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Computer modeling of multicellular systems has been a valuable tool for interpreting and guiding
in vitro experiments relevant to embryonic morphogenesis, tumor growth, angiogenesis and, lately,
structure formation following the printing of cell aggregates as bioink particles. Here we formulate
two computer simulation methods: (1) a kinetic Monte Carlo (KMC), and (2) a cellular particle
dynamics (CPD) method that are capable of describing and predicting the shape evolution in time of
3D multicellular systems during their biomechanical relaxation. Our work is motivated by the need
of developing quantitative methods for optimizing post printing structure formation in bioprinting-
assisted tissue engineering. The KMC and CPD model parameters are determined and calibrated
by using an original computational-theoretical-experimental framework applied to the fusion of two
spherical cell aggregates. The two methods are used to predict the: (1) formation of a toroidal
structure through fusion of spherical aggregates, and (2) cell-sorting within an aggregate formed by
two types of cells with different adhesivities.

PACS numbers: 87.17.Aa, 87.17.Rt, 87.85.G-, 87.85.Lf

I. INTRODUCTION

Understanding how living cells form tissues and organs
is a fundamental problem of developmental biology [1, 2],
and is also important for the rapidly expanding field of
tissue engineering that aims at building functional tis-
sue substitutes in vitro [3]. Tissue engineered structures
may be used for drug testing and to restore or replace
damaged tissues and organs [4]. An emerging tissue engi-
neering technique is bioprinting [5–11] via the automated
layer-by-layer deposition of multicellular aggregates (the
bioink). Subsequent postprinting fusion of the contigu-
ous aggregates gives rise to the desired tissue construct.
Predicting the result of post-printing tissue formation is
a task for theoretical modeling.

In general, existing theoretical and computational
models of multicellular systems have been restricted
to interpret specific shape-forming morphogenetic or
other developmental processes. As examples, Odell and
coworkers represented the cell as a collection of coupled
viscoelastic elements to model gastrulation [12]. Drasdo
and Forgacs used the interplay of genetic and generic,
physical mechanisms to model blastula formation and
gastrulation [13]. Glazier and Graner built a cell as a col-
lection of contiguous spins, defined on a discrete lattice
(Cellular Potts Model), and were able to give an account
of cell sorting [14, 15]. Palsson and Othmer considered
cells as deformable viscoelastic ellipsoids and studied how
the motion of individual cells leads to the collective mo-
tion of an aggregate of cells [16]. Brodland and coworkers
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introduced a cell-level finite element method for modeling
the forces and the resulting dynamics in 3D multicellular
systems [17–19]. Recently, Newman introduced a subcel-
lular element model [20] to study cell division, adaptive
cellular shape deformations and primitive streak forma-
tion [21–24].

A guiding principle for most models of cell rearrange-
ment in cell aggregates is the differential adhesion hypoth-
esis (DAH) proposed by Steinberg [25, 26]. DAH states
that structure formation in multicellular systems occurs
due to (i) differences in cell-to-cell adhesion of different
types of cells and (ii) cell motility. Cells seek positions
with the largest number of strong bonds. For example,
in a random mixture of two cell types of different cohe-
sivities the more cohesive cell population sorts out and
occupies the central region surrounded by the less cohe-
sive population, in analogy with two immiscible liquids
of different surface tension. Based on DAH, Steinberg in-
troduced the concept of tissue surface tension, a quantity
that was used to provide a quantitative characterization
of cell sorting [27]. Recently, it has been proposed that
tissue surface tension results from the interplay of differ-
ential adhesion and differential tension [17, 28–32].

