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We extend the continuum theory of random intermittent search processes to the case of IV indepen-
dent searchers looking to deliver cargo to a single hidden target located somewhere on a semi-infinite
track. Each searcher randomly switches between a stationary state and either a leftward or right-
ward constant velocity state. We assume that all of the particles start at one end of the track and
realize sample trajectories independently generated from the same underlying stochastic process.
The hidden target is treated as a partially absorbing trap in which a particle can only detect the
target and deliver its cargo if it is stationary and within range of the target; the particle is removed
from the system after delivering its cargo. As a further generalization of previous models, we assume
that up to n successive particles can find the target and deliver its cargo. Assuming that the rate of
target detection scales as 1/N, we show that there exists a well-defined mean field limit N — oo, in
which the stochastic model reduces to a deterministic system of linear reaction—hyperbolic equations
for the concentrations of particles in each of the internal states. These equations decouple from the
stochastic process associated with filling the target with cargo. The latter can be modeled as a
Poisson process in which the time-dependent rate of filling A(¢) depends on the concentration of
stationary particles within the target domain. Hence, we refer to the target as a Poisson trap. We
analyze the efficiency of filling the Poisson trap with n particles in terms of the waiting time density
fn(t). The latter is determined by the integrated Poisson rate u(t) = fot A(s)ds, which in turn
depends on the solution to the reaction-hyperbolic equations. We obtain an approximate solution
for the particle concentrations by reducing the system of reaction-hyperbolic equations to a scalar
advection—diffusion equation using a quasi-steady-state analysis. We compare our analytical results
for the mean—field model with Monte-Carlo simulations for finite V. We thus determine how the

mean first passage time (MFPT) for filling the target depends on N and n.

PACS numbers: 05.40.-a,87.10.-¢

I. INTRODUCTION

There are many examples in nature where random
search strategies provide an efficient means for locating
one or more targets of unknown location. Examples in-
clude animals foraging for food or shelter, [1-4], the ac-
tive transport of reactive chemicals in cells [5-9], a pro-
moter protein searching for a specific target site on DNA
[10-13], and the motor-driven transport and delivery of
vesicles to synaptic targets along the axons and dendrites
of neurons [14-17]. One particular class of model that has
been applied both to foraging animals and active trans-
port in cells, treats a random searcher as a particle that
switches between a slow motion (diffusive) or stationary
phase in which target detection can occur and a fast mo-
tion ‘ballistic’ phase; transitions between bulk movement
states and searching states are governed by a Markov pro-
cess [18-21]. If the random search is unbiased and the
probability of finding a single hidden target is unity, then
it can be shown that there exists an optimal search strat-
egy given by the durations of each phase that minimize
the mean first passage time (MFPT) to find the target.
Motivated by experimental observations of the motor—
driven transport of mRNA granules in dendrites [22, 23],
we have recently extended a one-dimensional (1D) ver-
sion of these models to the case of a directed intermittent
search process, in which the motion is directionally biased
and there is a non-zero probability of failing to find the
target (due to competition with other targets or degra-

dation) [16, 17]. In this case there no longer exists an
optimal search strategy, unless additional constraints are
imposed such as fixing the target hitting probability.

In this paper, we extend the continuum theory of ran-
dom intermittent search processes to the case of N in-
dependent searchers looking to deliver cargo to a single
hidden target located somewhere on a semi—infinite track.
We assume that all of the particles start at one end of
the track and realize sample trajectories independently
generated from the same underlying stochastic process.
For simplicity, we consider a 3—state Markov process in
which each particle can be in one of three internal states:
stationary, moving to the right (anterograde) with speed
v, or moving to the left (retrograde) with speed —v. The
hidden target is treated as a partially absorbing trap in
which a particle can only detect the target and deliver its
cargo if it is stationary and within range of the target;
the particle is removed from the system after delivering
its cargo. As a further generalization of previous models,
we assume that up to n successive particles can deliver
their cargo to the target. Assuming that the rate of tar-
get detection scales as 1/N, we show that there exists
a well-defined mean field limit N — oo, in which the
stochastic model reduces to a deterministic system of lin-
ear reaction—hyperbolic equations for the concentrations
of particles in each of the internal states. In the mean—
field limit, these equations decouple from the stochastic
process associated with filling the target with cargo. The
latter can be modeled as a Poisson process in which the



time—dependent rate of filling the target A\(¢) depends on
the concentration of stationary particles within the tar-
get domain. We thus refer to the target as a Poisson
trap.

We analyze the efficiency of filling the Poisson trap
with n particles in terms of the waiting time density
fn(t). In the case of a semi—infinite track, the probability
of successfully filling the target is equal to unity when the
search is unbiased, that is, the so—called hitting proba-
bility II,, = [;° fa(t)dt = 1. On the other hand, II,, < 1
for a biased search. The waiting time density is deter-
mined by the integrated Poisson rate u(t) = fot A(s)ds,
which in turn depends on the solution to the reaction-
hyperbolic equations for the concentrations. We obtain
an approximate solution to these equations by carrying
out a quasi-steady-state (QSS) reduction along analogous
lines to our previous work on molecular-motor—based
models of single searchers [17, 24]. This generates a scalar
advection—diffusion equation for the concentrations. The
QSS reduction is applicable provided the Markov tran-
sition rates between internal states of a particle are fast
compared to the velocities on an appropriately defined
spatial scale. We also compare our analytical results for
the mean—field model with Monte-Carlo simulations for
finite N. A number of results follow from our study.
First, the mean—field model exhibits the same qualita-
tive behavior as found in previous single searcher mod-
els, namely, there exists an optimal search strategy in the
case of unbiased search but not in the case of directed in-
termittent search. Second, we quantify how increasing
the number of searchers N reduces the MFPT for filling
the target and increases the hitting probability (in the
case of biased search). Third, we quantify how the hit-
ting probability decreases and the MFPT increases as we
increase the capacity n of the target or trap.

