeed
given by Eq. (32) for £/2 < n,k < N/2, and negligibly
small otherwise. Instead of giving the details of this cal-
culation, in Fig. 9, we show the agreement of this large-¢
asymptotic approximation for Ty(n, k) with the approxi-
mate evaluation of Eq. (B31), as described below, and the
results of Monte-Carlo simulations. For ease of depiction,
we again present the conditional probability P;(n | k), as
derived from the edge-distribution function T4(n, k) and
the incoming-degree distribution P, (k) using Eq. (3).

(B31)
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FIG. 9. (Color online) The dependence of the conditional

probability Ps(n | k) in the directed network with ¢ = 50, as
derived from the edge-distribution function Ty(n, k) and the
incoming-degree distribution Pi, (k) using Eq. (3). Dots (red
online) represent averages over 10% network realizations using
Monte-Carlo simulations of the network of size N = 10*. Solid
line (black online) represents a numerical evaluation using
Egs. (B31) and (B26) as described in the text. Dashed line
(green online) represents the analytical result of Egs. (30)
and (32) with £/2 < n,k < N/2. Top to bottom on the right-
hand side of the figure: £ = 25, 200, and 2000. We do not
display the transition layer near n = N/2.

Finally, for a directed network of size N, a direct nu-
merical evaluation of the edge distribution Ty(n, k) in
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Eq. (B31) would require ~ N* operations (106 in our
case). Instead, for £/2 < n,k < N/2, we approximate the
sums in Eq. (B31) by taking v’s and «’s from the intervals
centered at 2n and 2k with -half-widths 2v/2n and 2v/2k,
respectively. These two half-widths approximately equal
twice the standard deviations of the (approximately) bi-
nomial distributions appearing in Eq. (B31).

Appendix C: Leading-Order Pulse Rate for the
Asymmetric, Scale-Free Network

In this appendix we derive Eq. (46) from Sec. IV D.
We begin by seeking a solution of Eq. (13) with large-k
asymptotic behavior my ~ BkY, where v > 1, assumed
in Eq. (45). Inserting this ansatz into Eq. (13) and com-
puting the kernel K(n, k) from Eqgs. (14), (42), and (43),
we arrive at integrals of the form

a”

o nY dn . T )
I T , (C1)
/0 Hé-:T(n +aj) sin 7y ng H%;} (a; — aj)

with a; > 0, j = 1,...,7. These integrals are evaluated
using residues over a keyhole contour, with the keyhole
comprising the upper and lower edge of the branch cut
along the positive real axis and a small circle around the
origin, and the rest of the contour consisting of a large
circle.

Using the result of Eq. (C1), which in our case con-
verges for v < 4, we find Eq. (13) to have become

TBA

sin 7y

BKY ~ 1) —

{k+3—27(k+1)

- % [(k F 1) (k4 2)(k +3)

—(k+2)" (k+3)(3k + 1)
+ (k +3)" " k(3k +5)

(C2)

(k4R + 1)k + 3)} }

Expanding the expression on the right-hand side of this
equation for large values of k, we find that the O(k717)-
terms, with j = 1, 2, and 3, vanish. For the O(k”) term,
we find the coefficient —w BAy(y—2)(y—3)/ sin 7y, which
must match the coefficient B on the left-hand side, yield-
ing Eq. (46). We neglect all the terms of lower order in
k. This includes the linear terms, due to the assumption
v > 1.

Appendix D: Estimates for the Network-Coupling
Scaling Bounds

In this appendix, we derive the estimates used to es-
tablish the scaling bounds in Sec. V. First, we derive



the estimate in Eq. (49). A single iteration of Eq. (13)
produces the equation

N
my =1 <1+)\/ K (k,n)dn
0

, (NN
+/\/0 /0 K(k,n)K(n,p)m,,dndp). (D1)

Noting that all the terms on the right-hand side of this
inequality are non-negative, we see that mj exceeds the
sum of the first two terms alone. The second term is
easily calculated to equal YAk using Egs. (14) and (1),
and so the estimate (49) follows.

Second, we show how the estimate in Eq. (51) follows
from the weak-correlation condition (50). In particular,
when this condition is satisfied, Eq. (14) implies that the
kernel K (k,n) in Eq. (13) satisfies the estimate K (k,n) <
nknPy(n)/u, which further implies that the ith iterated
kernel, K;(k,n) in Eq. (16¢), satisfies the estimate

Ki(k,n) < /N /N nky1 Pn (Y1) ny1y2Pin (y2)
1 \vy >~ o ; lu .

1— Rn
X wdyldyl_l

(D2)
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Using Eq. (16a), we thus conclude that the ith coeffi-
cient ¢;(k) in the Liouville-Neumann series (15) can be
bounded by ¢;(k) < ¥nk (n <n2>N /,u)lfl. Summing the
geometric-series majorant obtained from this estimate
now implies that the entire Louiville-Neumann series for

the pulse rate my can be bounded by the estimate in
Eq. (51).

To derive the estimate in Eq. (56) from the statistical
symmetry of the network, we iterate Eq. (13) twice, and
integrate the resulting equation over k with the wieght
P(k). We thus obtain the following equation for the
pulse rate my, averaged over the entire network:

N N N N
= / Pua(k)mudk = ¢ + A+ A2 / / / Pan (k) K (k, y2) K (g1, y2) Ay dyndh+
0 0 0 0

N N N N
+ A% / / / / P (k) K (k, y1) K (y1, y2) K (y2, y3)my; dyzdyady: dk.
0 0 0 0

Using Eq. (14), we can rewrite the triple integral multi-
plying ¥A? in this equation as

N N /N
T(y1, k)T (ys,
Mz/ / / (yl .) (yz yl)dyldygdk
o Jo Jo Pin(y1)

N N
= / 1T (y2, y1)dyadys
0 0
N

=/O Y1 Pn(y1)dyr = (n*)

(D3)

where we have used Eqs. (55) and (1) to arrive at the
expressions on the second and third lines, respectively.
Recall that Eq. (55) follows from the assumed statistical
symmetry of the network. Equation (D4) implies that
Eq. (D3) can be rewritten as Eq. (56).
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