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We adapt the method used by Jaynes to derive the equilibria of statistical physics to instead derive equilibria
of bounded rational game theory. We analyze the dependence of these equilibria on the parameters of the
underlying game, focusing on hysteresis effects. In particular, we show that by gradually imposing individual-
specific tax rates on the players of the game, and then gradually removing those taxes, the players move from a
poor equilibrium to one that is better for all of them.

INTRODUCTION

One of the most succinct derivations of statistical physics
is based on the Maximum Entropy (Maxent) principle of in-
formation theory [1–3]. In this paper we apply Maxent to the
problem of predicting the joint behavior of interacting humans
rather than the problem of predicting the joint behavior of in-
teracting particles. This provides a connection between statis-
tical physics, information theory, and game theory.

Maxent concerns the problem of how best to predict the
probability distribution p over a system’s states based on lim-
ited prior knowledge concerning p. It says we should make
that prediction using a version of Occam’s razor: Choose the
p that assumes nothing beyond the prior knowledge. Max-
ent formalizes this version of Occam’s razor as meaning we
should choose the p that has maximum entropy among all p
consistent with that prior knowledge. To solve for that p we
must extremize a Maxent Lagrangian.

In the context of statistical physics, our prior knowledge
might be the Hamiltonian of the system and the value of the
system’s expected energy. In this case the Maxent Lagrangian
is the system’s free energy. So the Maxent principle says that
for that prior knowledge, we should predict the p that min-
imizes the free energy of the system, i.e., predict p is the
canonical ensemble [3, 4]. If our prior knowledge also spec-
ifies the expected number of particles in the system, p is de-
fined over a different space, and Maxent now says we should
predict that p is the grand canonical ensemble.

Noncooperative game theory [5–8] is concerned with how
to predict the behavior of a set of human “players”, based on
knowing each player’s utility function. This is a starting point
for the field of microeconomics. More generally, it is central
to the foundations of many formalizations of socio-economic
systems. It also has proven central to many analyses of natural
selection, in the guise of evolutionary game theory [9, 10].

The idea of applying tools from statistical physics to mi-
croeconomic extends back to the 19th century. While some
more recent work on this issue has come from the economics
community [11], most of the recent work has originated in the
physics community, under the label of “econophysics”. Much
of econophysics is concerned with socio-economic systems at
a “coarse grained level”, for instance using the tools of statisti-
cal physics to analyze stylized facts of empirical distributions

such as the returns in financial markets [12]. In addition to
such analysis of statistical regularities in large financial and
economic data sets, econophysics also includes models of in-
teractions of possibly heterogeneous agents.

Often (but not always), this work either does not consider
the foundations of the behavior, or tries to provide explana-
tions using non-game theoretic, mechanistic models. Some
examples are multi-agent models with agents choosing their
behavior according to some plausible rules [13]. Other ex-
amples are models from physics such as Ising or Potts mod-
els that are used as abstract models for collective phenomena,
e.g. in option dynamics [14] or herd behavior in stock mar-
kets [15]. Typically this work tries to deduce or predict statis-
tical regularities at the coarse-grained macrolevel as emerging
from the local interactions of many such agents and to un-
derstand the mechanisms of aggregation. Among many refer-
ences, a sample of recent achievements is [16] (minority game
models), [17] (global effects of local behavior), [18] (hetero-
geneous agents and phase transitions). See [19] for a nice
overview.

In this paper we start by showing how the techniques of sta-
tistical physics can also be applied to analyze socio-economic
systems at the fine-grained level of game theory, as well at
the coarse-grained level usually considered. Elaborating the
analysis of [20], we begin by showing how to use the Max-
ent principle to derive a modification to the Nash equilibrium
concept of game theory [5–8].

In this application of Maxent to game theory, we have a
separate piece of prior knowledge for each player of the game,
concerning the expected value of the utility of that player. In
comparison, when using Maxent to derive the canonical en-
semble, we have a single piece of prior knowledge, which
also concerns an expected value (of the energy of the full
system). Due to the formal similarity of these two types of
prior knowledge, the modified version of the Nash equilibrium
that we derive is similar to the canonical ensemble. However
rather than a single Boltzmann distribution, involving a single
Hamiltonian and a single temperature, our modification to the
Nash equilibrium has a separate Boltzmann distribution for
each player. Each player’s Boltzmann distribution involves
that player’s utility function, and a “temperature” unique to
that player. (This temperature is a quantification of the asso-
ciated player’s bounded rationality.) We also briefly discuss
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the application of Maxent to game theory when the number
of players of various types in unknown. This results in each
player type following a grand canonical ensemble rather than
a canonical ensemble.

After deriving our modified Nash equilibrium that is related
to the canonical ensemble, we analyze its dependence on the
parameters of the underlying game, focusing on bifurcation
behavior and hysteresis effects. In particular, we show that the
changes of the “temperature” can be interpreted as changes
of a “tax rate” and that by “adiabatically slowly” increasing
individual-specific tax rates on the players of the game, and
then gradually removing those taxes, the joint behavior of the
players moves from a poor equilibrium to a Pareto-superior
one. In fact, this can be done in such a way that the players
agree to each infinitesimal change in tax rates, since each such
change increases their expected utility.

Next we introduce three toy models of how a society may
collectively decide on each such infinitesimal change in tax
rates. One of these is a myopic model of “socialism”, in
which each change is made to maximize the immediate gain in
the sum of the player expected utilities. Another is a myopic
model of a “market”, in which the players use unstructured
bargaining [6] to decide on the infinitesimal changes in their
tax rates. The final model is a myopic version of “anarchy”,
in which each player changes their own tax rate, assuming the
others do not change theirs.

We end up by comparing these three ways of running a soci-
ety in terms of the associated discounted sum of total utilities
along the path of tax rates. We find that the anarchy model al-
ways does worse than the other two models. However the mar-
ket model outperforms the socialism model for a low enough
discounting rate, whereas socialism does better near-term, i.e.,
with a large enough discounting rate.