It should be noted that there have been some previous
studies of multiple searchers looking for a single target,
but in discrete space on a 1D infinite lattice [25, 26]. At
each time step, a searcher jumps to a neighboring site
with probability « in either direction, which is a discrete
version of the diffusive phase in continuum models. With
probability (1—«) the particle leaves the lattice for a fixed
duration T', after which it lands at some distance L from
its initial position in either direction. This phase corre-
sponds to the ballistic non—search phase. The duration
of the diffusive phase with target detection is exponen-
tially distributed with mean duration 1/(1—a). Oshanin
et. al. [25, 26] have shown that in the thermodynamic
limit N — oo (with the mean density of searchers fixed),
the probability, that at a given time t, the target has
been found by any one of the searchers has a maximum
at an optimal value of & (which depends on t). A related
discrete model has been considered by Rojo et. al. [27].
In addition to being lattice models rather than contin-
uum models, these previous studies also focus on unbi-
ased searches in which the target is a perfect absorber.

The basic structure of the paper is as follows. In sec-
tion IT we develop the mean—field population model, and

determine the form of the waiting time density for filling
the Poisson trap. The time-dependent rate p(¢) is calcu-
lated in section III by carrying out a QSS reduction of the
mean—field model. We also determine the asymptotic be-
havior of the waiting time density. Our numerical results
are presented in section IV, and a Gaussian approxima-
tion of the waiting time density for a large capacity trap
is derived in the Appendix.

II. MEAN-FIELD POPULATION MODEL

Consider a population of particles moving along a
semi-infinite track, 0 < x < oo. Such a track could rep-
resent a system of oriented microtubular filaments within
the dendrite or axon of a neuron, with each particle cor-
responding to a motor—driven cargo complex, see Fig.
1 and [14, 16]. (Real axons and dendrites are of finite
extent; we will assume that boundary effects at the far
end of these structures can be neglected by considering
a semi-infinite track. For simplicity, we also neglect the
effects of branching, although this can also be taken into
account [17]). All particles are injected on to the track at
the end (2 = 0). This would correspond to motor—driven
particles entering a primary dendrite from the soma of
a neuron, for example. Particle injection can either be
treated as an initial condition, representing the sudden
introduction of a large bolus of particles at z = 0, or
treated as a boundary condition in which there is a fixed
particle flux at x = 0. We will focus on the former case
here. Within the interior of the track each particle is
taken to be in one of three states labeled by n = 0, £:
stationary (n = 0), moving to the right (anterograde)
with speed v (n = +), or moving to the left (retrograde)
with speed —v (n = —). Assuming that transitions from
the moving states £v to the stationary state occur at
the fixed rates S+ and the reverse transitions occur at
the rate «, we can write down the following system of
equations for the concentrations u,(z,t) of particles in
state n at time ¢ and position = along the track:

@.» e-<0 o o> <o

FIG. 1: [Color online]. Schematic diagram illustrating a pop-
ulation model of motor—driven particles moving along a one-
dimensional track. The particles can transition from a mov-
ing state with velocity v at a rate S+ and from a stationary
searching state at a rate a. A partially absorbing trap is
located at x = X that fills up according to a Poisson process.



Ouy = —v0zus — Bruy + Qug (2.1a)
Oiu— = vO,u_ — B_u_ + aug (2.1b)
Orup = Bruy + f_u_ — 20uy. (2.1c)

Equation (2.1) is supplemented by a zero flux boundary
condition at x = 0:

v[us(0,t) —u_(0,t)] = 0. (2.2)

In the case of an initial bolus of size U, the corresponding
initial condition is u, (x,0) = Ud, +6(x). We also assume
that the bidirectional transport process is biased in the
anterograde direction by taking 5 < B_; the limit §_ —
oo corresponds to unidirectional transport.

The system (2.1) belongs to a general class of linear
reaction-hyperbolic equations studied previously by a
number of groups [14, 28-30]. Under the assumption
that the transition rates are sufficiently fast, Reed et. al.
[14] used singular perturbation methods to carry out an
asymptotic expansion of a solution whose leading order
term is given by an approximate traveling wave solution
of a corresponding one—dimensional advection—diffusion
equation. They then showed how such a solution matches
wave-like behavior observed experimentally in the fast
axonal transport of vesicles. The validity of this reduc-
tion was subsequently proved rigorously under a wide
range of conditions [28, 29]. Probabilistic versions of
these axonal transport models have also been developed
[30, 31].

In this paper we consider the following problem: given
the temporal profile of particle concentrations, how
quickly can a target at some location X on the track fill
up with cargo? The target could correspond to a synapse
or an intracellular pool within an axon or dendrite. We
will assume that a particle can only deliver its cargo if it
is within a distance [ of the target and is in the stationary
state. Delivery of cargo to the target is then modeled as
an inhomogeneous Poisson process with time—dependent
rate

X+l
At) = IQ/ uo(z, t)dz, (2.3)

X1
where the parameter « is the single-cargo delivery rate.
That is, the rate depends on the average concentration
of stationary particles within the target domain, and
we refer to the target as a Poisson trap. Let the dis-
crete stochastic variable M (t) denote the number of par-
ticles that have delivered their cargo at time ¢ given that
M(0) = 0. It follows that

n,—u(t
P(n,t) =Pr[M(t) =n] = M,

n!

