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Abstract

We develop a tri-component (ternary) hydrodynamic modefraltiphase flows of biomass and solvent
mixtures, which we employ to simulate biofilm. In this new rebdhe three predominant effective com-
ponents in biofilms, the extracellular polymeric substa(ieRS) network, bacteria, and effective solvent
(consisting of the solvent and nutrient, etc.), are modelgdicitly. The tri-component fluid mixture is as-
sumed incompressible as a whole, while inter-componeningixdissipation, and conversion are allowed
among the effective components. Bacterial growth and EB&uation due to the growing bacterial popu-
lation are modeled in the biomass transport equations.eBattlecay due to starvation and natural causes
is accounted for in the bacterial population dynamics tdurapthe possible bacterial population reduction
due to depletion of nutrient. In the growth regime for biolnthe mixture behaves like a multiphase vis-
cous fluid, in which the molecular relaxation is negligibtetihe corresponding time scale. In this regime,
dynamics of biofilm growth in solvent (water) are simulatesing a 2-D finite difference solver that we
developed, in which distribution and evolution of EPS anctéaal volume fractions are investigated. The
hydrodynamic interaction between the biomass and the sofi@v field is also simulated in a shear cell
environment, demonstrating the spatially and temporatitetogeneous distribution of EPS and bacteria
under shear. This model together with the numerical codeslalged provides a new predictive tool for
studying biomass-flow interaction and other important héical interactions in the biofilm and solvent

fluid mixture.
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I. INTRODUCTION

Biofilms are common aggregates of microorganisms which fetan cells adhere to surfaces
in moist environments. These cells attach by excretingrayslglue-like substance called the
extracellular polymeric substance (EPS) which encapssiltite bacteria colony and protects it
from being washed away and attacked by foreign agents. Bisfin be harmful or costly causes
of medical implant contamination, airway, sinus and eagdtibns, tooth decay, periodontal dis-
ease, and industrial damage where they can contribute tal foeling. The microbes within a
biofilm are often much more resistant to antibacterial agémin planktonic cells of the same
type, and thus pose a particular challenge to those inestésteradicating them. Despite their
often pathogenic and destructive nature, biofilms can adsbemeficial when utilized in mineral

recovery, water purification or as bio-sealant to prevesitdge of gases.

The formation of bacterial biofilm involves a significant plogypic shift as cells switch from
the planktonic (free-swimming) to the surface-attachedest Within this attached colony, it is
common that a biofilm contains differentiated cells, someavhich behave distinctively under
different chemical and environmental conditions. Foranse, some of the bacteria are susceptible
to antibacterial agents while others can develop a resistap entering a transient dormant state
where they are known as “persister cells.” Between thesestygb bacteria, complicated cellular
processes can prompt a switch from one type into the otheviaed/ersa [1]. In addition to the
variety of bacterial cells, there exists a phenomenon @¢&ti@orum sensing” in which bacteria
can regulate their production capability based upon the@atnation of specific chemicals, called
autoinducers, that each cell emits [2]. Experimental ewsgeshows that these chemical signals
serve as a form of communication for bacteria cells, sertongcruit new members and regulate

the growth of the colony.

Because of their heterogeneity and complexity, modelirgfilms has been a challenging
task. A host of mathematical models have been proposed telnidafilm dynamics qualita-
tively. These include low dimensional models primarilydsed on steady states [3—7], discrete-
continuum models coupled with automata [8—18], continuuodets for spatial heterogeneity
[19, 20], multi-fluid models [19, 21-23], and our own one flurdilticomponent, binary phase
field model [24—26]. For a detailed account of mathematicadets of biofilm, please refer to our
recent review article on the very subject [27] and an exngll@ore recent, review by Klapper and

Dockery [28]. Among all the models developed so far, very fewe modeled the EPS network
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separately from the bacterial population. However, micopsc imaging of biofilms clearly shows
the distribution of bacteria and EPS network exhibits a lyigieterogeneous microscopic struc-
ture [29]. This observation strongly suggests that thesesprecies need to be modeled explicitly
in any refined biofilm model. As mentioned, a few models dolkesthe EPS network separately
from the bacterial population [2, 30-33], yet none of thesslets are fully capable of resolving

dynamic interactions between the EPS, bacteria, subsinatéow field.

In this paper, we propose a general framework for multicomepd materials that can handle
dynamical interaction among multiple species and theariobnversion, dissipation and mixing.
In this formulation, the entire material system is apprcaded as incompressible. Thus, when the
volume fraction of one species grows, the volume fractipofe or more of the others must be
replaced by the growing species. We will adopt an incremesttategy in the systematic devel-
opment of this biofilm model, focusing on the most basic fesgwof biofilm formation here and
adding more detail to the model in subsequent papers. Thasgglect the cellular communica-
tion effects related to quorum sensing and other molecigaaing pathways in this paper, but

plan to address these issues in the future.

Our focus in this paper centers on developing detailed phydescriptions of the mechanistic
behavior of various effective biofilm components, and thengital kinetics involving the most ba-
sic ingredients. For multiphase materials, different gggecan have relative motion due to osmotic
pressure and density stratification. We posit these relatintions are the result of non-equilibrium
thermodynamical processes. Historically, a hydrodynaitieeory for multiphase fluids can be
formulated in two different ways. In one formulation, eadtape is modeled explicitly using its
own momentum and mass density. This approach ensures éhtt#h mass and momentum are
conserved. However, the velocity field for each individusdge has to be tracked in the entire ma-
terial's domain. Since these velocity fields are, in generati measurable when an inflow-outflow
boundary is present, it poses an insurmountable challemgew to deal with this mathematically
and physically [22]. The other formulation, the one fluid tredmponent approach, can handle
this requirement naturally, and thus it is the approach wkeuse. In this formulation, the inter-
penetration or mixing among the various phases due to gests#tification is modeled through
an interaction potential. More specifically, the mixing otarpenetration is due to the “dynamic”
osmotic pressure effect. In other words, mixing is rega@ed nonequilibrium thermodynamical
process instead of a purely hydrodynamic one. The velogitgdch individual phase can then be

decomposed into the sum of a mean velocity (which resohaebultk hydrodynamic interactions)
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and an excessive velocity (which is due entirely to the naiiggium thermodynamics).

The rest of the paper is organized as follows. First, we lyrigéiscribe our ternary theory
for biofilms, which involves treating EPS and bacteria as tiinct and yet interacting species
explicitly. We then discuss the numerical scheme for theegung system of equations and,
finally, we develop a new computational tool to simulate Inmofgrowth and interaction with

surrounding solvent flows.