BACKGROUND

The maximum entropy principle

Shannon [21] was the first person to realize that based on
a simple set of axioms, there is a unique real-valued quantifi-
cation of the amount of syntactic information in a distribution
p(y). This quantification is the Shannon entropy of that distri-
bution, S (p) = −

∑
u p(y)ln[ p(y)

µ(y) ]. It measures the amount of
uncertainty in p concerning an outcome y generated by sam-
pling p. As such, it can be seen as the amount of information
that can be gained from observing an outcome sampled ac-
cording to p.1

As an example, the distribution with maximal entropy, i.e.,
highest uncertainty, is the one that doesn’t distinguish at all

1 In this equation µ is an a priori measure over y, allowing the argument
of the logarithm to be unitless. It is often interpreted as a prior probability
distribution. Unless explicitly stated otherwise, in this paper we will always
assume it is uniform, and not write it explicitly. See [1, 3, 4].

between the various y; the uniform distribution. Conversely,
the most precise distribution is the one that specifies a single
possible y. For this distribution, we cannot gain any further in-
formation by observing an outcome, because we know already
which outcome — y — will appear. Note that for a product
distribution, entropy is additive, i.e., S (

∏
i pi(yi)) =

∑
i S (pi).

Say we are given some incomplete prior knowledge about a
distribution P(y). How should one estimate P(y) based on that
prior knowledge? Shannon’s result (as interpreted by Jaynes
[3]) tells us how to do that in the most conservative way: do
not put anything else into your estimate of P(y) beyond what
is already contained in the prior knowledge about P(y). Infor-
mation about what is uncertain, i.e., not yet known, should be
gained from observations and not assumed prior to them. This
approach is called the maximum entropy principle (Maxent).

As an example, the prior knowledge concerning P(y) may
be in the form of one or more constraints on expected values
of functions under P. Used this way, Maxent has proven ex-
tremely accurate in domains ranging from signal processing
to image processing to supervised learning [2]. Famously, it
was also used by Jaynes to derive statistical physics [4]; the
prior knowledge constraints in that domain concern quantities
like the expected energy of a system or its expected number
of particles of various types.

Noncooperative game theory

In a finite, strategic form noncooperative game, one has a
set of N players. Each player i has its own set of allowed pure
strategies, Xi. A mixed strategy is a distribution qi(xi) over
player i’s |Xi| possible pure strategies. We write the joint space
of all players’ pure strategies as X. The joint distribution over
X is given by sampling each player’s mixed strategy indepen-
dently: q(x) =

∏
i qi(xi). As shorthand, we will use the minus

symbol to indicate the set of all players with one removed,
e.g., q−i(x−i) ≡

∏
j,i q j(x j). We call a joint pure (mixed) strat-

egy choice of all the players a pure (mixed) strategy profile.
Each player i has a utility function ui : X → R. So

given mixed strategies of all the players, the expected utility of
player i is E(ui) =

∑
x
∏

j q j(x j)ui(x). Much of noncooperative
game theory is concerned with equilibrium concepts speci-
fying what joint-strategy one should expect to result from a
particular game. In particular, in a Nash equilibrium every
player adopts the mixed strategy that maximizes its expected
utility, given the mixed strategies of the other players. More
formally, ∀i,

qi = argmaxq′i

[∑
x

p′i(xi)q−i(x−i)ui(x)
]
.

In general, this set of coupled equations has multiple solu-
tions.

A well-recognized problem with using the Nash equilib-
rium concept as a way to make predictions concerning the real
world is its assumption of (common knowledge of) full ra-
tionality. This is the assumption that every player i can both
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calculate what the strategies q j,i will be and then calculate
its associated optimal distribution. This assumption has been
found to be (sometimes badly) violated in many experimental
settings [22, 23]. Below we provide a modified version of the
Nash equilibrium that accommodates bounded rationality.

A central feature of all noncooperative game theory,
bounded rational or otherwise, is that the players are “strate-
gic”: each player i uses her knowledge concerning the utility
functions of the other players to predict the behavior of those
other players, presuming they will do the same concerning
her. Player i then uses that prediction together with her own
utility function to decide how she will behave. (In contrast,
“non-strategic” models are more like mean-field models, in
that each player i presumes that other players ignore her.)

MAXENT AND QUANTAL RESPONSE EQUILIBRIA

Maxent noncooperative games

To predict what q the players in a given N-player game
Γ will adopt, first pick one of the players, i. Consider a
counter-factual situation, where i has the same move space
and utility function as in Γ, but rather than have a set of
N − 1 other humans set the distribution over X−i, an inani-
mate stochastic system sets that distribution, to some q−i(x−i).
In general, due to her limited knowledge of q−i, limited com-
putational power, etc., i will choose a suboptimal qi, i.e.,
qi < argmaxpi

[Epiq−i (ui)].2 To quantify this bounded ratio-
nality, in analogy to Jaynes’ derivation of the canonical en-
semble, presume that player i is good enough at choosing
her mixed strategy qi so that Eqi,q−i (ui) is some (nonmaximal)
value Ki for the given q−i.

Writing it out explicitly, for each player i the Maxent La-
grangian associated with this constraint is

Li(qi) = S (qi) + βi[Ki −
∑

xi

qi(xi)E(ui | xi)]

+ λ′i[1 −
∑

xi

qi(xi)] (1)

where the Lagrange parameters are βi and λ′i , q−i is implicit,
and as usual q(x) =

∏
i qi(xi). The normalized qi that maxi-

mizes the Lagrangian in Eq. (1) is

qi(xi) =
eβiE(ui |xi)∑
x′i

eβiE(ui |x′i )
(2)

Note that as βi → ∞, i becomes increasingly rational, whereas
as βi → 0, she becomes increasingly irrational; rational peo-
ple are cold and irrational people are hot, using the analogy of
βi with an inverse temperature.

2 Whereas physics systems “want to minimize” the value of their Hamilto-
nian, humans want to maximize the value of their utility function.

Next, recall that by the axioms of utility theory [24], all
that player i is concerned with in choosing her mixed strategy
is the resultant expected utility. Accordingly, we presume that
if the best i can do is choose a particular qi when q−i is set
by an inanimate system, she would also choose qi if she faces
that same distribution q−i when it is set by other humans.

There is nothing in the foregoing that is particular to player
i. So Maxent predicts that Eq. 2 should hold simultaneously
for all N players i, for the appropriate player-specific Ki and
ui (and therefore for Lagrange parameters βi that are player-
specific). This gives a set of N coupled non-linear equations
for q. Brouwer’s fixed point theorem [25] guarantees that that
set always has a solution, and it might have more than one.3

Usually in Maxent the constraints are exact equalities for
the expectation values, e.g., in the derivation of the canonical
ensemble. So we have formulated the constraints that way
here. Note though that we get the same solution of Eq. (2)
for each qi if we change the optimization problem by using
the weaker inequality constraint that E(ui) ≥ Ki rather than
E(ui) = Ki.