(2.4)

where
(2.5)

We are interested in how long it takes to deliver n cargoes
to the target. This is given by the waiting time W,,, which

3

is the time of the n'" event (delivery of the n'h cargo). In
particular, we want to determine the waiting time density
fn(t) with fp,(t)dt = Pr[t <W,, < t+dt], from which we
can calculate the filling probability IT,, and conditional
mean first passage time (MFPT) T,, for n to be reached,
where

_ o thn(t)dt
I falt)dt
Note that in reality a trap will have a finite capacity M

so that n < M. This modifies the expression (2.4) in the
case n = M, that is,

Hn:/o fa(t)dt, T, (2.6)

M-1
u t ”e—ﬂ(t)
P(Mt)=1- ) ()T (2.7)
n=0 ’

However, we don’t have to worry about this boundary
effect in our subsequent analysis, since we will focus on
first passage time processes. Also note that in the large
M limit, we can carry out a Gaussian approximation of
the Poisson process for filling the trap, see the appendix.

Waiting time density

The density f,(t) can be expressed in terms of the
integrated rate pu(t) as follows [32]. Let F,,(t) = Pr[W,, <
t] be the cumulative waiting time distribution such that
fn(t) = dF,(t)/dt. Since by definition Pr[W,, < t] =
Pr[N(t) > n], it follows that

s w(t ko—n(t)
Fo(t) = Z()T
k=n ’
n=l ko —u(t)
_ p(t) e
= 1- Z —— (2.8)
k=0

Differentiating both sides with respect to ¢, we find that
all terms cancel except for one, leading to the result

p (Bt~
(n—1)!

fa(t) = (2.9)
In the case of a constant rate A\(t) = A, f(¢) is given by
a gamma distribution:

(/\t)nfl ef)\t
Falt) =X, (2.10)
so that [ f,(t)dt = 1. It follows that the filling proba-
bility I, = 1, that is, the trap will be filled to capacity
with unit probability. On the other hand, in the case of a
time—dependent rate, the filling probability may be less
than one.
In order to illustrate this, let us first consider the case
n = 1 for which equations (2.6) and (2.9) yield

oo o 4
II; = / /J/(t)ei‘u(t)dt = —/ Ze g = 1 — g H(0)
0 0 dt



Thus, II; < 1if p(o0) < co. In order to extend this result
for n > 1, we rewrite equations (2.6) and (2.9) as
L[ &

II,, = e M

= — t)"dt.

(2.11)
Integrating by parts yields
n 1 o0
1, = Me—u(w)_i__/ J (Ot e Odt, (2.12)
n! n! Jo

which implies that

H(Oo)n —p(o0) )

HnJrl = Hn - ! €
n:

(2.13)

After substituting IT; into the recursion relation (2.13)
and solving we have that

n—1 (OO)k
I, =1-Y B cmnie), (2.14)

If p(oo) < oo is finite then 1 > Iy > Iy > -+ > 11,
and II,, — 0 in the limit n — oco. On the other hand, if
u(t) = oo as t — oo, we have II,, = 1 for all n > 1. Note
that one can also derive (2.14) with II,, = lim;—, o, F}, (%)
using (2.8).

Mean—field limit

One major assumption of our population model is that
there is a sufficient number of particles N within the
search domain so that we can neglect the flux of particles
from the track to the target in equation (2.1). This de-
coupling of the transport process given by equation (2.1)
from the Poisson filling process is essentially a mean—
field limit N — oo, and leads to a considerable sim-
plification of the analysis. In order to understand this
mean—field limit, let us compare the above model with
previous stochastic models of a single random intermit-
tent searcher looking for a hidden target at a fixed but
unknown location z = X, for which N =1 andn =1
[16-21, 24]. In these latter models w;(z,t) is replaced
by the probability density p;(z,t) of finding the single
searcher in state j = 0, £ at time ¢ and location x, and
equation (2.1) becomes

Oep+ = —v0epy — Byp+ + apo (2.15a)

ip— = v0zp- — Bp— + apo (2.15b)

Opo = B1p+ + B-p- — 2apo — kx([z — X]/1)po
(2.15¢)

with

0, otherwise. (2.16)

X(x):{l, if |z] <1

In the case of a single searcher, it is no longer possible to
neglect the flux into the target. The target is now treated

as a partially absorbing trap, in which the searcher can
detect the target (be absorbed by the trap) at a rate k
provided that it is in the stationary state and within a
distance [ of the target. Asin the mean—field model, there
are two important quantities characterizing the efficacy
of the random intermittent search process [16]. The first
is the hitting probability II(!) that a particle starting at
x = 0 at time ¢ = 0 finds the target, that is, the particle is
absorbed somewhere within the domain X -] <z < X+
I. (The superscript (1) indicates that we are considering a
single searcher). The second is the conditional mean first
passage time (MFPT) T() for the particle to find the
target given that it is eventually absorbed by the target.
If J(t) denotes the probability flux due to absorption
by the target at X

X+1
J(l)(t) — k/ po(z, t)d. (2.17)
X1
then
oo Xt J W (t)dt
e :/ JO@dt, TO = «[6()07(). (2.18)
0 Jo  JO(t)dt

In order to relate the single searcher model to the
mean—field model when the capacity of the trap isn = 1,
let us consider N independent, identical searchers that
all start at the origin at time ¢ = 0. Denote the MFPT
to find the target of the jth searcher by 7, j =1,..., N,
with each 7; and independent, identically distributed
random variable drawn from the single searcher first
passage time distribution F()(t) = fot JM(s)ds. The
random time T to fill the trap is then given by T =
min(7y, T3, ...,Tn), and the distribution for T is

FM(t) = Prob(T < t) = 1 — Prob(T > t)
=1- PI’Ob(Ml >t, My >t,...,My > t)
=1—(1—FD@)N.