The purpose of this paper is to formulate two computer
simulation methods: (1) a kinetic Monte Carlo (KMC),
and (2) a cellular particle dynamics (CPD) method that
are capable of describing and predicting the shape evo-
lution in time of 3D multicellular systems during their
biomechanical relaxation. Our work is motivated by the
need of developing quantitative methods for optimizing
post-printing structure formation in bioprinting-assisted
tissue engineering. In the KMC method the configuration
of the multicellular system is propagated in time through
a standard rejection-free kinetic Monte Carlo algorithm.
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This approach should provide a more accurate descrip-
tion of the time evolution of a multicellular system than
other grid based methods, such as, the Metropolis Monte
Carlo (MMC) model [6, 33] or the widely used cellular
Potts model (CPM). The latter uses a modified MMC
algorithm to update the configuration of the simulated
system and postulates that time is proportional to the
number of MC steps, which in general is not the case [34].
In the CPD method [34] individual cells are modeled as
an ensemble of cellular particles (CPs) that interact via
short range contact interactions, characterized by an at-
tractive (adhesive interaction) and a repulsive (excluded
volume interaction) component. CPs in a cell are held
together by an additional confining potential that mim-
ics the role of the cell membrane. The time evolution
of the spatial conformation of the multicellular system
is determined directly by recording the trajectories of
all CPs by integrating their equations of motion. What
sets apart CPD from the other similar off-grid particle
methods, such as Newman’s subcellular element method
(SEM) [20, 21, 23, 24], is the employed force field (es-
pecially the confining potential) and its parametrization
that makes the system behave as a complex viscous liq-
uid.

The KMC and CPD model parameters are deter-
mined and calibrated by using an original computational-
theoretical-experimental framework applied to the fusion
of two spherical cell aggregates. In particular, the CPD
model parameters are determined such that the shape of
two fusing spherical aggregates in the CPD simulation
match as closely as possible the one observed experimen-
tally, i.e., two attached spherical caps (see Fig. 1) [35].
For the theoretical description of the fusion of two identi-
cal spherical aggregates we use a simple continuum model
introduced by Frenkel [36] and further developed by oth-
ers working in the field of rheology [37, 38]. It is this
theoretical continuum model that provides the link be-
tween the time scales of simulations and the time scales of
experiments. Once this link is established, the KMC and
CPD simulations are used to quantitatively predict the
time evolution of complex postprinted structures whose
description using a continuum hydrodynamics approach
is impractical. After calibration, the KMC and CPD
models are applied to predict the: (1) formation of a
toroidal structure through fusion of spherical aggregates
[39], and (2) cell-sorting within an aggregate formed by
two types of cells with different adhesivities, two mor-
phogenetic processes [40] driving postprinting structure
formation.

The remainder of the paper is organized as follows.
Section II describes the KMC (Sec. II A) and the CPD
(Sec. II B) methods, as well as the theoretical aspects of
the continuum approach of aggregate fusion (Sec. II C).
Section III contains the results and discussion of our
KMC and CPD simulations, i.e., fusion of identical spher-
ical multicellular aggregates (Sec. III A) and cell sorting
(Sec. III B). Conclusions are presented in Sec. IV.

II. COMPUTER AND THEORETICAL
MODELING

A. Kinetic Monte Carlo for Multicellular Systems

The Kinetic Monte Carlo method (KMC) was pro-
posed as an alternative to the MMC method for simu-
lating the evolution of Ising models [41]. When a system
approaches equilibrium, or is in a metastable state, the
Metropolis algorithm rejects most trial moves because
the acceptance probability is small. A main feature of
the KMC algorithm is that it is “rejection-free”. In each
step, one calculates the transition rates for all possible
changes compatible with the current configuration, and
then chooses a new configuration with a probability pro-
portional to the rate of the corresponding transition.