II. MATHEMATICAL FORMULATION OF THE THREE COMPONENT MODEL F OR BIOFILMS

We briefly discuss the three-component model, also refaoeas the ternary model in this
paper, whose basic ingredients are developed in [34]. kthdory, we model the EPS and the
bacteria as two interacting, yet distinct components, evié surrounding liquid and all dissolved
nutrients and other materials are collectively modeledhesffective solvent. Since the total mass
and volume of the nutrient in the biofilm are negligibly smé#tis mass and volume fraction are
not normally modeled explicitly in theories for biofilms [B5Hence, only the biochemical and

diffusive effect of the nutrient is singled out and accodrf explicitly.

The structure and composition of a biofilm can vary widelyeteging upon the local environ-
ment and the types of bacteria which comprise it. Some bisfilehave primarily as viscoelastic
solids, while others are best characterized as a heterogermmplex fluid mixture [36]. Our
focus is on biofilms which behave primarily as a complex fluicttore. This type of biofilm is
estimated to be 80% or more water, with most of this wateestarithin the bacterial cells which
typically comprise 2-5% of the biofilm's biomass (thoughythemn comprise more for certain
densely packed biofilms). The rest of the biofilm’s biomasisprised of a 1-5% EPS solution
(by volume fraction) [29, 37]. While planktonic bacterialatv to moderate concentrations are
generally modeled as a suspension or collection of pastithee tightly packed bacteria typical
of a biofilm should be regarded, along with the EPS matrix, aslk heterogeneous complex
fluid [36], whose physical properties may depend on the dgrsize, shape and orientation of the

individual bacterial cells.

In this model, we denote the volume fraction of the EPS ndtwagrq,, that of the bacteria by
@, and that of the solvent by.



A. Transport equations of the volume fractions

The transport of the volume fractions is governed by a systemodified or singular Cahn-

Hilliard equations [38, 39] with reactive terms

2 5f 5t | of 5t of

ot 0 (@) = 0 [0u0(55 — 5(5 + 5)) + 3(022— 033) (55 — 550)] + O,

2 5f 5t | of 5t of

S+ 0 (@) = 0 lo22D(5g; — 3(5q + 55)) +2(011 - 0s3)Digg — 5)1 + 96, (11)
5t | o 5t

aa% +0- (gsv) =0~ [0‘335(3%5 - %(W +5g)) T 3 (22— 011) (g — %)] +0s
The specific forms of the mixing free energy density functfowill be given in the next section,
and the reactive terms will be given below. In the transpquations for the fluid components, an
average velocity fieladr, due to non-conservative hydrodynamics, is assumed, awhéhe inter-
penetration or mixing among the components is dictated éyrttermolecular (or thermodynam-
ical) interaction potential. From the system of equatiardiie volume fractions, we can identify
the velocity for each individual effective component by @aating for the excessive velocity due

to thermodynamical or intermolecular forces. For instamezidentify the solvent velocity as
1 of 1 of  o&f 1 of  of

=v— —[o330(c— — = (— 4 —))+ = (02— 011)I(=— — —)]. 1.2
Vs =V (Ps[GS?’ (6([)5 2(6%+5%))+2(0‘22 O11) (6% 5%)] (1.2)
Analogously, we can identify the velocity of the EPS and baatrespectively as
Vo =V— & {003 — 35+ ax)) + 3(022— 033) (g — &),
(1.3)
Vo =v— & aool(Z — (& + &) + S(an1— aag) O(E — &),
It then follows that
V = (hVn+ @Vp + PsVs. (11.4)

So, the bulk velocity is, in fact, a volume averaged velocity
Acknowledging that the contribution to the velocity of a sjgs vanishes when the species

becomes extinct, we approximate the mobility coefficiests a

O11=A1ph(1—@n),

022 = A2@h(1— @), (11.5)

033 =A3¢s(1— @),
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whereA1 > 3 are three constants. In this paper, we only consider thevelasee the three constants

are identical. From (I1.5), if we assumg = Ao, = A3 = A, we arrive at

022 — 011 = AQs(Pp — Pn),
022 — 0133 = A¢n (P — @), (11.6)

011 — 033 = AQo(h — §s).
This choice of the coefficients in the mobility matrix yieldsro flux for a component when its

volume fraction is zero in the mixture.
The velocity for each individual component can then be emiths

o - @ b+ )+ Ho o L

Vo =V—=A[(1—n)0(g-— (55 + o) + 3(®— &) D5 — 2], (I.7)

Vo=V —Al(1— @) Ol gy — 3(g + 5)) + 3(0h — ®)0(55 — 55))-
The second term on the right hand side of each of the abovdiensizs the excessive velocity for

that effective component.
The reactive terms in the transport equations are given by

On = Ho%bi_rc
ob = [(acicy — Cal, (11.8)
Os= —(On+0b),

and represent conversion among the distinct componemtsghrchemical reactions. Hepg and
C; measure the maximum growth rate of the EPS and the bactesectivelyK; andK; are the
half-saturation constants in the Monod (or Michaelis-Mentkinetics used in the reaction, and
Cg is a natural decay rate that limits bacteria growth and adtsemt dependent decay. Note that,
if the nutrient value drops low enough« 1, then the bacteria will begin to die off. On the other
hand, if there is ample nutrient (supposing that excessitgamt content in the substrate does
not inhibit growth), then they, term will act as an exponential growth term of r&g—Cg. In

a realistic scenario, a homeostatic equilibrium can behedas the bacteria locally exhausts the
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nutrient, and the rate of available nutrient (due to diffugiis counterbalanced by the death term.
For simplicity, we will adopt a constant decay r&gin all our numerical studies presented in the

paper.

B. Mixing kinetics

Since the molecular weight of bacteria is normally two osdefr magnitudes larger than that
of the solvent molecules, we treat it as an effective polywigose collective behavior is viscous
in low concentrations and on the long timescale where graetiurs. As previously mentioned,
this treatment is a departure from diffusion-based modéisimtreat biofilm-forming bacteria as
passive, or as particles dispersed within the fluid. This@ggh is most appropriate for relatively
dense clusters of bacteria constrained within an extraeelimatrix, like those found in growing
biofilm colonies. We use the Flory-Huggin's mixing theor@[4o model the mixing phenomena
among the EPS, bacteria and the effective solvent.