Now suppose that the rate of detection for a single
searcher scales as k = k/N. This immediately implies
that in the large N limit the flux term in equation (2.15¢c)
vanishes, as assumed in the mean—field model. Substitut-
ing for J()(s) using equation (2.17) then gives

o ftopXH N
FMN @)y =1- (1_N/o /X_l po(:v,s)ds> . (2.19)

In the limit N — oo, the detection rate & — 0 and
the density function po(z,t) is independent of the tar-
get. That is, in the mean-field limit, the concentration
of searchers is not influenced by the presence of the trap.
Finally, taking the large IV limit shows that
lim FM () =1—e #0 = By (t),

N —oc0

(2.20)

where Fi(t) is the cumulative waiting time distribution
(2.8) of the mean—field model for n = 1, having identified



po(x,t) with ug(z,t). In section IV we will use Monte
Carlo simulations for finite N to show that the mean—
field approximation of the first passage time density is
quite accurate when N = O(100), at least in the case of
biased searches.

Note that the relationship between the first passage
time density of a single searcher and a set of NV indepen-
dent searchers has recently been studied in some detail by
Mejia-Monasterio et. al. Ref. [33]. Assuming a general
parametric form for the single searcher first passage time
density, they analyze the distribution P(w) of the ran-

dom variable w = T3/ Zjvzl T}, and show that in certain
situations the MFPT is not a robust measure of search
efficiency.

III. CALCULATION OF p(t)

So far we have shown how the waiting time density
fn(t) for filling a Poisson trap depends on the integrated
probability flux

t X+
wu(t) = Ii/ / uo(x, s)dxds,
0 Jx-1i

with ug(z,s) obtained by solving the linear reaction—
hyperbolic equations (2.1) under the specified initial and
boundary conditions. In the case of the 3-state model
of random intermittent search, it is possible to solve the
full model using Laplace transform methods for example
[16, 18]. However, such an approach becomes consider-
ably more difficult when the complexity of the molecular
motor model increases [34, 35] or the search domain be-
comes more complex eg. branching dendrites and axons
[17] and higher—dimensional search processes [19, 20, 36].
However, as we have shown elsewhere for single searcher
models [17, 24]), it is possible to carry out a quasi-steady
state (QSS) reduction of the linear reaction—hyperbolic
equations, which yields a one-dimensional advection—
diffusion equation (or a corresponding Fokker—Planck
equation in the case of the probabilistic version (2.15)).
This reduction is based on the observation that the state
transition rates of the molecular motor complex are fast
compared to the characteristic velocities. A number of
authors have analyzed linear reaction-hyperbolic equa-
tions in this regime but have focused on the wave-like
properties of the transport process rather than the deliv-
ery of cargo to hidden targets [14, 28-30]. In this section
we carry out the QSS reduction of the population model,
and then use this to determine p(t). Since, the reduction
is very similar to the single searcher case, we only sketch
the basic steps of the QSS reduction. Further details can
be found in previous papers [17, 24].

(3.1)

Quasi-steady state approximation

First, it is necessary to non—dimensionalize equation
(2.1) by rescaling space and time according to

x—=x/A, t—tv/A,

where A is a fundamental length scale of the system. In
the case of a finite track of length L, we could set A = L
as in Ref. [14]. On the other hand, for a semi-infinite
track with a single target, we can identify A either with
the size of the target [ or the distance X of the target
from the origin. Since [ may be taken to be arbitrarily
small (by an appropriate rescaling of the rate k), we set
A = X. Assuming that the transition rates «, 4 are
large compared to v/A, we introduce the dimensionless
parameters a = eaA/v and by = €81 A/v where € < 1.
The transport equations (2.1) then become

1
Opuy = = (=byrus + aug) — Ozuy (3.2a)
€
1
Opu— = —(=b_u_ + aug) + dyu_ (3.2b)
€
1
Orug = = (byug + b_u_ — 2auy) (3.2¢)
€
which can be rewritten in the matrix form
1
Opu = —Au + L(u), (3.3)
€
where u = (u4,u—_,ug)", A is the matrix
—b+ O a
A= 0 -b_ a |, (3.4)
b+ b_ —2a
and L is the linear operator
—3xu+
L(u)=| Ogu— (3.5)
0

The left nullspace of the matrix A is spanned by the vec-
tor e, = (1,1,1)" and the right nullspace is spanned
by u* = ~y7%(1/by,1/b_,1/a)*. The normalization
factor v is chosen so that er - u®® = 1, that is, v =
b+71 +b_ ' 4+at Let g =er-uand w = u— pus
such that er, - w = 0. We can interpret ¢ as the compo-
nent of u in the left nullspace of A, whereas w is in the
orthogonal complement.
Multiplying both sides of (3.3) by €% we obtain

0rp = e L(pu®® + w). (3.6)
Substituting u = w 4+ ¢u®* into (3.3) yields
1
Ohw + (Opp)u®® = ZA(W + ¢pu®’) 4+ L(w + pu®). (3.7)

Using equation (3.6) and the fact that u®® is in the right
null space of A, we obtain

Ohw = lAW + (I3 — u*ef") L(w + pu®®), (3.8)
€



where I3 is the 3 x 3 identity matrix. Now introduce an
asymptotic expansion for w of the form

W~ Wo + ew + Ewo ... (3.9)
After substituting this expansion into (3.8) and collect-
ing O(e7!) terms we see that Awg = 0. Since w is in
the orthogonal complement of the left nullspace of A, it
follows that wo = 0. Now collecting terms of O(1) yields
the equation

Awy = —(I3 — u**e¥)L(pu®). (3.10)

Although the matrix A is singular, the orthogonal pro-
jection operator (I3 —u®e'’) ensures that the right-hand
side of the above equation is in the range of A. By
the Fredholm alternative theorem a solution w; exists,
and is unique after imposing the normalization condition
er-w = 0. Finally, substituting the resulting solution for
w1 back into (3.6) yields the advection—diffusion equation

[24]

9 _ 06 ¢

== V3, tPo= (3.11)
where
Y ER 51
1-V0)2 (14 V)2
De(( vbiO) ( WO) > (3.13)

The function ¢ is the total concentration of all particles
at position x and time ¢.