This prediction for q is not based on a model of bounded
rational human behavior derived from experimental data. It is
based on desiderata concerning the prediction process of the
modeler external to the system, not on a model of the system
being predicted. Nonetheless, it is intriguing to note that max-
imizing Shannon entropy has a natural interpretation in terms
of common models of human bounded rationality involving
the cost of computation. To see this, recall that −S (qi) mea-
sures the amount of information in the distribution qi, up to
an overall additive constant. Say we equate the cost to i of
computing qi with this amount of information.4 Then under
the Maxent solution, player i minimizes the cost of comput-
ing her mixed strategy, subject to a lower bound on the value
of her expected utility. (This lower bound acts as an “aspi-
ration level” for player i.) Equivalently, she can be seen as
maximizing her expected utility, subject to a bound on her
computational cost. Under either interpretation, βi quantifies
i’s cost of computing qi, in units of expected utility.

Relation to earlier work

Solutions for q to the N coupled equations given by Eq. 2
are typically called (logit) Quantal Response Equilibria
(QRE) in game theory [31–34]. They were originally derived
under assumptions that the players are purely rational, but un-
certain of one another’s utility functions. They also arise in
asymptotic analysis of several ad hoc models of how players

3 An alternative Maxent approach would use it to set the entire joint distribu-
tion q(x) =

∏
i qi(xi) at once, rather than use it to set each qi separately and

then impose self-consistency. However there are difficulties in choosing
what constraints to use under this approach. See [20].

4 Other models of the cost of computation can be found in [26–30].
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learn over repeated plays of the same game [26]. In addi-
tion they have been independently suggested several times as
an a priori reasonable way to model human players [26, 35–
39]. (Some of this work has noted the relation between the
logit distribution and statistical physics, e.g., [39].) The use
of the logit distribution over possible moves by agents also
has a long history in the Reinforcement Learning (RL) litera-
ture [40–43], and has also been shown to be is related to the
replicator dynamics of evolutionary game theory as well as
the QRE [44].

None of this earlier work has derived the use of a logit
distribution from first principles considerations of the predic-
tion problem.5 Nor has any of it connected the logit distribu-
tion mixed strategies with information theory. In practice, the
QRE is simply treated as a few-degree of freedom model of
bounded rational play, and has been broadly and successfully
used to fit experimental data concerning human behavior.

In addition none of the earlier work on the QRE has consid-
ered the shape of the QRE surface as a function of the param-
eters of the game. Nor has any of it considered the associated
issue of how to change those parameters to move a set of play-
ers across the QRE surface. These are the topics of the next
two sections. (Perhaps the closest results in the literature can
be found in [33] and [46].)

Also, recall that the Maxent prediction that each player’s
mixed strategy is a logit distribution is not based on any model
of human behavior. It arises from axioms concerning the pre-
diction process of a scientist external to the system. This also
contrasts with the earlier work, where it arises as part of a
model of the system being predicted.

Finally, there has been other earlier work that is related to
the analysis of this paper in that it involves path dependency
of the effects of changes to parameters of an economy [47],
in some instances considering “adiabatically slow” changes.
Some of this earlier work explicitly considered bifurcation
surfaces. In particular some of it focuses on catastrophes as
paths discontinuously jump from one fold to another. (Some
of that work has been been criticized for claiming to explain
too many empirical phenomena; see [48] for a discussion.)

Most of this earlier work on path dependency has not
involved game theoretic models, but rather has been more
“coarse-grained”, involving non-strategic players interacting
in purely macroeconomic models [49–55]. In particular, con-
ventional catastrophe theory is based on bifurcations surfaces
involving a single potential function, whereas the work here
is based on bifurcations that inherently involve multiple “po-
tential functions” under the guise of the players’ utility func-
tions. In addition, almost all of this earlier work has assumed

5 In particular the use of a logit distribution in the QRE literature is justified
by appealing to the the choice theory literature [45], where it arises if we as-
sume double-exponential noise is added to a player’s perceived utility val-
ues. However that double-exponential assumption is never axiomatically
justified in the choice theory literature; it is adopted for the calculational
convenience of its resulting in the logit distribution over player choices.

fully rational players, despite the huge volume of laboratory
and field experimental data [22] establishing that real humans
are often very non-rational.6 In particular, none of this earlier
work has explicitly considered a QRE model of players, as we
do here. Note though that subsequent to a posting of an early
version of this paper, some experimental work was done that
validates some of the “stylized” character of the predictions
that we make here for a QRE model [57].

Finally, there is some work in traditional game theory that
models games with variable numbers of players. However the
kinds of scenarios considered in such work differ substantially
from the ones considered above in the derivation of the grand
canonical QRE [58].

Beyond game theory’s canonical ensemble

Whenever one’s information concerning a distribution q
over the states of a system can be expressed as constraints on
q, it is straightforward to use Maxent to estimate q. Such con-
straints do not have to concern expected utility and/or compu-
tational effort of the players. As a result the Maxent approach
is broadly applicable to game theory, just as it is broadly ap-
plicable to many other fields, ranging from signal processing
to phyogenetic tree reconstruction to text analysis). This al-
lows us to uncover many formal connections between game
theory and statistical physics.

A very simplified example can illustrate those connections.
Consider a situation where there are F total firms in a partic-
ular industry, each with a total of T possible employee types
(e.g., salesmen, managers, production line workers, etc.). In
general, each firm will have to decide how many employees
of each type to have. Let nk

i be the number of employees of
type k of firm i, where n is the entire matrix of all such num-
bers. Say that for each firm i we know Ni, the expected total
number of employees that firm i has, i.e., we know the values
of E(

∑
k nk

i ) for all firms i. The utility (e.g., profit) of each firm
i will depend on a huge number of variables of course. Rather
than presume that we know that full dependence, say we only
know the expected utility of firm i conditioned on any value of
the matrix n. Write that conditional expected utility as ui(n).
Finally, say we also know the unconditioned expected utility
for each firm i, Ki.