We denote the mixing free energy density iy

f = kg T[%L||Oen||? + X2|| Oy 2 + y13||D<ps||2Jer[“h Ingn -+ >INy + @sIn s+
(1.9)
Xbn®n @b + Xsb@sPb + XsrnPh@s]],

wherekg is the Boltzmann constant, is the absolute temperatung, 1213 andy, measure the
strength of the distortional and bulk mixing free energgpectively, 111213 have the unit of
number per unit length whilg is proportional to the number density per unit volunid,JandNy
denote the polymerization index of the EPS and bacteripeatively, and(pn shsn are the mixing
parameters for the EPS and bacteria, bacteria and solvehsadvent and EPS, respectively. We
remark that we use the simplest possible distortional coméitional energy in this mixing free

energy density for simplicity. Another choice for the digimnal conformational energy can be

[V11 Y12 Y13

@0 — GOy ||+ > llosOgy - 0] % + - llen0es — @sOan| 2. (11.10)

In this paper, we stick to the free energy density given ir®)land defer the discussion on the

other distortional energy to a sequel.

The variation of the free energy density defined by (I1.9wi#spect to each volume fraction
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is given by

2 = —keTV110Gh + V2ka T [ (IN(h) + L) + Xon® + Xsns],

- = —kaTy1280, + VakaT [ (IN(@) + 1) + Xon®h + XstPs), (I1.11)

667;5 = —ksTy138@s+ Y2kg T[(IN(@s) + 1) + Xsn®n + XsbPo)-

C. Constitutive equations

We use the volume fraction of the EPS and bacteria as the grior&knowns. The volume

fraction of the solvent is then calculated from the incorspiiaility constraint
h+@+es=1 (1.12)
The mixing free energy in terms of the two unknowns can bestéo#o

f = keT[*3(|0¢n 1>+ 5 [10go]|* + 51000 + @) | + Vo[ R N + 12 N+

(1.13)
(L= n— @) IN(L— @ — @) + Xon®h®o + Xsb(1 — @b — Pn) Po + XsnPn(1— ¢ — )],
The variation of the free energy with respect to the two primmknowns is given by
of  of of  of
Notice that
0n 0Py
B(pnzﬁét:—u(vcph)ét, 6(pO:E6t:—D~(vcpo)6t. (11.15)
We denote the free energy associated with mixing by
ﬂl:/fdx. (11.16)
Its variation is given by
of  of of  of
6,‘21_/6fdx_/v-[%D(E—@)Jrcpoﬂ(ﬁ—ﬁ)]&dx. (11.17)
It then follows that
of = —v-Fedt, (1.18)
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which implies

Fe=—thD(gy — a5) — B0 (5 — a5) = —YazkeTO- (OghOgy+ D Cgn) —
0- (Va1 +Y13)ks T D@0 + (Va2 + Yi3)ks T Do Oe) 4 D[ f (@h, @)+ (1.19)

V11K T (@rAGh + 5(|0h|12) + Yioke T (@@, + 31| 0@ ||2) + Vaska T (0@, + oAy -+ Dgn Oy )],

wheref consists of the bulk terms and their first integrals in theingjree energy. The first part
can be identified as a part of the stress due to inhomogerfahg @olume fractions in the biofilm
and the second part serves as an additional pressure ircthrapmessible material system. So, the

elastic stress tensor due to mixing dynamics is given by

Tes= —kaT[(Y11+ Y13) OGO + (Y12 + Y13) DO + Ya3(O@On + OgnOgy)]. (11.20)

We proposed two models in [34]. In the first model, we assuragrimsport and deformation
of the active components in the mixture is carried out by tle¥age velocity and its gradient. For

instance for the solvent, we assume it is viscous with thesstgiven by

wherens is the solvent viscosity. If one considers rigid rod-shapadteria cells packed close
to one another, then at high volume fractions of tightly paitkells, one would expect colloidal
effects. However, confocal laser scanning micrographgirorthat the local volume fraction
of cells (including the water contained within) is usualgs$ than2, and below the threshold
where these effects occurs [29]. Thus, it is reasonablesianas the bacteria phase is an extended

Newtonian fluid and its stress tensor is defined as
Tp, = 2np(D)D, (11.22)

whereny, is a rate-of-strain dependent viscosity. The EPS polymigvaré is assumed viscoelastic

with stressa@, T, wheret, obeys the Johnson-Segalman equation

1
W Th4Tn W —alD - Ty Tn D] + 1, = 222D, (11.23)
dt A1 A1

where% = %-i-v- [ is the material derivativa) is the vorticity tensor, a is a rate parameter in
[—1,1], np is the polymeric viscosity andl; is the relaxation time. Since the velocity gradient

used in this constitutive model is calculated from the agengelocity, we name it the VA model.

10



If we assume the transport of each component is carried othidiyrespective velocity fields
and the associated gradients, alternative constitutivateans for the stress tensors are proposed

as follows

Ts=2NsDs, Tp = 2NpDy,
(11.24)

%Tn_wn‘Tn—i_T”'W”_a[Dn'Tn+Tn‘Dn] +)\_11Tn = Z%Dm

where Dg,Dp, D, are the rate of strain tensors calculated using the respecélocity field
Vs, Vb, Vn, Wy, is the vorticity tensor calculated fromy, and% = %+vn -0 is the material deriva-
tive for the EPS strand transported via the polymer netwet&aity. We refer to this constitutive
model the VN model.

D. Transport of the nutrient
The transport of nutrient is carried out by the solvent viyoes:
%((PSC) + 0 (evs®s — Ds@sc) = ge, (11.25)

whereDs is the diffusion coefficient for the nutrient. The nutriemtody rate is proportional to the

bacterial consumption,

g = —Coorcire (11.26)

whereC, parametrizes the uptake rate of the nutrient, Epds the half saturation constant for

nutrient consumption. We neglect the possible conversatwéen EPS and nutrient in this model.