We designed and implemented a KMC algorithm to
simulate the time evolution of a lattice model of multicel-
lular systems. Aggregates of cells in cell culture medium
are represented on a 3D hexagonal close-packed lattice
by associating each site to either a cell or to a similar
sized volume element of medium. Thus, the lattice spac-
ing is equal to one cell diameter. We assume that each
cell interacts with its 12 nearest neighbors (1st and 2nd
neighbors considered to be nearest neighbors) located at
a distance of one lattice spacing from the given cell. In-
teractions are expressed in terms of works of cohesion and
adhesion [42, 43], defined as the work needed to break up
the contact between two neighbors of respectively simi-
lar or differing types of cells. For example, in case of
a multicellular aggregate composed of a single cell type,
the work needed to extract a cell from the aggregate (i.e.
model tissue) is the work of cohesion, εcc, multiplied by
the number of the cell’s nearest neighbor. The interac-
tion between cells and the cell culture medium is set to
zero. The movement of cells is described by assigning
rates to swapping cells with adjacent cells of different
type and/or with medium elements. These elementary
moves occur with rates given by

k = w0e
−Eb/ET , (1)

where the factor w0 is the frequency of attempts to cross
the energy barrier of height Eb, and ET is the energy
of biological fluctuations [44], the analog of the energy
of thermal fluctuations, kBT (kB is Boltzmann’s con-
stant and T is the absolute temperature). It has been
argued that ET is a characteristic measure of cell motil-
ity: the higher is ET in comparison to the energies of
cohesion/adhesion, the higher is the motility of the cell
[44].

Due to the complexity of the cytoskeletal machinery
responsible for cell movement, there is no unique way
to assign a barrier height to the swapping of two cells.
Any reasonable choice, however, needs to be consistent
with the following set of experimental observations on
cell movement in 3D:

(1) Relocation of cells in embryonic tissues and in some
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engineered tissues (such as cell aggregates) occurs
according to DAH [26, 45]: cells take advantage of
their motility to establish the maximum number of
strong bonds with their neighbors.

(2) Anchorage-dependent cells do not spontaneously
dissociate from the cell aggregate they are part of
[26].

(3) The speed of cell movement in 3D matrices has
a particular dependence on the strength of cell-
matrix adhesion: cell movement is fastest at an op-
timal strength of binding. Too weak or too strong
binding hampers cell movement [46, 47].

Consider a binary particle model for a multicellular
system formed by two cell types, t = 1, 2 (for a multi-
cellular aggregate composed of one cell type, t = 1, sur-
rounded by tissue culture medium, t = 2 represents the
medium particle). The configurational energy (or total
interaction energy), E is expressed as [6]

E = γ12N12 + const , (2)

where γ12 = (ε11 + ε22)/2 − ε12, with ε11 and ε22 being
the energies of cohesion respectively for cell type 1 and

2, and ε12 is the energy of adhesion. N12 =
∑NI1
i=1 ni2 =∑NII2

i=1 ni1 is total number of nearest neighbor pairs of
different cell types cells, ni2 (ni1) the number of nearest
neighbors of cell i of type 1(2), which are of type 2(1) and
N I

1 (N II
2 ) the total number of cells of type 1(2), which

have at least one (nearest) neighbor of type 2(1). (As the
const is irrelevant for the evolution of the system, we set
it to zero [6].)

Consider two nearest neighbor cells, i and j of different
types (without loss of generality we can set i = 1 and j =
2). The system evolves in time towards configurations of
decreasing energy E, i.e. for γ12 > 0 (γ12 < 0) N12

decreases (increases). For γ12 > 0 and γ12 < 0 cells
respectively phase separate (cell sorting) and mix (cell
mixing). Elementary KMC moves consist of swapping
two neighbors of different types (swapping cells of same
type does not change the energy). The contribution of
two such cells, i and j to E is

Eij =
1

2
(ni2 + nj1), (3)

and E =
∑NI1
i=1

∑NII2
j=1Eij . Furthermore, the larger is Eij

the more likely is the KMC move to swap cells i and j.
Thus it is reasonable to define the energy barrier Eijb in
Eq. (1), for a transition involving the swapping of two
cells i and j, as

0≤Eijb = Emaxij − Eij , (4)

where Emaxij is the maximum possible value of Eij . For
γ12 > 0, Emaxij is obtained when the number of neighbors
of differing type surrounding cells i and j is maximal.