There are numerous ways we might ascertain these expec-
tation values, e.g., using observables like historical data, in-
dustry surveys, instrumental variables, etc. (Such observables
play the same role here as the temperature reading on a ther-
mometer plays in Jaynes’ derivation of the canonical ensem-
ble; indirect estimators of an expectation value that cannot
be directly observed.) Presume though that we know nothing

6 One exception is [26], which considers Hopf bifurcations under an ad hoc
model for player behavior that involves Shannon entropy. Another is [56],
which relaxes the full rationality assumption in a way that has nothing to
do with entropy.
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besides these few expectation values about the firms in the in-
dustry. So in particular, we know nothing about the size of the
total labor pool, internal operating details of the firms, etc. For
simplicity, we are considering the case where our ignorance is
so broad that we do not even know any stylized facts about the
kinds of principle-agent problems holding for firms, anything
about how quickly they can change the composition of their
workforce as they interact with one another, etc.

How should we, external to the game and given only these
expectation values, predict q(n) =

∏
i qi(ni), the probability

distribution of firm i having n j
i employees of type j? As before

we can do this with the Maxent procedure we used above in
deriving the QRE. In the development here n is the state space
variable rather than x, which was the state space variable in
the derivation of the QRE above. Similarly ui(n) plays the
same role here that ui(x) does in the development above, and
the vector ni plays the role of the pure strategy xi above. So
writing it out in full, the Maxent Lagrangian for firm i is

Li(qi) = S (qi) + βi

[
Ki −

∑
ni

E(ui | ni)qi(ni)
]

+ µiβi

[
Ni −

∑
ni

(
qi(ni)

∑
j

n j
i

)]
+ λ′i

[
1 −

∑
ni

qi(ni)
]

(3)

where

E(ui | ni) =
∑
n−i

ui(ni, n−i)q−i(n−i), (4)

the values λ′i , βi and µi give us the Lagrange parameters, and
as in statistical physics we have adopted the convention of
writing the Lagrange parameter for the constraint on expected
counts as the product of two of those values.

Evaluating the associated Lagrange equations results in a
“grand canonical” QRE, given by the following set of F cou-
pled nonlinear equations:

qi(ni) =
eβiE(ui |ni)+βiµi

∑
j n j

i∑
n′i

eβiE(ui |n′i )+βiµi
∑

j n′ j
i

(5)

where the values {βi, µi : i = 1, . . . , F} are set by the provided
expectation values and the provided expected total number of
employees of each firm. The coupling arises through the term
E(ui | n j

i ), since it depends on the vectors qk(nk) for k , i in
general. (This is just like how in the QRE, E(ui | xi) depends
on the values qk(xk) for k , i in general.)

Note that in deriving this result we do not assume that firm i
in any sense “chooses” to have a particular vector of employee
numbers ni; we do not anthropomorphize firms. Rather the
distribution qi solely reflects lack of information of the scien-
tist external to the game who is making predictions concern-
ing the behavior of the firms.

In some cases the external scientist will have more infor-
mation than expected values of utility functions and number
of employees (e.g., information about the internal structure of
the firms, information about the size of the labor market, in-
formation about the values of higher order moments of util-
ity functions beyond first order expectations, etc.). When-
ever such extra information can be expressed as inequality

constraints involving q, the Maxent procedure for formulat-
ing q changes in a straightforward way: one expands the La-
grangian to include those constraints, so that they appear as
terms in the exponentials giving the separate qi.

Future work on Maxent noncooperative equilibria involves
incorporating the extensive experimental data concerning hu-
man behavior [22] as additional constraints for the Maxent
procedure. The resultant Maxent solution could be viewed
as a refined version of our behavioral models concerning
bounded rationality.

THE SHAPE OF THE QRE SURFACE

In the rest of this paper we concentrate on the conventional
QRE with a fixed number of players, rather than consider the
grand canonical QRE. To analyze the QRE surface of Eq. 2,
we express that equation as a set of functional relationships,

fi[q−i, βi] − qi = 0 (6)

for all players i and associated vectors qi and q−i. For example,
when there are only two players, by choosing either player as
i and then plugging in twice we get the equation

fi[ f−i(qi, β−i), βi] − qi = 0. (7)

This gives qi as a function of itself and of the two β’s. Implicit
differentiation then tells us that the function from (βi, β−i) to
qi is ill-behaved at any point where

∂ fi
∂q−i

∂ f−i

∂qi

∂qi

∂βi
+
∂ fi
∂βi
−
∂qi

∂βi
= 0 (8)

cannot be solved for ∂qi
∂βi

, i.e., where det( ∂ fi
∂q−i

∂ f−i
∂qi
− Id) = 0.

To illustrate this and related phenomena, we consider some
games between a Row and Column player where each player
has only two pure strategies. The first game we consider is
the famous “battle of the sexes” coordination game [5]. In this
game the utility functions of the players can be represented as

2|1 0|0
0|0 1|2 (9)

where the first (second) entry in each cell is the Row (Column)
player’s utility for the associated pure strategy profile.

The q in Eq. (2) induces a value of E(ui) given by∑
xi

E(ui | xi)qi(xi) =
∑

xi

E(ui | xi)
eβiE(ui |xi)∑
x′i

eβiE(ui |x′i )

≡ κu
i (βi). (10)

where u is shorthand for the set of utility functions of all
the players. κu

i (.) is a monotonically increasing function.7

7 To see this, note that for any set of utility functions and number of play-
ers, ∂κu

i (βi)/∂βi equals the variance of the Boltzmann distribution given in
Eq. (2).



6

FIG. 1. Col’s mixed strategy plotted against ~β. This is for the QRE
of the game in Eq. 9. The hysteresis path discussed in the text is
highlighted, starting at the bottom-right.

Therefore it is invertible over its codomain, [minxiE(ui | xi),
maxxiE(ui | xi)]. So each possible vector of constraints
~K = (Krow,Kcol) implicitly sets an associated vector of inverse
temperature ~β ≡ (βrow, βcolumn). This inverse temperature vec-
tor in turn fixes the QRE q’s for the game.