E. Summary of the governing system of equations

The governing system of equations for the biofilm-solvenitore are summarized below.
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Transport equations for the volume fractions:

0 (@) = 0 n(1 - 0n) Dz, — 3 (g 55)) + 3n(® — 9905 — )] + O,

0 (00v) = 0 (1~ 00) Dz — 3 (5, T 35)) + 300(0h — 09O Fg — )] + G

0 (@) = 0 Mas(1— @) Ol — 35 + 5,)) + 30s(@ — )OG5 — )] + s

(1.27)
On = Ho%o e
o = [(5cisg —Ce)l@
Os= —(9n+0b)-
Individual velocity for each effective component:
Vs =V —A[(1— @) 0(3r — 3 (3 + 55)) + 3@ — )05 — 53]
Vo=V =A[(1- @) O(3 — 3(or + 50)) + 3@ — &) 0(3 — 5], (11.28)
Vo =V —A[(1— @) 0(5-— 3(or + a5)) + 3(0h — &) D( 5 — 2]
Transport equation for the nutrient:
A% 10 (vsogs) = O~ @sDsIC — (CoPocog)- (11.29)

Continuity equation and the momentum balance equation:

-v=0,
P = - (a@nTn+ @To + @sTs) — O [pl +kaT ((Yaz+ Y13) I 0gh + (Y2 + Ya3) D DepkH-30)

y13(OenUe, + O Ughn) ) |-
Here,p = @sps+ GuPp + $hPn is the density of the mixture. The stress constitutive @quatare
given by eq. (11.21),(11.22),(11.23) or (11.24).

Remarks:
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e We note that the elastic stress constitutive equation ig wailly within the domain where
¢ # 0. Hence, its contribution is zero in the pure solvent regkor computational conve-
nience, a transport equation for the stress compamest @1, can be formulated to have a
globally valid constitutive equation for the elastic stes

e The continuity equation is upheld approximately under tbguanption that the mobilitix

is small and the density differences among the three efeecbmponents are not far apart.

. NONDIMENSIONALIZATION

We use a characteristic time scijgea characteristic length scdieand a characteristic nutrient

concentratiorty to nondimensionalize the variables

Lt X Vo
= %=1 0=

—

X

3
:r\ S

, (I11.1)

—+
S|

wherefg is a characteristic force scale. The following dimensieglparameters arise

A= oo py yl,kBT =123 DZ@, Re =% R = 19 Re =00 ;=D

h4 ) r]shz’ r]bhz, I’]phz’ h2 )
h ~ ~ ~ ~ o
Bi —pOtz,p Bi(@s& + @ + @), fio = poto, Ke = K¢, K=K i=1... 2 (I11.2)

wherepg is an average densitRe;, Rg, andRg, are the Reynolds number for the solvent, the
bacteria and the EPS, respectively, @ands the Deborah number for the EPS. WeBet 1 and,
thus, the force scale is chosenfgs= p$—2h4.

0

For simplicity,we drop the”on the dimensionless variablied the parameters. The system of
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governing equations in these dimensionless variablesy&ndy
T 0 (0nv) = 0 [AGn((1— @)D, — 3 (g ) + (@ — 9Dl — )] + O

%+ 0 (o) = 0 [A@((1— ) O — 3(EL + 20)) + 3 — @) D(E - 2)] +

On = HoPor e

0o = (7S5 —Co)

(o (11.3)
5+ 0 (vsCos) = - Dspse — (CZ(PO#%)a

p% = - (a@hTn+ @Tp + @sTs) — O - [pl +KeT ((M11+ M 13) Ogh O + (M 124 TM13) D Oepy+

M 13(0h Dy + Do) )]
wherep = @sps+ @Pp + PrPn- The constitutive equations for the VA model are given by

Av|2t4+v-01) ~W-T+1-W—-aD-1+1-D][+1=ZD,

Re
(111.4)
The mixing free energy density is now given by
= T | 0] + 32 || 0ol + 21| D2+ Fo [ Ingn + 2 gy + @sIn s+
(111.5)

Xor@h® + Xst@s@b + Xsr@hs]]-
The no-flux boundary conditions at the solid impermeablenblany are derived from the transport

equations for the volume fractions

(111.6)



wheren is the unit external normal of the boundary. In addition, mpose the following boundary

conditions at the solid boundary:
v=0,n-0@,=0,n-Ug,=0. (11.7)
Along the same boundary, we impose a no-flux condition fontlteient as well:
n-Cc=0. (111.8)
Analogously, if the nutrient is fed along a certain part & oundary, we impose
C=0Cp (111.9)

along that part of the boundary. For the simulations in $eci, we impose a periodic boundary
condition in one space-direction and the above boundarglitions in the transverse direction.

We denote the bulk free energy density as

f

M2 @0 + {2 1N o+ 51N @+ Xor@n@b + XstPsP + Xsnfns]]. (I11.10)

In practice, we regularize the bulk free energy by the folfayn case ofp, = 0 and/org, = 0:

f = M2 In(on +A¢R) + 2 In(9o +A¢) + sIn s+
(I1.11)

Xbn®h@ + Xsb@Po -+ XsnPrs ],

whereA¢® and Acpg are two small positive quantities. Note that we don’t needetgularizeqs
because, as mentioned previously, the bulk of the biofilmormmosed primarily of water and,
thus,@s > 0 in the biofilm mixture all the time

It is worth noting here that our choice of characteristicasvaley depends upon the physical
phenomenon that we are interested in modeling, and hasusagpercussions on the numerical
stability of the scheme used to solve the equation. In faet,cauld identify fast, slow, and
intermediate timescales in the problem and propose son@iBaations in the case of very fast or
very slow timescales. In the slow time scale on which biofihovgh can be observed, the elastic
response of the system is minimal and, thus, system candtedreollectively as viscous. In the
fast and intermediate time scales, the elastic responseed&RPS network needs to be accounted
for by a viscoelastic constitutive model (11.24). In theléVing numerical simulations, we will
focus on biofilm-flow interaction in the slow time scal&; << 1. The elastic stress in the VA

model (11.23) is given by, ~ 2n,D.
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IV. NUMERICAL SIMULATION OF TRANSIENT 2-D BIOFILM DYNAMICS

We present numerical solutions for transient states ofa@h®aty biofilm model using the VA
model. In this section, we will investigate the growth of afin in 2-D: (x,y) € | = [0, L] x [0, 1],
governed by the equations given in the previous section.dsider a 2-D initial-boundary value

problem with prescribed initial states:

On(X.Y,0) = @ (X, Y), ®(X, Y, 0) = g5(x,¥), c(x,¥,0) = c°(x,y),d(x,,0) = d°(x,y), (IV.1)

and boundary conditions given by (111.6-111.9). All physitvariables are assumed periodic in the
x-direction. In the y-direction, we assume a flux-free bangacondition for the volume fractions
at both walls and the same type of boundary condition for thteient concentration at one side

y = 0; we feed in the nutrient at the upper boundary,
cly-1(x) =, (IV.2)

which allows the possibility of variable nutrient feedingtime. We assume the velocityyat 0

isv=0andv(y=1) = (v,0), wherey is a shear speed.