Now we can formulate the steps of our KMC algo-
rithm for simulating the time evolution of multicellu-
lar systems: (S1) Set t = 0; (S2) Find all interfacial
cells (i.e., cells in contact with cell culture medium or
with cells of different type) and compute the rates km,
1 ≤ m ≤M , corresponding to all possible M transitions
involving these cells; (S3) Calculate the cumulative rates:
Km =

∑m
n=1 kn, 1 ≤ m ≤ M ; (S4) Generate a uniform

random number u between 0 and 1 and carry out event
“m” for which Km−1 < uKM ≤ Km; (S5) Generate an-
other uniform random number u′ between 0 and 1, and
increment the time variable (i.e., t → t + ∆t) by the
non-uniform time step

∆t = −K−1M log(u′); (5)

(S6) Update all rates kn that may have changed due to
the previous transition “m”; (S7) Return to step S2 and
repeat the process until the time variable reaches the
desired target value.

B. Cellular Particle Dynamics Method for
Multicellular Systems

The cellular particle dynamics (CPD) method is an off-
lattice, particle-based computer simulation method that
can describe and predict the time evolution of 3D mul-
ticellular systems during shape changing biomechanical
transformations [34]. Within the CPD formalism cells,
regarded as continuous objects with self-adaptive shape,
are coarse-grained into a finite number, NCP , of equal
volume elements. Each volume element is represented by
a point-like cellular particle (CP) situated at its center
of mass. CPs interact via short-range contact interac-
tions, characterized by an attractive (adhesive interac-
tion) and a repulsive (excluded volume interaction) com-
ponent. In addition, CPs within a given cell are subject
to a confining potential that assures the integrity of the
cell. The time evolution of the spatial conformation of
the multicellular system is determined directly by calcu-
lating the trajectories of all CPs (and, therefore, cells)
through integration of their overdamped Langevin equa-
tions of motion. This minimalist model, when properly
parametrized, has the features of a complex viscous liq-
uid and it is suitable for describing the time evolution of
multicellular aggregates and soft-tissue constructs.

For the nth CP in cell α, the equation of motion is

µṙαn(t) = −∇αnU + fαn(t), (6)

where rαn(t) is the position vector, U is the potential en-
ergy function describing the interaction of the CPs , µ is
the friction coefficient, fαn(t) is a random force, and the
dot denotes time derivative. The random force is mod-
eled as a Gaussian white noise with zero mean and vari-
ance 〈fi(t)fj(0)〉 = 2Dµ2δ(t)δij , where D is the sort-time
self diffusion coefficient of the CPs. The CPD parame-
ters D and µ are related to the previously introduced
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biological fluctuation energy ET by the Einstein relation
Dµ = ET . The CP potential energy U has an intra-
cellular and an inter-cellular component corresponding
to CPs belonging respectively to the same cell and to
different cells, i.e.,

U =
1

2

∑
α

∑
n=1
m6=n

U intra(|rαn − rαm |)

+
1

2

∑
α

β 6=α

∑
n,m

U inter(|rαn − rβm |), (7)

where αn (βm) labels the cellular particle n (m) in cell α
(β). We model the short-range contact inter- and intra-
cellular interactions between CPs through

U inter(r) = VLJ
(
r; εinter, σinter

)
, (8a)

U intra(r) = VLJ
(
r; εintra, σintra

)
+
k

2
(r − ξ)2 Θ(r − ξ),

(8b)
where

VLJ(r; ε, σ) = 4ε

[(σ
r

)12
−
(σ
r

)6]
(8c)

is the standard Lennard-Jones potential, and Θ(r) is the
Heaviside step function. Note that instead of VLJ one
could use any other potential that has a repulsive core
and a short range attractive part. For example, in SEM
[20] a Morse potential is used to describe the interaction
between two subcellular elements. However, the impor-
tant addition in CPD is the second quadratic term in
U intra that, for r > ξ, represents an elastic confining po-
tential used to maintain the integrity of the cell. This
term, characterized by the elastic constant k, guarantees
that the CPs within a cell remain confined inside the
boundary of the cell. The time evolution of the multi-
cellular system within the CPD approach is determined
by numerically integrating the equations of motion (6)
for all CPs. We have accomplished this by implementing
the intra- and inter-cellular interaction forces, Eqs. (7)-
(8), and a Langevin dynamics integrator in the freely
available massively parallel molecular dynamics package
LAMMPS [48].