This means we can consider the functions taking ~β to
the QRE q’s and associated expected utilities, rather than
the functions taking ~K to the QRE q’s and associated ex-
pected utilities. Fig. 1 plots the surface taking ~β to Col’s
mixed strategy, expressed as the symmetrized variable QCol ≡

2[qCol(x2) − qCol(x1)]. Fig. 2 plots the corresponding surface
taking ~β to Eq(ucol).8

There are three NE of this game: one where the players
jointly follow the pure strategy profile that Row wants (Top-
Left), one where they jointly follow the pure strategy profile
Col wants (Bottom-Right), and one where there is 2/3 proba-
bility of Row choosing Top, and 2/3 probability of Col choos-
ing Right. These three NE correspond to the the three folds
of the surface in the bottom right sections of Fig 1 and Fig. 2.
The bottom fold of Fig. 2 corresponds to the uniform random
NE, which is the middle fold in Fig. 1. (Note that the battle-
of-the-sexes game is not a zero sum game; here the uniform-
mixing NE is the worst of the three NE for both players.) Ex-
amination of the full surface in Fig. 1 shows that there is no
connected path that:

1. is restricted to the quadrant where both βi > 0;

2. starts at one of the two pure strategy NE;

3. ends at the other pure strategy NE;

8 Note that the QRE equations are not changed if one interchanges both the
utility functions and the β’s of the players. Therefore the same plot gives
the expected utility of the Row player, if one flips the β axes.

FIG. 2. E(ucol) vs. ~β under the QRE of the game in Eq. 9. The
hysteresis path discussed in the text is highlighted, starting at the
bottom-right.

4. only involves changes to one player’s β.

Any connected path from one pure strategy NE to the other
pure strategy NE involves changes to both βi.

At bifurcations the number of QRE solutions changes be-
tween one and three. This means that infinitesimal changes in
~β may result in discontinuous changes in expected utility. As
an example, this happens if the system starts at ~β = (5, 5) on
the top surface, and then βrow is reduced to 0.

More generally, if one and/or the other player gradually
changes their rationality value βi, then the system will fol-
low a path on the surfaces. Such paths can be quite complex,
depending on the precise trajectory through rationality space.
For example, say we start in the region where βrow is near 4
and βcol is near 4, and that the QRE is on the lowest of the
three folds in that region in Fig. 2. Fix βrow, and start to de-
crease βcol, as illustrated in the figures. As the column player
makes these changes to her rationality, E(ucol) gradually in-
creases. By appropriately slowing her changes to her rational-
ity and eventually starting to increase βcol again, the column
player could cause the path followed by the joint behavior of
the players to “round the bend” in the surface. Doing this puts
the two players in the top fold of the plot, and as the column
player continues increasing her rationality she (still) increases
her expected utility.9

As an alternative to following the bend though, the column
player could monotonically decrease her rationality. Eventu-
ally this would cause the two players to fall off the edge of the
fold (go through the bifurcation), and fall to the fold that is
the bottom of both Fig. 2 and Fig. 1. This will cause the col-
umn player to experience a discontinuous fall in her expected

9 Note that there is no dynamic model underlying our derivation of the QRE
surface, so the dynamic stability of each point on the indicated path is un-
defined. However in many dynamic models the middle fold of Fig 1 —
where the indicated path starts — is unstable. In general though, given
a dynamic model, there will be paths somewhere in the figure that both
exhibit hysteretic effects like that of the indicated path and are stable ev-
erywhere.
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utility. Moreover, if she were to continue to decrease her ra-
tionality after that fall, she would decrease her expected utility
further. So after the fall, it would make sense for her to start
increasing her rationality, just as when she had followed the
bend. Having gone through the discontinuous fall though, in
this path the system is on the bottom fold of Fig. 1 (the middle
fold of Fig. 2) rather than the top one, to the column player’s
detriment.

The negative temperatures (negative β’s) in the plots cor-
respond to “anti-rational behavior”. In such behavior, the as-
sociated player is more likely to pick the pure strategy that is
worst for them, given what the other player chooses. This may
happen, for example, due to social norms.

In this regard, an interesting effect occurs if we multiply the
utilities by −1. Fig. 4 illustrates part of the surface after this
switch. Note that on the bottom fold, for fixed βcol, decreasing
βrow increases E(urow). So Row benefits by being less rational,
due to how Column responds to Row’s drop in rationality. In
essence, it is smart to be dumb, for that player.

MODIFYING GAME PARAMETERS TO IMPROVE SOCIAL
WELFARE

Changing parameters of the underlying game

Say an agent external to a game wishes to modify the joint
behavior of the two players, preferring some behaviors to oth-
ers. Suppose as well that the agent can modify the game the
agents are playing, e.g., by modifying some parameters of the
utility functions of the players. How can the external agent
use such ability to change the utility functions to induce the
players to change their joint behavior to new behavior that the
external agent prefers?

To answer this question we have to model what about player
behavior is invariant under the class of changes to their envi-
ronment that the external agent can impose.10 More precisely,
we have to model what about the Maxent constraints on the
players is invariant as the game they are playing changes. In
particular, since the underlying utility functions are changing,
we cannot require that the expected values of the utilities are
invariant; we must specify a different aspect of the constraints
to be invariant.

To do this we interpret the constant in the QRE exponent of
each qi as a behavioral attribute of that player which quanti-
fies their “rationality”, in the sense of quantifying how close
to optimal their mixed strategy is. Under this interpretation,
the constant in the QRE qi’s exponent cannot be changed by
the external agent. In particular it is independent of changes
the external agent can make to the utility functions. (Since
each such constant plays the role of an inverse temperature,

10 This is analogous to modeling what about a thermodynamic system is in-
variant under a given class of changes to the system’s environment, e.g.,
modeling whether the changes are adiabatic, isothermal, etc.

requiring that they be invariant under changes to the utility
functions is analogous to modeling a change to the environ-
ment of a thermodynamic system as being isothermal.)

To capture this restriction means we must re-express our
constraints. There are an infinite number of ways that we
might do this. In particular, a natural choice is to require that
for any utility function wi for player i, qi must obey

Eqi (wi) = κw
i (bi) (11)

for a fixed value of i’s rationality constant, bi (where q−i is
implicit as usual).