A. Numerical Schemes

We use the finite difference method to solve the coupled flnasp field, and nutrient concen-
tration transport equation. We employ uniform spatial anetstep sizes denoted iy, Ay and
At respectively. The superscriptdenotes the discretized solution at time lewd. We solve the
coupled momentum transport equation and the continuitgguusing a Gauge-Uzawa scheme,
developed by Shen et al. [41], and the other transport eapstising semi-implicit finite differ-
ence schemes.

We denote

R=—0-((M1+M13)00n0@ 4 (M12+M13) O@p0@, + M13(OenO@, + OgpOn) )+

(IV.3)
0 (a@nTn+ @oTp+ @Ts — & D),
whereRg, is an averaged Reynolds number. Preferably, it is chosdnthat
s
— +——)dx, V.4
Rea |Q\/ Re Ra; R%) (1V:4)
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whereQ is the computational domain. The momentum transport eguan be rewritten as
0 1,
p(av-l-v-Dv)——Dp-l— %D v+R. (IV.5)

The nonlinear termR is treated explicitly through extrapolation. We calcubasnd the pressure in
three steps. We present the scheme for the case of periadatciary conditions in the direction

and physical boundary conditions in the y direction. For@iaity, the second order extrapolation
of any functionf is denoted byf " " = 2f" — fn-1,

Step 1:

pn+1[u“+A1;v”]+pn+1vn+l_Dun+1+ [D§1 O2um+] :§”+1,
(IV.6)

Un+l|y:0 — O, un+1|y:1 = V.

Step 2: We implement the projection step by solving a Poisgpiation with the Neumann bound-

ary condition:

O (A Oy™Y) = 0-ur,

(IV.7)
n+1
- ly-01=0.
Step 3: We correct the velocity, pressure and the auxilianables.
Vn+1 —yt? + pn1+ DljJn+1
Hl=g"— .yl (IV.8)
n+1 1
\ pn+1 _ _llJT R_%Snﬂ’

wheres? = 0. This is a first order scheme in time.
The polymer volume fraction at time step+ 1 governed by the Cahn-Hilliard equation is
calculated by:

+1
i Ve I

- =gy*® — (1-0)AD- ®) —NL;*°, (IV.9)

where the semi-implicit and explicit terms are split (thelwear terms, including the natural log

terms from the free energy and from the growth rate, are pataded). For readability, we have
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introduced symbols corresponding to the explicit and siempiicit/extrapolated pieces:

O = @i O(1— @O Oy[(— 11— 5T 13) A — 5(—T 12+ M13)Ag 14

+T2(—1.5Xsn— -5Xon+ -5Xsb) O 2 + T 2(Xon — Xsn) @ 1]+

QR O(20 0 4 g0 — 1) 0y [ 5T 1aAGR L+ .5(I 12+ T 13) A

+.5T2(Xsn— Xbn+ Xsb) @1 + T 2Xsoy ], (IV.10)

NC™ = @i e(1— o0, (Nip(ln(cﬁg+9 +A@R) +1) — L (In(f P +Ag) +1) +In @*9)
+cpn+9 265"+ ¢ - 1)0y (- (n(@f ™ + Aef) + 1) + Ingl*?) .
A similar update scheme is employed for the other phaseblari@@. Here theB-method is em-
ployed for 0< 6 < 1 andB = 1/2 gives the semi-implicit, second order in time Crank-Nisbo
algorithm. Here, all of the “bar” terms are extrapolateduesl at the intermediate timestep:

(-_)”+e = (1—0)(-)"+6(-)™?. The update scheme for the nutrient transport equation is:

é((pgﬂcnﬂ _ ([QHCn) (pg+lDCn+l) (1-8)0 Ds(pgDC +e -0 (6n+9\7s1+e@+9)7

(IV.11)
where thepgl*! is computed by updating the phase field equations, usingitesascheme, prior to
updating the concentration of nutrient substrates. Thaadmhscretization in the above semidis-
cretized equations is done using central differences tarenat least second order accuracy in
space as well as to respect symmetry.

The boundary conditions at the top and bottom boungag#yl, 0 are handled in the following
way. We use uniform mesh size in both the spatial and temgedetization, where the time step
size isAt and spatial mesh size & = L /My, Ay = 1/My. The computation domaif2 = [0, L] x
0,1] is divided into uniform cells by nod€s;,yj) = (iAX, jAy), i =0,--- ,My, j =0,--- ,My. We
denote the value of the numerical solution of (IV.10) and X at(nAt,iAx, jAy) by ¢f; j, ¢
respectively. For either the case of the cavity geometnhershear flow, we have- njg1 = 0.
Thus the boundary conditions fgr, @,, andc given by (111.6)-(111.9) yield the discrete forms of

the boundary conditions
(Pnn,b,i,l = qﬁn,b,i,flv (Pnn,b,i,z = qﬁn,b,i,fzv qﬁn,b,i,Merl = @n,b,i,MyA’ (Pnn,b,i,lvly+2 = d‘n,b,i,Myfzv
(IV.12)
n _ AN n . 1 —
Ci71—ci7il, Ci,Merl_ClvMy_l? | _O, 7MX'
The numerical scheme for the volume fractions and nutriententration is second order in

space and second order in time if we choBse 1/2. The overall scheme however is first order
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in time and second order in space. To ensure accuracy in$ieeend order extrapolation is used
for the R term in the momentum transport equation (IV.6) and the meali terms in the phase
field equations (1V.9). The density of the solvent, bactand polymer network are set to be the
same in this study, thys" is in fact a constant. The average Reynolds nunitegris computed
by % = (‘F?;X-i- %ZX-I— %, where@'® = max{@ j,0 <i <My, 0< j <My} and@'™
is evaluated at the same location. THRg, and is a constant at each time stgpbut varies

with time. For convenience, we set= 1. All numerical results presented below are for at least
AX =Dy = 5.

The entire numerical scheme is executed in each time stéye ifolowing order.
e First, the velocity and the pressure field are solved.

e Second, the volume fractions are updated.

e Finally, the nutrient concentration is computed.

The numerical scheme is implemented in both regular andystad grids in 2 space dimension.
Convergence rates in both space and time are verified thrextghsive mesh refinement numer-
ical experiments. These techniques are appropriatRBést O(10), which is in the laminar flow

regime.