Equation (3.11) is supplemented by a Neumann bound-
ary condition at z = 0 of the form

—ve0,)+D0 22—y

.14
or|,_, (3.14)

This boundary condition follows from substituting u =
¢u™ + ew; into the boundary condition (2.2) of the cor-
responding 3-state model (2.1). The associated initial
condition is ¢(x,0) = Ud(x). The solution of equation
(3.11) is then a classical result based on the method of
images [37]:

oz t) = ﬁe_[‘r— Vi]2/(4Dt)

V. v/p (x + Vt)
——" erfc .
2D 2V Dt

Note that although we have carried out the QSS reduc-
tion for the specific 3—state model, the same procedure
can be applied to more complex molecular motor models.
One still obtains the advection—diffusion equation (3.11)
and associated solution (3.15) [24]. The only difference
is the explicit dependence of the drift and diffusion pa-
rameters V, D on model parameters.

(3.15)

Asymptotics

Given the solution (3.15) for ¢(z,t), the rate A(t) of
the Poisson filling process is determined according to

X+
At =7 / 6(w, t)da, (3.16)

X1

where K = x/(av). For simplicity, we assume that | < X
and take A(t) = 2lR¢(X,t). Under this approximation

u(t) = ¢ /O 6(X, 1)dt. (3.17)

For convenience, we have set 2lk = c¢. Unfortunately, it
is not possible to derive an explicit analytical solution
for p(t), although the integral expressions can be evalu-
ated numerically. Nevertheless, we can obtain the exact
hitting probability 115, and we can asymptotically deter-
mine the large-time behavior of the waiting time density.

First, recall from equation (2.14) that the hitting prob-
ability II,, is determined by p(oo). The latter can be
calculated using Fourier-Laplace transforms. We be-
gin by rewriting the right-hand side of equation (3.15)
in terms of Fourier transforms. That is, set ¢(z,t) =
2¢0(x,t) — (V/2D)eV/P gy (z,t) with

do(x,t) = \/47%6_[9” — Vi2/(4Dt)

R dk
— [m eZk[I_Vt]e_Dth% (318)
and
rz+Vt
r,t) = erfc| ——
2 o0
= e du (3.19)

VT Jw+vi) ) vaDi
_ 2/00 /Oo eik[ererVt]ethkQ%dy'
0 —00 27

Now consider the Laplace transform

o(z,8) = /000 e *'p(z,t)dt. (3.20)

Substituting for ¢o and ¢; and integrating with respect
to t then gives

~ o0 etk dk
= 2 _—
(@ 5) /_Oo ikV + DK2 + s 21

_KexV/D /Oo /Oo ehety) %dy
D o J o (DKZ—ikV +s)2r

The integrals with respect to k£ can be evaluated by clos-

(3.21)
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FIG. 2: Unbiased (8+ = - = ) random intermittent search in the mean—field population model. The MFPT vs the (a)
average search time and (b) the average duration of the moving (forward and backward) state for different values of the Poisson
trap size n. Each curve has a minimum MFPT for a given value of o and 8. Parameter values used are ¢ = 0.1, k = 5/N,
X =50, and I = 0.25. For (a) we use 8 = 1/¢ and for (b) we use o = 2/e.

ing the counter in the upper—half complex plane:

e [I'(s)—V/2D]z

o0
VVZ4+4sD

00 o~ [P()+V/2D](x+y)

dy,
o  VV2+dsD 7
ef[F(s)fV/QD]z |: Vv 1

VV2 + 4sD - DT(s)+V/2D

(w,5) = (3.22)

\%4
__exV/D

with

(3.23)

1
I'(s) = 3V (V/D)? + 4s/D.
It follows from equation (3.17) that

1(00) = ¢ lim (X, 5) = —. (3.24)
s—0 V
Thus the corresponding hitting probability IT,, < 1 for
V >0and II, =1 for V =0 (pure diffusion).
We now estimate the large—t behavior of ¢(X,t) in or-

der to approximate p(t). We use the following asymptotic
expansion of the complementary error function:

e~ 1
erfe(z) = NG [1 R ] . (3.25)
Applying this to equation (3.15) with z = (z +

Vt)/(2v/Dt) ~ V+/t/(2V/D) for large t and V > 0, we
obtain the approximation

2evVD
Va2 rtd

which is independent of target location X. Substituting

e—V2t/(4D)7

P(X,1) (3.26)

this expression into equation (3.17) gives

20\/5
Vaym ),

1
A /tl3

u(t) ~ p(oo) e”VIH/UD) gy

_ a2
267" du

2¢ o
(o) = V—ﬁ/\/mu

2 [4D1%?* s
~ o) - ] e, @an

using an asymptotic expansion of the integral. On the
other hand, for V = 0, we have

_o [ L -x*/uDy)
nt) = [ =
~ 2c\/t/mD,

where we have used the approximation e
for large t.

The large-time asymptotic approximation for u(t) de-
termines how the waiting time density, f,(t), scales with
time. Equations (2.9) and (3.28) imply that for V = 0:

(3.28)

-X?/(4Dt) 4

fa(t) o t7/2 Lm0V, (3.29)

with é = 2¢/v/wD. Extensions to the case V > 0 are a
little more involved. However, for n = 1 we have

Fi(t) o t1/2e=VFH/(4D) (3.30)