As an illustration, suppose that while they cannot affect
behavioral attributes like bi, the external agent can apply a
player-specific “tax rate” 1 − αi to each player i. Formally,
this means that the utility function for player i changes from
ui to vi ≡ αiui. This means the Maxent Lagrangian for each
player i becomes

Li(qi) = S (qi) + λi[Eqi (vi) − κv
i (bi)] + λ′i[1 −

∑
xi

qi(xi)]

(12)

giving the solution

qi(xi) ∝ exp[λiE(vi | xi)] (13)

where λi is set by the constraint E(vi) = κv
i (bi). The expected

utility for this q is

E(vi) =

∑
xi
E(vi | xi) exp[λiE(vi | xi)]∑

xi
exp[λiE(vi | xi)]

= κv
i (λi). (14)

Since κv
i (.) is invertible, the only way this is possible in light

of our constraint that E(vi) = κv
i (bi) is if λi = bi. Accordingly

the solution is

qi(xi) ∝ exp[biE(vi | xi)]
= exp[αibiE(ui | xi)] (15)

with bi a fixed attribute of player i.
Comparing Eq.’s (2) and (15), we see that changing αi while

leaving bi fixed, for the version of a game that has variable tax
rates 1 − αi, is the same as changing βi, for the version of
that game that has taxes fixed to zero. (Intuitively, changing
the tax on a player is the same as changing how rational they
are.) So in particular if the untaxed version of the game is the
one specified in Eq. 9, then the surface plotting QRE values of
E(vi) as a function of (αi, α−i) in the taxed version of the game
is given by a simple transformation to the surface in Fig. 2.
The resultant new surface is shown in Fig. 3, for the choice
that bi = 5 for both players.

From now on, for pedagogical simplicity, rather than dis-
tinguish αi and bi we will simply work with their product. We
will label this product as “βi”. Also for simplicity we will
make references to the figures which have βi as independent
variables even when we are concerned with varying αi. When
we do this the multiplication of utility values by αi — which
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FIG. 3. Col’s expected post-tax utility plotted against the tax rates
(expressed as fractions) on the two players. This is for the QRE of
the game in Eq. 9. The constraint for each player i in this taxed game
is bi = 5. So for example, ~α = (1, 1) corresponds to the point with
~β = (5, 5) in Fig. 2.

amounts to scaling them at each point by the associated value
βi — is implicit.

The first thing to note after recasting the analysis in terms of
tax rates is that in general a player i may benefit if her tax rate
increases. Intuitively, this is because the other player knows
that i’s tax rate has risen; and therefore makes different predic-
tions for i’s behavior; and therefore acts differently herself; all
in a way that benefits i more than i loses due to her higher tax
rate. An example of this is shown in Fig. 4, where anywhere
on the bottom surface, Row benefits if her tax rate increases.
(Note that the effect of lowering the parameter βRow on the
QRE q of an untaxed game is equivalent to the effect of low-
ering αrow on the QRE q of a taxed version of the game.)

In economic analysis of optimal regulatory policy, typically
pairs of exogenous factors like tax rates are compared by ex-
amining the joint behavior of the players under the (games
parameterized by) those tax rates. This is called “comparative
statics” (in contrast to comparative dynamics). The premise
is that a regulator should adopt whichever of the exogenous
factors results in a higher expected value of some real-valued
social welfare function defined over that joint behavior [59].

Inspired by comparative statics and the fact that Row may
prefer a higher tax rate, we may wonder whether by varying
tax rates slowly enough that the joint behavior of the players
is always on the QRE surface, we may be able to monotoni-
cally improve expected utilities for both players. The answer
is yes: For some games, by changing tax rates we can gradu-
ally move the equilibrium across the surface from one fold to
the other, and then undo those changes, returning the rates to
their original values, but leaving both players with higher ex-
pected utility. (See [46] for other work that exploits the shape
of a QRE surface to optimize player joint behavior.)

As an example of this, consider a variant of the battle of
the sexes game, where the utility functions are the negatives

of the one considered above. The associated bifurcation sur-
face for mixed strategies is the same as the one in Fig. 1, with
all βi multiplied by −1. Similarly, the bifurcation surface for
expected utility is the same as in Fig 2, with all βi multiplied
by −1 and the dependent variable of E(ucol) also multiplied by
−1. For this modified game, there are paths of ~β’s (i.e, of ~α’s)
such that:

1. Neither player ever is more rational (taxed at a higher
rate) on the path than at the starting point.

2. At each step on the path, if after the next infinitesimal
change in ~β there is a QRE q infinitesimally close to the
current one, it is adopted. (Adiabaticity.)

3. Each infinitesimal change in ~β increases both Eq(ui)’s.

4. At each infinitesimal step, if multiple changes in q meet
(1)-(3), but one is Pareto superior to the others (i.e., bet-
ter for both players), the players coordinate on that one.

Examples of such paths are illustrated in Fig. 4.
Concretely, such adiabatically slow changing of tax rates

might be implemented with a large population of players
who repeatedly play the game with other anonymous mem-
bers of the population chosen at random. (Since the players
are anonymous, the likelihood of “trigger strategies” or sim-
ilar phenomena [5–7] that can arise in multi-stage extensive
form games should be minimized; the players are likely to
treat each game afresh, rather than consider them as stages in
such a multi-stage game.) In a first stage of the experiment
one would observe the player behavior and use that to sta-
tistically estimate their individual rationality coefficients βi.
(See [33, 46] and references therein for how to do such es-
timation.) One would then change the tax rate a very small
amount once every T plays of the game for some T that is
large compared to the discounting rate of the players. This
would help ensure that the players do not anticipate the future
when making their decisions at any particular time.

How best to myopically control a society

The existence of paths through tax space that benefit all
players raises the question of how a society should dynami-
cally update its tax rates. We now compare three procedures
for how this could be done by society as a whole. (For nota-
tional simplicity, and to emphasize the analogy with anneal-
ing, we parameterize the procedures in terms of changes to ~β
rather than changes to ~1 − ~α.)

I. “Anarchy”: Players independently decide how to mod-
ify their β’s. To do this they follow gradient ascent
with a small step size ∆, subject to the constraint that
no player i can go to a βi larger than the starting one.
Thus, both players i change βi by δβi ∈ [−∆,∆], us-
ing ∂E(ui)/∂βi to make their choice of what value δβi to
pick. (Since this is a linear procedure, the players will
always choose one of the three values {−∆, 0,∆}.)
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II. “Socialism”: An external regulator determines the path,
again using gradient descent, this time over the sum of
the players’ expected utilities. At each step of the path
~β is changed by the (δβrow, δβcol) vector that maximizes

[δβrow
∂E(urow)
∂βrow

+ δβcol
∂E(urow)
∂βcol

] +

[δβrow
∂E(ucol)
∂βrow

+ δβcol
∂E(ucol)
∂βcol

] (16)

subject to ||(δβrow, δβcol)||2 ≤ 2∆2. (The constraint is to
match the step size to that of the first procedure.)