B. Numerical Results and Discussions

Before taking a look at several numerical simulations ofilsioflow interaction, it is necessary
to examine the way the various parameters affect the ewoluf biofilm mixing and biofilm
growth in "quiescent fluids”. The polymer parameters (tojpdttof Table 1), are picked in the
regime of a gel-like biofilm where channel formation is knowwroccur [42]. The Flory-Huggins
constants (besideg,,) are picked to promote the formation of a stable gel fracfg¥], though
the dynamics due to intermixing of the components is moreptmated in this ternary model.
The mixing parameteyy,, is set to zero to accommodate the fact the EPS is tied to th&ael
which it grows. The other Flory-Huggins parameters are dagmn previous biofilm modeling
attempts [24, 25].

Growth related constants are given in the middle third ofl§&by Due to the abundance of

literature studying the effects of oxygen content on baztand biofilm growth, we will treat
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SymbolParameter Value Unit

T Temperature 303 Kelvin

Vi Distortional energy 8x 10° m kg s 2

Y2 Strength of the bulk mixing energy 3x 10 m kg s2

Xsn Flory-Huggins mixing parameter .25 dimensionles
Xsb Flory-Huggins mixing parameter .25 dimensionles
Xbn Flory-Huggins mixing parameter 0 dimensionles
A Mobility parameter 1x10°10 kg~tmds

A1 polymer relaxation time 100 S

Np Generalized polymerization parameter (Bacteniap00 dimensionles
Nn Generalized polymerization parameter (EPS) {1000 dimensionles
Ho Maximum EPS production rate 15x 104 st

Ke Half saturation constant for polymer growth ~ |3.5x 10~* kg m3

C1 Maximum bacterial mode growth rate 1.5%x 1074 st

K1 Half saturation constant for bacterial mode gro\8ts x 104 kg m3

Cs Average bacteria death rate 2x10 7 or2x10°|st

Ds Substrate diffusion constant 2x 1079 m?s—1

C Maximum nutrient consumption rate 2x10°3 kg m3s1

Ko Nutrient uptake constant 35x10* kg m3

Np Viscosity of the EPS network 4.3 x 10 kgmts?
Ns Viscosity of the solvent 1.002x 1073 kgmts?
Nb Viscosity of the bacteria in solvent 43x 101 kgm1s?t
On Network density 1x10° kg m3

Ps Solvent density 1x10° kg m3

Pb Bacteria density 1x10° kg m3

h Characteristic length scale 1x10°3 m

to Characteristic time scale 1 x 10° (growth) S

Co Characteristic concentration 1x10°3 kg m3

Po Characteristic density () 1x10° kg m3

TABLE |. Parameter values used in simulations (unless wotiser specified). Only values relevant to the

simulations are given here.

20




our nutrient concentration as the local oxygen concentration. The maximal growth rateb
associated half-saturation and diffusion constants ageséime used in other modeling efforts
based upon experimental results [16, 22, 37, 43] for groatésr of biofilms relative to oxygen
concentration.

The bottom third of Table 3 contains typical fluid parame{érd. On the timescale of days,
where visible growth occurs, the fluid can be treated as us¢86, 37]. Thus, we neglect the
elastic contribution of the bulk stress for the simulatitwetow. The viscosities and other fluid
parameters are consistent with other modeling efforts 41,2%, 37] and should allow for easy

comparison with those models.

1. Growth in quiescent fluids

We begin our discussion of the numerical simulations by $ooy on the basic mechanics of
biofilm growth. We simulate biofilm growth in a quiescent wdied, where the nutrient (oxygen)
is fed at the upper boundary (interface with the ambient @& 1) while periodic boundary
conditions are assumed in tixedirection. Unless otherwise specified, we assume the ntitrie
concentration at the upper interface is fixda, 1) = 1 throughout the simulation. Figures 1-3
show some representative numerical results of this sinonlat selected time values. Figure 1
depicts the distribution of the EPS volume fraction and thetérial volume fraction at three time
values during the course of simulated growth, represerttiegnitial, the intermediate and the
mature stage.

The initial condition for this growth simulation is that thacteria are populated lightly in the
bottom of a water tank with a very low EPS concentration. Aes ltlg-product of the bacterial
growth, EPS grows as the bacteria multiply. The stratificain both the EPS and bacteria is
captured well by the simulation. Although the average (rms@opic) velocity of the system is
near zero, which justifies the use of quiescent fluids, theistsethe excessive velocity for each
component to “move” due to inter-component mixing. Here, biofilm growth profile respects
the normal mode analysis, obtained on constant equililuiach predicts that the growth rates
differentiate based on the scale of the underlying pertiobaf volume fractions, i.e., the fastest
growth is dedicated to a certain range of wave numbers angrtveth (expansion) phenomenon
is associated with long and intermediate wave disturbaockyg34].

As the initial bacterial distribution is nearly uniform qtiickly becomes heterogeneous during
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growth. The bacteria tend to aggregate or nucleate behafasitest growing hump leaving behind
a less populated landscape. This phenomenon seems to matkegbin the EPS production, which
is expected given that the EPS is produced by the cells. Imé¢lae mature stage of growth, the
high concentration of the bacteria and EPS are observecinubleated hump. This nucleated
growth profile has been observed in other models [21, 25],isnelated to the unstable modes
analyzed in [24, 34]. The decay tei@ is held very small relative to the growth rate for this

simulation, and thus the effect of starvation due to the tHakutrient is not readily apparent.

Figure 2 depicts the velocities around the biofilm hump fbtraiee effective components at the
mature stage. These velocities intuitively capture thaonaif the bacteria, EPS and the solventin
the neighborhood of the nucleated hump. Specifically, tioéeln@ and EPS all expand in the bulge
while the solvent expands near the top of the bulge and ismégiied through the neck region. At
the center of the nucleated hump, where the growth is the sigsificant, the bacterial and EPS
velocity are near zero. The velocities show positive vahgidating upward biomass expansion
on top of the hump while they are negative in the lower halfhef hump showing a downward
expansion of the biomass. Due to the expansion of the biofimt fthe solvent is perturbed so
that a pair of roll cells form on each side of the nucleated pRig. 3). In this ternary model,
the total volume of the mixture is assumed conserved, thaigitbwth of the bacteria and EPS is
at the expense of the solvent. Figure 3 shows the velocitiyebulk fluid and the pressure field.
The bulk velocity is the result of intermixing of the compaitewhich is dominated by the solvent
velocity in this simulation. It is tiny however. The pressis highest in the neck region and lowest
behind the fast growing front. The relatively high presddisgribution shifts more toward the neck

region as the biofilm growth approaches maturity. Overadl,gressure is quite low in magnitude.