IV. RESULTS

In the case of a single random intermittent searcher on
a finite track of length L with reflecting boundary con-
ditions at both ends z = 0,L (so that IV = 1) and
unbiased transport (S84 = S- = B), it can be shown that



there exists an optimal search strategy in the sense that
there exists a unique set of transition rates «, 8 for which
the MFPT is minimized [18-21]. On the other hand, for
directed intermittent search (81 > S_) on a semi-infinite
domain or a finite domain with an absorbing boundary
at z = L (so that II") < 1), a unique optimal strategy
no longer exists [16, 24]. In this section, we show that
a similar situation holds if there is a population of N
independent searchers and we consider the time neces-
sary for n < N of those searchers to locate the target.
Note that the previous results for the single-searcher pro-
cess are recovered by setting n = N = 1. For the case
where n < N, we use the mean-field approximation, and
for smaller values of N, we use Monte-Carlo simulations
with the target detection rate, k, scaled by the number of
searchers (i.e. k — k/N). Although we explore only the
case of a semi-infinite domain, the conclusions we reach
are not expected to change qualitatively if a finite do-
main is considered, with either an absorbing or reflecting
boundary at x = L. For the biased case, the influence
an absorbing boundary at x = L has on the solution
is an exponentially decreasing function of the distance
from the boundary, with a length scale determined by
the magnitude of the velocity bias. On the other hand,
for unbiased motion, a reflecting boundary adds an expo-
nential cutoff to the first passage time density. However,
the existence of an optimal set of transition rates that
minimizes the MFPT is independent of the presence of
the reflecting boundary.

First, we consider an unbiased random intermittent
search process in the mean—field population model, for
which N — oo and 84 = - = 8 (V =0). In Fig. 2 the
MFPT is plotted as a function of (a) the average duration
of the search phase, 1/a, and (b) the average duration
of the ballistic phase, 1/8. For each value of trap ca-
pacity n = 1,2,3, we see that there exists a minimum
MFPT for a particular choice of «, 3, consistent with
the single-searcher regime. Next, we examine how the
search process changes as more searchers are added for
fixed n = 1. In particular, the first passage time density
is approximated by Monte-Carlo simulations for different
values of N, and the results are compared to the analyt-
ical mean field results. This gives a nice illustration of
how the single-searcher process (N = 1) is related to
the mean-field population search process (N — o). In
Fig. 3, the unbiased case is shown. The most significant
difference is found in the large time behavior, with power-
law scaling t—3/2 for the single search and the so-called
stretched exponential scaling e~¢V? (see Eqn. (3.29)) for
the mean field N — oo limit. A similar plot showing the
first passage time density for a biased search (81 < f—
so that V' > 0) is shown in Fig. 4. In this case, adding
more searchers has little qualitative effect on the first pas-
sage time density, each case having the same exponential
large time scaling (see Eqn. (3.29)). In both cases, the
results, show that adding more searchers decreases the
mean search time and the variance.

Our analysis of the mean-field model showed that the
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FIG. 3: First passage time density for an unbiased search
and a single-capacity trap (n = 1). The solid curve shows
the analytical density function in the mean field limit and the
remaining curves are histograms obtained from 10* Monte-
Carlo simulations for different numbers of searchers N. Pa-
rameter values are the same as in Fig. 2.
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FIG. 4: First passage time density for a biased search and
a single-capacity trap (n = 1). The black curve shows the
analytical density function in the mean-field limit, and the
remaining curves are histograms obtained from 5 x 10* Monte-
Carlo simulations. Parameter values used are a = 1/e, f4 =
1/e, B— =2/, e =0.1, k=5/N, X =50, and [ = 0.25.

hitting probability is less than unity when the velocity
bias is positive (i.e. when 84 < G- so that V > 0).
Therefore, we would like to quantify how the hitting
probability and the MFPT change as we vary the amount
of bias. In Fig. 5, we plot the MFPT vs. the hitting prob-
ability for different values of V. Each curve is parame-
terized by [, the rate of leaving the forward-moving
state, with 0 < Sy < B_. By changing the value of g4,
any hitting probability can be achieved. As fi — [_
the searcher’s motion becomes unbiased, and the hitting
probability increases to unity. However, as the searchers
become more unbiased the MFPT also increases. Ana-
lytical results for the single searcher case (N = 1) and
the mean-field limit (N = oo) are shown as solid curves
(black and grey, respectively) and to connect the two, av-
eraged Monte-Carlo simulations are shown (as dots) for
different values of N = 1,2,3,4,25 (each dot is colored
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FIG. 5: The MFPT wvs hitting probability for the single
capacity trap (n = 1). Each curve is parameterized by
0 < B4+ < PB—. Analytical results are shown as lines, with
the single searcher in grey and the mean field limit (N = o)
in black. Averaged Monte Carlo simulations (10* simulation
each) are shown as symbols, sets ranging from grey to black,
with a different value of N used in each set. From grey to
black there are six sets of simulations with N = 1,2, 3,4, 5, 25,
respectively. Parameter values are the same as in Fig. 4.

in greyscale from N = 1 in black to N = 25 in light
grey). Ten different sets of Monte-Carlo simulations are
run corresponding to ten different values of 54, and in
each set the hitting probability decreases and the MFPT
increases as more searchers are added.

We now turn our attention to how increasing the trap
capacity affects the search process in the mean—field
limit; that is, we examine how the first passage time
density, MFPT, and hitting probability change as we in-
crease n. First, we plot the first passage time density,
for (a) V=0 and (b) V > 0, in Fig. 6. In both cases,
increasing the trap capacity increases the MFPT. It is
worth commenting that when the searchers are unbiased,
there is less quantitative agreement between the mean
field limit and histograms generated by Monte-Carlo sim-
ulations with N = 50 searchers. Finally, as we did in
Fig. 5, the MFPT and hitting probability are shown for
the biased search in Fig. 7, this time for different trap
capacites. As expected, the hitting probability decreases
and the MFPT increases as we increase the capacity of
the trap.