III. “Market”: Let T be the set of joint expected utilities for
all the bargains that a set of N bargainers might reach
in a particular bargaining scenario. Then certain mild
axioms concerning bargaining behavior of humans give
a unique prediction for which bargain in T is reached.
This prediction, known as the “Nash bargaining con-
cept” [6, 7], says that the the joint expected utility of
the bargain reached is argmax~u∈T [

∏N
i=1 ui].

We can use the Nash bargaining concept to predict what
change to ~β the players would agree to under a “market”
where they bargain with one another to determine that
change. To do this we fix the set of all allowed bargains
to the set of all pairs ~β such that ||~β−~β(t)||2 ≤ 2∆2, where
~β(t) is the current joint β. We also choose ~d to be the
joint expected utility at ~β(t). So under Nash bargaining,
at each iteration t, the players choose the change in joint
β, δ~β, that maximizes the product[

E(uRow | ~β(t) + δ~β) − E(uRow | ~β(t))
]
×[

E(uCol | ~β(t) + δ~β) − E(uCol | ~β(t))
]

(17)

subject to ||δ~β|| ≤ 2∆2.

As in the other two procedures, we use first order ap-
proximations in this one, to evaluate the two differences
in expected utilities. This means that in this procedure,
we find the vector δ~β that maximizes the product[

∇~βE(uRow | ~β) · δ~β
][
∇~βE(uCol | ~β) · δ~β

]
=

[
δβrow

∂E(urow)
∂βrow

+ δβcol
∂E(urow)
∂βcol

]
×[

δβrow
∂E(ucol)
∂βrow

+ δβcol
∂E(ucol)
∂βcol

]
(18)

subject to ||(δβrow, δβcol)||2 < 2∆2. Using Lagrange mul-
tipliers, for given ∇~βE(uRow | ~β) and ∇~βE(uCol | ~β),

the optimal δ~β is given by solving a quadratic equation.
Once we have found that optimal δ~β, we add it to ~β(t)
to get the new position in β space. (Compare Eq. (18)
to Eq. (16).)

FIG. 4. A QRE surface with paths shown for the anarchy (red), so-
cialism (blue) and market (purple) procedures. As in Fig. 2, the x
and y axes are player rationalities, βrow and βcol, and the z axis is ex-
pected utility (this time of player Row). This plot is for a variant of
the Battle of the Sexes game where all utility functions are multiplied
by −1.

A variant of this market procedure could be used as to
model how democracies would modify the game pa-
rameters, or more generally to model any process by
which the players of the game collectively gradually
change the parameters of the game.

Note that in all three procedures the total change in ~β in any
step never exceeds

√
2∆. This adiabaticity reduces the com-

putational burden on the players, by not changing the game
too much from one timestep to the next.

As in standard economics, we can quantify how good a full
path produced by a procedure is for society as a whole by
calculating the discounted sum of future social welfare along
the path, e.g., by defining social welfare as the sum of player
utilities:

W ≡
∑
t′>0

(1 + γ)t−t′
N∑

i=1

E(ui(t′)) (19)

Using this definition we can compare the three procedures by
calculating the W’s for the paths they generate starting from
some shared ~β at time t = 0. We did this for two representative
initial ~β’s, for the surface in Fig. 4, with the resultant paths
illustrated in that figure.

While for both of the initial ~β’s any two of the paths will in-
tersect at some point (~β, q), they get to that intersection point
at different times. In addition, they diverge beyond that inter-
section point. These two effects mean that the discounted sum
of future expected utilities is different for the three procedures
of changing ~β.

We found that anarchy always did worse than the other two
procedures. Those others are compared to each other in Fig. 5.
When the discounting factor γ is large (i.e., we are more con-
cerned with near-term than long-term utility) the market pro-
cedure does better, otherwise socialism does.



10

γ 

FIG. 5. The difference between the discounted sums of future ex-
pected utilities of the two players under the “socialism” and “market”
procedures, plotted against the discounting factor γ.

To our knowledge no laboratory game theory experiment
has ever looked at slowly varying game parameters [22, 60]
(with the partial exception of [57], which as mentioned above
was posted subsequent to the posting of this paper). However
it would not be difficult to design such an experiment. For ex-
ample, we could have some of the experiments be where the
tax rates are changed in an “anarchic” manner, where the play-
ers can change their tax rates a very small amount at some reg-
ular interval, but are not allowed to interact to decide those tax
rates; some where the players are allowed to bargain on those
changes; and some where the changes are set by an external
“socialist” regulator, based on their QRE model of player be-
havior.11

Of course, even if such experiments were to confirm
the predictions made by our theoretical analysis, the results
should in no way be taken to imply how society should change
tax rates; the toy models considered in this paper are illustra-
tive only. An interesting question in this regard is what char-
acteristics of a (potentially very realistic) game determine the
relative performances of the three control algorithms we have
considered. Even more interesting would be to investigate this
issue for more realistic control algorithms than the ones we
consider.

11 As a practical matter, we may have to suggest ahead of time to the subjects
that it may be in their interest to have their own tax rate increased, since that
is counter-intuitive. Also, to make sure the games start at a non-optimal
QRE for the initial tax rates, we may want to start each subject playing
against a computer programmed to behave as the subject’s opponent would
at that non-optimal equilibrium. Then as the experiment progresses, we
could simultaneously replace the programs playing against some pair of
subjects A and B with those subjects themselves, i.e., suddenly have the
subjects play one another rather than computer programs.
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FIG. 6. The expected utility of the Row player along the path through
~β highlighted in Fig. 2, illustrated as a function of the Row player’s
rationality, βrow. The path starts at the bottom right, then travels left,
before turning and finishing at the top right.

How best to non-myopically control a society

All three procedures described above are local, only look-
ing a single step into the future, and therefore only considering
the local shape of the QRE surface. A procedure that also con-
siders the QRE surface’s global geometry will produce better
paths in general. In particular, such global information allows
us to consider paths where a player loses expected utility for
certain periods, but in the end all players are better off. Fig. 2
highlights such a path, along which player Column always
benefits but player Row loses initially, before ultimately ben-
efiting. A cross-section of the expected utility of Row along
the path is shown in Fig. 6. Note that player Row might de-
mand compensation to agree to follow such a path where they
temporarily lose expected utility, e.g. in terms of a subsidy
paid for with a bond that is repaid by all players at the end of
the path.

Once we allow such paths whose benefits arise from the
global rather than local geometry of the QRE surface, we are
faced with the question of which path should be adopted for
any given starting point of the path. Under a socialism model,
this question is relatively well-posed. For example, we could
stipulate that the path followed be the one that maximizes the
discounted sum of utilities, either with subsidies taken into
account or not.