Next, we investigate growth dynamics for differently sizadfilm colonies growing directly
on the substrate. Figure 4 shows a simulation that inittzly seven separate and disparately sized
bacterial colonies. After 300 time units (about a half weékimensional time) the biofilm has
doubled in depth, and several colonies have grown togetherthree colonies in the middle have
begun connecting to each other at the top, leaving a voidraedéh and between with little EPS
and bacteria. This suggests that, for the top feeding boynmandition, as the biofilm grows
upward, the rate of outward expansion increases, espeeaiathe spatial locations where the
biofilm profile evolves along the dominating growth mode oftam wave numbers. This new
growth forms nucleated regions that eventually convergen® another, and this growth profile

is driven by the dominating unstable mode revealed fromitteatized analysis [34]. Again, the
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most populated bacterial and EPS regions are closer to tlwargy biofilm front. The decay term
is held small in this case as well, but will be explored below.

The velocity of the three effective components are ovedaidhe corresponding volume frac-
tion plots in Figure 5. The roll cells are pushed upward abtbfim fronts expand into the solvent
region and merge. In the mature stage, only a pair of the el survive on the top. Figure 6
shows snapshots of the velocity overlaid with the pressate &t two times for this multi-colony
simulation. Early on, the velocity field undergoes a tramisgtate before forming stable roll cells
around each colony. The pressure and velocity here areedttively small, which is expected
given the very slow rate of growth associated with this biofil

When death due to a lack of nutrient is non-negligible, theeahgics of the growing biofilm are
quite different. Figure 7 illustrates the effects of moderzell death in a regime where the local
nutrient concentration can become exhausted. Using the satial condition as figure 1, figure 7
shows a significant departure from the usual mushroom shgypedh profile. Here we see much
greater outward expansion of the bacteria, but lower loeatdria concentrations. Behind the
fastest growing part of the biofilm, the bacteria populatidecay to nearly zero, leaving pockets
of little to no bacteria behind.

These studies demonstrate the basic hydrodynamics antiveskinetics in biofilm growth
among the three effective components.

Remarks

¢ In these simulations the bacteria growth dynamics seenoneéde. The growth and decay
rates of the biofilm along with the nutrient diffusion ratedarelative distance from the

upper, nutrient-rich, interface locally regulate the leaet population.

¢ In each simulation we see rapid growth of the bacterial phlagetapers off as the local
nutrient supply is exhausted. As the biofilm approaches ntgtuve see cells near the

bottom starved due to lack of available nutrient.

e The EPS growth lags slightly behind the growing bacteriahfin these simulations. Since
there is no mechanism to regulate EPS production in the mumedel, the EPS phase
may continue to grow beyond realistic values given the presef available nutrient. It is
thought that bacterial EPS production is regulated thrapgdrum sensing [2], and such a

mechanism will be considered in an augmented model in thedut
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We next probe how these growth dynamics and kinetics areedltghen the biofilm is subject

to a weak shear flow imposed by slow moving upper fluid layer.

2. Growth in shear flows

The disparity of time scales in the model suggests that sdfeete are negligible on the
timescale where other effects are dominant. One examplei®fg that the elastic relaxation
timescale of the EPS polymeky, usually in terms of seconds) is often small relative to the
timescale under which biofilm growth occurs (usually over tlourse of hours and days). Like-
wise, under a large shear applied for a short time, the velgtiowth of the network will be small.
Figure 8 demonstrates the effect of a biofilm growing undereakvshear where the Reynold’s
number for the solvent iRe = 1 x 102 as calculated from the table of parameters. Here the
shear is picked so small that its effects on growth can be saBnover the course of several
days. Note that the growing biofilm under a weak shear canlolewan elongated peninsula near
the top of the biofilm hump, which can eventually pinch off dredcarried away by the velocity
field. Figure 9 records the snapshots of the pressure and/énkail velocity field at two selected
time values. Note that it is mostly bacteria along with thafggd EPS that are pulled off by the
shear flow since the bacteria must proceed the EPS as theyaplmms [45]. For mature biofilms,
shedding bacteria is necessary for propagating the cotoathier locations.

Under a relatively fast shear, where the characteristie Boale is set dy = 1s, the timescale
required to capture the growth effects is so small that tleavtir is negligible. Figure 10 shows
a simulation of fast shear flow for a reasonably designedrbgéeneous biofilm profile with a
slightly attenuated neck connected to a base, as suggegjimgR. In contrast to the weak shear
experiments, wherBe = 1 x 10~3, here the flow is actually three orders of magnitude faster, i
Re = 1. This is faster than the creeping flow experiments exanmimédure 8, but still below the
threshold for the onset of turbulence. Note that the biofigends under the influence of shear, but
there is no visible growth. The shearing bulk flow inducesststent velocity in both the EPS and
the bacteria (see Figure 11). The pressure distributicsmarthe biofilm colony seems to indicate
that the high pressure point is located in the neck regiohenfitont of the hump, relative to the
flow direction, and the low pressure spot is situated in thek lodéi the hump (shown in Figure 12).

For heterogeneous biofilms, shear flow can be an importatdrfac propagation. Consider

a mature biofilm grown using the same parameters as Figureost & the bacteria are densely
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populated at the top of the biofilm, while a less dense pojulas spread throughout the network.
If we apply a fast shear to this biofilm, as simulated in FiglBewe see the less viscous bacteria
at the top of the biofilm (where the EPS concentration is l@&e, quickly spread throughout the
domain, while the bacteria near the base (where the EPS gtepuls higher, and the velocity
lower) remain intact. Thus, we can observe that the EPS mktaats to hold the bacteria in place

against shear flows.

V. CONCLUSION

We have developed a multi-phase hydrodynamical theory ififiltns (biomass-solvent fluid
mixtures) by modeling the EPS network, bacteria and effectolvent (consisting of solvent and
all nutrient materials) explicitly. This theory is formtéal using a single fluid multicomponent
model of multiphase materials. In this model an incompl#esaverage velocity field is promi-
nently identified while the individual velocity for each ftlcomponent is given as a combination
of the (excessive) mixing velocity and the average veloditye EPS dynamics are dictated by the
local population of the bacteria and the presence of availabtrient. The bacterial population
is affected by several factors including the local conaarmin of nutrient and the natural survival
rate, which is modeled as a small decay rate independenedrthironment. The nutrient con-
centration is governed by diffusion within the solvent ailidves for local bacterial consumption.
The governing system of equations for this model consisiacdtigd differential equations for the
volume fraction of each phase, the nutrient concentratiod,the momentum transport equation
for the mixture. These equations are discretized and saluetkerically using second-order finite
difference methods; the discrete equations are solvedspa#ial dimensions in order to simulate
biofilm growth and biomass-solvent interaction. Rangesmgiartant parameter values are ex-
plored in order to demonstrate the features that this med=pable of capturing. The numerical
simulations of biofilm growth in quiescent fluids reveal sopnreminent features for the spatial-
temporal distribution of the bacteria and the EPS which wgehtan be validated through refined
experimental studies in the future. The numerical simaiatbol also allows one to investigate the
bacteria-EPS-flow interaction in shear flow environmentwel as in environments where bac-
terial starvation, due to depletion of nutrient, may prevahe theoretical framework we adopted
in the development of this model can be readily extended ¢tude different bacterial pheno-

types, which are common in most biofilms, as well as antibedtehemicals. These potentially
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important refinements will be explored in a sequel.