For a multicellular system of a single cell type there are
nine CPD model parameters that need to be determined:
NCP (the number of CPs per cell), D, µ, σintra, εintra,
k, ξ, σinter and εinter. The choice of NCP is determined
by the degree of detail we want to describe individual
cells. Since we are interested in the time evolution of
the shape of an aggregate formed by a large number of
cells and not in the detailed description of the surface
dynamics of individual cells, in the present work we make
the reasonable choice of NCP = 10. Because σ in (8c)
determines the size of the interacting CPs, we can set
σ ≡ σintra = σinter. The length ξ in (8b) represents the
size (diameter) of a cell, which comprises NCP tightly

packed CPs of size σ. Thus, one can estimate ξ ≈ σN1/3
CP .

Next, we define convenient CPD (or computer) length,
time and energy units according to

`0 = σ, t0 =
σ2

D
, E0 = ET = µD. (9)

In these units all CPD parameters all pure numbers, and
in particular σ = D = µ = 1. We set the confining poten-
tial parameters as ξ = 2.5 (∼ 101/3) and k = 5. A larger
(smaller) value for k makes the cell more rigid (soft) when
subjected to deformations. The chosen value, for which
kσ2/2 = 2.5ET , is suitable when cells in the aggregate
are exposed only to adhesion and surface tension forces.
By choosing εintra = 1 (i.e., same as the biological fluc-
tuation energy ET ) the dynamics of the CPs inside a cell
will have sufficient randomness to produce cell surface
fluctuations that play an important role in cell motility
[49].

Thus, out of the nine CPD parameters we are left with
only one, εinter, that needs to be determined such that
the time evolution of the shape of the multicellular sys-
tem follows as closely as possible the corresponding ex-
perimental one. For this purpose we focus on the fusion
of two identical spherical aggregates, as described in the
next section. Based on extensive CPD simulations we
have found that the best agreement with experiment is
obtained for 1 ≤ εinter < 2, when the system behaves as
a viscous liquid. By increasing εinter above 2 the fusing
cellular aggregates show sign of solidification and their
behavior deviate significantly from experiment. The re-
sults reported in this paper are for εinter = 1. However,
these are similar to the ones obtained for any εinter < 2.

Furthermore, in all our CPD simulations we have used
an integration time step ∆t = 10−4, and used a cutoff
radius Rc = 2.5 for U inter(r).

C. Continuum Description of the Fusion of Two
Spherical Cell Aggregates

The fusion of two contiguous cell aggregates is driven
by surface tension, γ, and resisted by viscosity, η. It is
an experimental fact that during the fusion of identical
spherical soft tissue aggregates the shape of the system is
that of two touching spherical caps (see Fig. 1) [35]. This
observation suggests that soft tissues behave like complex
viscous liquids whose description requires an a priori un-
known hydrodynamic constitutive model. However, the
simplicity of the geometry allows us to describe analyt-
ically the dynamics of the considered fusion process by
employing conservation laws as proposed by Frenkel [36]
and Eshelby [50] for the coalescence (sintering) of highly
viscous molten drops.