V. DISCUSSION

In this paper, we have extended the theory of random
intermittent search to a population model of N indepen-
dent searchers looking to deliver cargo to a single hid-
den target. We have analyzed the model in the mean—
field limit N — oo, where the concentrations of particles
evolve according to a system of linear reaction-hyperbolic
equations that decouples from the Poisson process asso-
ciated with filling the target with cargo. We compared
our analytical results with Monte-Carlo simulations for
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FIG. 6: (Color online) The first passage time density for dif-
ferent values of n = 1,2,3,4,5 with n increasing from left to
right. Solid curves show the mean field limit and histograms
are generated from 10 Monte-Carlo simulations with N = 50
searchers. (a) The unbiased case V = 0. (b) The biased case
V > 0. Parameter values used are the same as in Fig. 2 and
Fig. 4 for (a) and (b), respectively.
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FIG. 7: The MFPT vs hitting probability for different trap
capacities n. Each curve is parameterized by 0 < g4+ < [_.
The mean-field limit is shown as solid curves, and 10% av-
eraged Monte-Carlo simulations with NV = 50 are shown as
symbols. Parameter values are the same as in Fig. 4.

finite N and thus determined how the efficiency of the
search process depends on N and the capacity n of the
target.

There are a number of possible extensions of our work.
First, within the context of dendritic and axonal trans-
port, we could consider more detailed biophysical mod-



els of single motor—cargo complexes, which take into ac-
count possible local signaling mechanisms between the
target and searcher. Indeed, elsewhere we have ap-
plied the QSS reduction to a multiple motor model of
bidirectional transport, in which opposing motors com-
pete in a “tug-of-war” [38], and showed how the con-
centration of adenosine triphosphate (ATP) or signal-
ing molecules such as microtubule associated proteins
(MAPs) could regulate the delivery of cargo to synap-
tic targets [17, 34, 35]. These details could be incor-
porated into our mean—field population model under the
QSS reduction, since it would simply involve determining
the dependence of the effective diffusivity D and drift V'
on the relevant biophysical parameters. Combined with
Monte-Carlo simulations, we could then investigate the
efficiency of the cargo delivery process as a function of N
and n, along similar lines to the current paper. Incorpo-
rating local signaling mechanisms from synaptic targets
would allow us to explore the role of motor transport in
synaptic plasticity [15], for example.

Another possible generalization would be to consider
multiple searchers looking for multiple hidden targets.
In this case, targets could compete with one another for
resources. Moreover, there would be effective statisti-
cal correlations due to the fact that one would need to
keep track of which targets have been filled and at what
times, since filled targets would no longer act as traps
for searching particles. Yet another extension would be
to introduce interactions between the searching particles.
In the case of molecular motor transport, this could arise
due to molecular crowding resulting in exclusion effects.
In other types of search such as foraging, there could be
communication between searchers.
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Appendix

In this appendix we show how the Poisson process for
filling the trap can be approximated by a Gaussian pro-
cess in the large M limit, where M is the capacity of
the trap. Such an approximation also serves as an illus-
trative model of a trap that is filled continuously rather
than in discrete jumps. First, note that the probability
distribution P(n,t) satisfies the master equation

OP(n,t)

T = A(t)P(n — 1,t) — A(t)P(n, t).

= (A.1)

Performing the change of variables ¢ = n/M such that
P(n,t) — P(q,t) and P(n — 1,t) — P(q — ¢,t) with
e = 1/N, we can Taylor expand the master equation to

10

second order in € to obtain the Gaussian approximation
39]

0P(q,t)

or e\(t) 9°P
ot

dq 2 0¢%

= —eA(t) (A.2)
The resulting Fokker—Planck equation determines the
probability density of a corresponding stochastic process
Q(t) evolving according to the Langevin equation

dQ = eA(t) + e/ A(R)dW (1)

where W (t) is a Wiener process. Under the Gaussian
approximation, calculation of the waiting time density
fa(t) translates into calculation of the first passage time
density fo(t) for reaching Q(¢) = 1 given that Q(0) = 0.
As a further simplification, we allow Q(t) to take on neg-
ative values by taking —co < @ < 1 with an absorb-
ing boundary at @ = 1, that is, P(1,t) = 0. (Physi-
cally speaking 0 < @ < 1, but the probability of the
Langevin process crossing into the negative half-line is
relatively small). Given the solution of the Fokker—
Planck equation (A.2), we define the survival function

Fo(t) = f_loo P(q,t)dq which then determines the first
passage time density according to

dFg _62)\(t) 0P(q,t)

folt)=——==-— 94

(A.3)

(A4)

q=1

Since the ratio of the variance over the mean is time—
independent, we can adapt the recent analysis of time—
dependent Fokker—Planck equations based on the method
of images Ref. [37]. The first step is to find the solution
Py(q,t|qo) of equation (A.2) on R given the initial condi-
tion Py(q,0|qo) = 6(¢—qo). Under the change of variables

2 gt
r=< / As)ds = S(t) (A5)
0
t
z = q-— e/ A(s)ds = q — 2(t), (A.6)
0
equation (A.2) becomes [37]
OPy, 0Py
B 022 (A7)

with —0o < z < 0o. Solving this standard diffusion equa-
tion with the given initial condition , we have in original
coordinates

_ b la-a—-S@P/4S51)
Polg:tlao) = 5 =0 :
(A.8)
Now suppose that there is an absorbing boundary at ¢ =
1. Under the method of images we solve equation (A.2)
on R but introduce an image source at some location ¢
with go > 1 in order to maintain the boundary condition
p(1,t) = 0. That is, we take the initial condition to be

[37]

P(q,0) =d(q) —e "d(q — qo) (A.9)



so that

P(q,t) = Po(gq,t|0) — e "Po(q, t|qo)- (A.10)

Imposing the boundary condition P(1,t) = 0 and using
the solution (A.8), we obtain the condition

_ [ —q -3
= —m "

[1 -3
45(1)

(A.11)