This theoretical approach to multiphase complex fluids destrates a systematic derivation of
the transport equations for volume fractions in an incorsgitde material system. Distinguishing
the EPS and bacterial phases from one another allows foriffezedtiation of their produc-
tion, transport, response to bulk flows, and mutual intevactWe note that previous models for
biofilms did not treat differences in the physical propertéthe bacteria and EPS in a systematic
way. This modeling refinement is important, because it adlow to capture qualitative features
of EPS and bacteria that emerge as a result of this distmc#ds a more refined understanding
of the EPS/bacteria relationship is developed, our modilfwither allow us to quantitatively
address this issue. This approach also sets the stage e fstudies on quorum sensing and
additional chemical species transport, including theotdfef flow and chemical interference on
biofilm formation; it also enables the modeling of bactesaaa active migratory species within

the modeling framework. All these applications will be pued in the near future.
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FIG. 1. (Color online) A growing biofilm forming a typical nleated growth pattern. The volume fractions
of @, and@, are shown at various timesteps, using parameters outin&ahle 1. The EPS volume fraction

grows proportionally with that of the bacterial volume fiiao.
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FIG. 2. (Color online)Thex andy component of the velocifyfor each phase in and around the growing
biomass in Fig.1 d@t= 300. Note that the direction field for the EPS and bacterid temove outward from
the center of the nucleated hump, suggesting growth/eigrangthe biofilm colony, while the solvent tends
to replenish the interior of the biofilm through the neck cegas well as within the biofilm. The solvent is
pushed upward through the top of the hump leading to the foomaf a pair of roll cells on each side of

the bulging hump.

aValues of velocity or pressure shown in all figures e in tedimensional units derived in equation I11.1.
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FIG. 3. (Color online) The bulk or average velocity field anggsure at = 150,300 for the biofilm
(of Fig.1), respectively. Here the direction field is ovgdd with the pressure field (color map) at the

corresponding timestep, and demonstrates the formatioollafells (or vortices) in the solvent exterior to

the growing biofilm.
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FIG. 4. (Color online) Disjoint biofilm colonies growing éictly off a substrate. Herg, andq, are shown
at various timesteps using the same parameter values iisfEable 1. As the biofilm colonies grow and

merge together, heterogeneous structures in the EPS amidgrofiles become evident.
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FIG. 5. (Color online) The velocity for each effective compat around the growing colonies in Fig.4 at
t = 300. Note that the direction field for the EPS and bacterid termove outward, suggesting growth of
the biofilm colony, while the solvent tends to replenish thterior of the biofilm through the neck regions
of the merging colonies as they expand outward. At the inteliate stage of growth, solvent tends to flow
out the front of the nucleated region. A pair of roll cellsrfoon the sides of each of the growing biofilm

colonies.
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FIG. 6. (Color online) The bulk or average velocity field amggsure at = 150 300 for the disjoint

colonies of biofilm (of Fig.4). Here the direction field is alayed with the pressure field (color map) at the

corresponding timestep, and illustrates the formatiorotbicells (or vortices) in the bulk fluid.
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FIG. 7. (Color online) The growing hump of Figure 1 when stdion and natural cause decay is included
in the model. Here a faster growth rate is usges 2.0 x 104, while the death rate i€g = 2.0 x 107°.
Note that as the biomass grows, the oxygen content becommisistied, and the bacteria tend to spread
outward more in contrast to Figure 1. The EPS tends to fornmg $talk trailing the upward expansion of

the bacteria colony.
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FIG. 8. (Color online) A growing biofilm under slow steady ahatt = 100 200,300. The biofilm is
allowed to grow untilt = 100 before the shear flow is applied. Here the initial conditnd parameters
are the same as Fig.4 . The nondimensional shear rate of indgrii is applied a¢ = 1. Shearing flow
deforms the growing biofilm colony slightly to the flow diremt, and begins pulling bacteria off the mature

colony. The periodic boundary condition in tRedirection is evident as we see streams of bacteria flow

back in from the left side.
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FIG. 9. (Color online) The bulk or average velocity field amedgsure at= 200,300 for the disjoint colonies
of biofilm (of Fig.4) under slow steady shear. Here the vejofield is overlayed with the pressure field

(color map) at the corresponding timestep and is depictdthstrate the shear profile in the flow field.
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FIG. 10. (Color online) A heterogeneous biofilm growing omtktalks under quick steady shear. The

characteristic time scale heretis= 1, and is picked to illustrate shear flow on the fast time scalee

nondimensional shear rate of magnitude 1 is applied-atl. Note that growth and mixing effect are

negligible here and that the biofilm interface is well maiiméal.
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FIG. 11. (Color online) The velocity components in the glyckheared biofilm. Here the same parameters
are used as Fig.10, however bacterial growth and EPS redaxate both neglected. The excessive velocity
components indicate that the EPS and bacteria are movee tagtit as the front of the hump is pulled

upward and the back pushed down. The solvent velocity prisftigical for flow around an obstruction.
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FIG. 12. (Color online) The average velocity field and pressait = 1, 5(seconds) for the quickly sheared

biofilm (of Fig.10) . Here the direction field is overlayed kvihe pressure at the corresponding timestep,

and is depicted to show the pressure jump from the leading &xdidpe back edge of the biofilm under shear.
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FIG. 13. (Color online) The mature biofilm from Figure 7 undiest steady shear. Like in Figure 10, the
characteristic timescale is= 1. Here the shear rateus= 10 at the upper boundagy= 1, however. Note
that the bacteria along with the attached EPS is prone to tedpaway into the solvent while the EPS

network is more resistant to the applied shear.
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