In general, by implementing the associated sequence of reg-
ulations the regulator would induce higher social welfare than
they could induce if they instead used a comparative statics
approach, in which they implement a single change in the reg-
ulations. Indeed, it is not even clear how one could use a sin-
gle regulation change to do some of the things possible with
an extended path through regulation space. For example, say
the regulator is told to get society from joint behavior lying on
a suboptimal fold for a current value of a regulation parameter
to joint behavior lying on the optimal fold for that same value
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of that regulation parameter. One can often do this by fol-
lowing a path through regulation space, as illustrated in Fig. 2
for the case where the regulations are tax rates. However one
cannot do this with a single change in regulations.

There should also be practical advantages to implement-
ing a sequence of small changes to regulations rather than
a single large change to regulations. In particular, doing so
would allow the regulator to modify their behavioral model
of the players as the sequence unfolds, and thereby improve
that sequence. For example, they could refine their estimates
of exponents βi as the sequence unfolds, and therefore re-
fine their estimate of the QRE surface. They would then use
that improved estimate of the QRE surface to improve the re-
maining regulation changes in the sequence. Alternatively,
as the sequence unfolds they might acquire extra information
for the Maxent procedure beyond the constraints concerning
expected utilities of the players. This too would cause them
to change their estimate of the surface taking regulations to
expected utilities of the players, and therefore cause them
to modify the remaining steps in the sequence of regulation
changes. (In fact, when they acquire new constraints for the
Maxent procedure, the surface they use would no longer be a
QRE surface.)

In these kinds of ways, the regulator could exploit feedback
when using a sequence of small changes in regulations to con-
trol joint behavior of the players. In contrast, in an approach
involving a single change in regulations, the control is purely
“open-loop”. (Some of these advantages of “gradualist” regu-
latory policies that implement paths through regulation space
have been discussed in the economics references mentioned
above, albeit under assumptions of fully rational behavior in
“coarse-grained”, macroeconomic models.)

While the issues in using global properties of the QRE sur-
face to determine paths through regulation space are relatively
well-posed for the socialism model of regulation, under the
market model they become more open-ended. That is because
in a market model, all players have to agree to the path. So
rather than a sequence of bargains, each over an infinitesi-
mal step along the path (as in the analysis above), the players
would bargain over the entire path at once. For example, such
bargaining might be modeled by saying that each player val-
ues any given full path as the discounted sum of their future
utilities along that path. Under this model, the joint valua-
tion of any given path is given by the vector of all players’
future-discounted sums of utilities for that path. The feasible
set of possible joint valuations that underlies the bargaining is
the set of possible joint valuations for all paths. At any given
moment, the players would bargain over which element in the
feasible set to adopt. One could then predict what bargain they
reach using the Nash bargaining solution, for example.

Note though that this model opens the issue of “hold-up”
problems, where once a path has been followed a certain dis-
tance, the relative bargaining powers of the players for the re-
mainder of the path changes. More precisely, say that at t = 0
there is a joint rationality ~β(0), and that society starts to fol-
low a path ~β0(t) from there that is a Nash bargaining solution

at t = 0 over the feasible set T (0) given by all paths starting at
~β(0). Then in general, for t′ > 0, the path ~βt′ (t) that is a Nash
bargaining solution for full paths starting from ~β0(t′) is not a
truncation of ~β0(t) to t > t′. (This is because the feasible set
T (t) of possible remaining joint values of each player’s future-
discounted sums of utilities may change its shape as the path
is traversed, not just get rescaled.) There is an inconsistency
across time.

The analysis becomes even more complicated if the play-
ers intermix their bargaining over the parameters of the game
with their strategies in that game. For example, it may be that
in choosing their mixed strategy at any time step t, a player
i would consider how the ensuing feasible set T (t + δt) de-
pends on their choice. More generally, if they are bargaining
over full paths, the players may be forced to consider entire
sequences of strategies in the associated set of games, rather
than treat each successive game independently. (This means
that their “strategy space” is far more complicated than in the
simple case analyzed above where players only use local prop-
erties of the QRE surface.) All of this suggests the analysis
should include game theoretic concepts like binding commit-
ments, renegotiation-proof equilibria, etc. The situation gets
even richer if paths involving subsidies are allowed. All of
this is the subject of future work.

FINAL COMMENTS

In this paper we have focused on how the Maxent procedure
of statistical physics can be applied to noncooperative game
theory. The importance of Jaynes use of Maxent to derive
the canonical ensemble distribution is that it provided a new
perspective on that distribution, as arising from the fundamen-
tally statistical nature of the scientists task rather than intrin-
sic fluctuations of the system. This allowed him to sidestep
various controversial presumptions in earlier derivations, e.g.,
involving ergodicity or heat baths (which for example are non-
sensical when the system in question is the entire universe).

Similarly, our derivation provides a new perspective on the
QRE distribution, as arising from the fundamentally statistical
nature of the scientist’s task rather than intrinsic fluctuations
of they system. This allows us to sidestep various controver-
sial presumptions in earlier derivations, e.g., that the players
are completely rational, or have played the same game with
one another an infinite number of times.

We then showed that the QRE distribution contains some
phenomena quite familiar from statistical physics, like bifur-
cation surfaces and hysteresis effects. However in some ways
it is intrinsically more complicated than conventional statisti-
cal physics, since it involves multiple utility functions rather
than a single Hamiltonian. We then went on to explore some
toy models of the implications of this Maxent game theory
formalism for issues of how to manage a society.

There are many other issues one could investigate with this
formalism however. To give a simple example, in the real
world, whatever process might change game parameters, it
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might be quite noisy. The QRE surface provides information
about how stable player behavior should be against such noise
in the game parameters. For example, say the players are on
the top fold of the surface in Fig. 2, with ~β = (2, 4), so the
joint behavior is near an edge of the QRE surface. In this sit-
uation, small external noise may lead the players to “fall off

the edge”, and undergo a discontinuous jump to the lower sur-
face. Moreover, even if the players managed to (adiabatically
slowly) restore their original rationalities after such a jump,
they would end up on the middle fold of the region where βrow

is near 2, not on the good fold they started in. Due to this,
when an economic situation exhibits such qualitative features,
it may behoove society to stay away from such edges in the
QRE surface, even if that lowers total expected utility.
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