Ast — 0, 3(t),S(t) — 0 so that 1 = (1 — go)?, which
implies that gy = 2. Setting go = 2 in equation (A.11)
then implies that X(¢)/S(t) = —n. Thus, the above so-
lution is only valid if the ratio of the variance and the
mean of the Langevin process is time-independent. This
condition holds for the Gaussian approximation of the
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Poisson process, with X(t) = eu(t) and S(t) = €2u(t)/2.
Thus, n = —2/e. We conclude that

P(g,t) = ﬁ o—la— en(®)?/ (26 u(1))
et
(A.12)

_ 2/eg—la—2—en(t)?/(26u(t)) |

Finally, equation (A.4) shows that

MO 1= en(t)?/26u()),

—_—Y A.13
2me2p(t)3/2 ( )

fo(t) =

[1] J. W. Bell, Searching Behaviour, The Behavioural Ecol-
ogy of Finding Resources (London: Chapman and Hall,
1991) .

[2] G. M. Viswanathan, V. Afanasyev, S. V. Buldyrev, E.
J. Murphy, H. A. Prince and H. E. Stanley, Nature 381,
413 (1996).

[3] G. M. Viswanathan, S. V. Buldyrev, S. Havlin, M. G. E.
da Luz, E. P. Raposo and H. E. Stanley, Nature, 401,
911 (1999).

[4] F. Bartumeus, J. Catalan, U. L. Fulco, M. L. Lyra and
G. M. Viswanathan, Phys. Rev. Lett., 88, 097901 (2002).

[5] A. Caspi, R. Granek and M. Elbaum, Phys. Rev. E 66,
011916 (2002).

[6] D. Arcizet, B. Meier, E. Sackmann, J. O. Radler and D.
Heinrich, Phys. Rev. Lett. 101, 248103 (2008).

[7] S. Klumpp and R. Lipowsky, Phys. Rev. Lett. 95, 268102
(2005).

[8] C. Loverdo, O. Benichou, M. Moreau and R. Voituriez,
Nature Phys. 4, 134 (2008).

[9] A. Kahana, G. Kenan, M. Feingold, M. Elbaum and R.
Granek, Phys. Rev. E 78, 051912 (2008).

[10] O. G. Berg and C. Blomberg, Biophys. Chem. 4, 367
(1976).

[11] S. E. Halford and J. F. Marko. Nucleic Acids Res., 32
3040 (2004).

[12] M. Slutsky and L. A. Mirny, Biophys. J, 87 1640; 4021
(2004).

[13] M. Coppey, O. Benichou, R. Voituriez and M. Moreau,
Biophys. J. 87, 1640 (2004).

[14] M. C. Reed, S. Venakides, and J. J. Blum, SIAM J. Appl.
Math. 50: 167-180, 1990.

[15] C. R. Bramham and D. G. Wells, Nat. Rev. Neurosci.8,

776 (2007).

[16] P. C. Bressloff and J. Newby, New J. Phys. 11, 023033
(2009).

[17] J. Newby and P. C. Bressloff Phys. Rev. E. 80, 021913
(2009).

[18] O. Benichou, M. Coppey, M. Moreau, P. H. Suet and R.
Voituriez, Phys. Rev. Lett. 19, 198101 (2005).

[19] O. Benichou, C. Loverdo, M. Moreau and R. Voituriez,
J. Phys. Cond. Matt. 19, 065141 (2007).

[20] C. Loverdo, O. Benichou, M. Moreau and R. Voituriez,

Phys. Rev. E 80, 031146 (2009).

[21] O. Bénichou, C. Loverdo, M. Moreau, and R. Voituriez.
Intermittent search strategies. Rev. Mod. Phys., 83 81
(2011).

[22] Rook M S, Lu M and Kosik K S J. Neurosci. 20 6385—
6393 (2000)

[23] J. L. Dynes and O. Steward, J. Comp. Neurol. 500, 433
(2007).

[24] J. Newby and P. C. Bressloff, Bull. Math. Biol. 72, 1840
(2010).

[25] G. Oshanin, H. Wio, K. Lindenberg, and S. Burlatsky.
Journal of Physics: Condensed Matter, 19(6):065142,
2007.

[26] Gleb Oshanin, Katja Lindenberg, Horacio Wio, and
Sergei Burlatsky. J. Phys. A 42(43):434008, 2009.

[27] F. Rojo, C. E. Budde, and H. S. Wio. J. Phys. A
42(12):125002, 2009.

[28] A. Friedman and G. Craciun, SIAM J. Math. Anal,
38:741-758, 2006.

[29] A. Friedman and B. Hu, Indiana Univ. Math. J., 56:2133—
2158, 2007.

[30] E. Brooks, Ann. Appl. Prob., 9:719-731, 1999.

[31] L. Popovic, S. A. McKinley and M. C. Reed. SIAM J.
Appl. Math. 71 1531-1556 (2011).

[32] H. M. Taylor and S. Karlin An introduction to stochastic
modeling 3rd ed. Academic Press, San Diego (1998).

[33] C. Mejia-Monasterio, G. Oshanin and G. Schehr. J. Stat.
Mech. P06022 (2011).

[34] J. Newby and P. C. Bressloff, J. Stat. Mech. P04014,

(2010).

[35] J. Newby and P. C. Bressloff, Phys. Biol. 7, 036004
(2010).

[36] P. C. Bressloff and J. Newby. Phys. Rev. E 83 061139
(2011).

[37] A. Molini, P. Talkner, G. G. Katul and A. Porporato.
Physica A 390 1841 (2011).

[38] M. J. I. Mueller, S. Klumpp, and R. Lipowsky Proc. Nat.
Acad. Sci. USA 105 4609 (2008).

[39] C. W. Gardiner. Handbook of stochastic methods for
physics, chemistry, and the natural sciences, Springer-
Verlag, Berlin (1983).