The fusing aggregates are modeled as two spherical
caps of radius R(θ) with circular contact (“neck”) region
of radius r(θ) = R(θ) sin θ (see Fig. 1A). Volume conser-
vation requires

R(θ) = 22/3(1 + cos θ)−2/3(2− cos θ)−1/3R0 , (10)
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FIG. 1. (color online). (A) The shape of two fusing spher-
ical cell aggregates can be quantified by the angle θ(t) and
the radius R(t). (B) Throughout the fusion of two identical
spherical cushion tissue aggregates [35] the system has the
shape of two connected spherical caps. The numbers indicate
the time (in minutes) elapsed from the start of the fusion.

with R0 = R(0). Thus, the time evolution of the fu-
sion process is parametrized by a single angle θ = θ(t),
defined in Fig. 1A, that changes from θ(0) = 0 to
θ(∞) = π/2. The rate of the decrease in surface en-

ergy is Ẇs = γdS/dt, where the free surface area S =
S(θ) = 4πR2(θ)(1 + cos θ). The equation of motion for

θ(t) can be derived by equating Ẇs with the rate of the

energy dissipated by the viscous flow Ẇη ≈ −4πR3
0ηα

2

[36, 38]. Assuming biaxial stretching flow,

α =
∂vx
∂x
≈ − 1

R(θ)

d

dt
[R(θ) cos θ]. (11)

Inserting Eq. (11) into the energy balance equation Ẇs =

Ẇη leads to [38]

dθ

dt
=

1

τ

sin θ cos θ(2− cos θ)1/3

25/3(1− cos θ)(1 + cos θ)1/3
=

1

2τ

R0 cot θ

R(θ)
,

(12)
where the characteristic fusion time

τ = ηR0/γ . (13)

Equation (12) can be solved numerically for θ = θ(t).
However, one can derive a simple and accurate analytical
approximation for θ(t) by setting R(θ) = R0 in Eq. (12).
Indeed, throughout the fusion process 1 ≤ R(θ)/R0 ≤
21/3 ≈ 1.26 holds. With this approximation, Eq. (12)
can be easily integrated with the result

cos θ = exp(−t/2τ) . (14)

Note that according to Eqs. (12) and (14) the dynamics
of the fusion process, described by θ(t) as a function of
t/τ , is independent of the size (i.e., R0) of the fusing
spheres. R0 appears only in the characteristic fusion time
τ , Eq. (13).

Finally, using Eq. (14), the square of the radius of the
circular neck region of the fusing spherical caps can be
expressed as(

r

R0

)2

≈ A(t)[1− exp(−t/τ)] , (15a)

with

A(t) = 24/3
(

1 + e−t/2τ
)−4/3 (

2− e−t/2τ
)−2/3

. (15b)

For short times, t � τ , Eqs. (15) yield the familiar
linear-in-time expression, (r/R0)2 ≈ t/τ , obtained by
Frenkel [36] and Eshelby [50].

However, it turns out that instead of Eqs. (15) a more
appropriate quantity for describing the shape evolution of
the spherical aggregates during the entire fusion process
is ( r

R

)2
= sin2 θ = 1− exp(−t/τ) . (16)

Indeed, Eq. (16), just like Eq. (14) and unlike Eqs. (15),
remains valid even if volume conservation is violated dur-
ing the fusion process (i.e., when Eq. (10) does not hold).
While in CPD and KMC simulations the volume of the
system is conserved, in the fusion experiments the volume
of the aggregates may change. For example, if the cell
cycle time is shorter than the characteristic fusion time τ ,
one expects the volume of the cell aggregates to increase
in the course of fusion due to cell division. As shown in
Fig. 1B, during the fusion of cushion tissue aggregates
reported in [35], it appears that R(t) ≈ R0 = const, indi-
cating that the volume of the system shrinks, most likely
due to cell necrosis. Thus, in this case too, the correct
way to determine τ from the experimental data is by em-
ploying Eq. (16) instead of Eqs. (15) (see Sec. III A 2).

While the short time limit of Eqs. (15) has been ap-
plied previously to estimate the capillary velocity vc =
γ/η = R0/τ of soft tissues [35, 49], we are not aware of
any previous study that followed the time evolution of
the shape and of [r(t)/R(t)]2 throughout the fusion pro-
cess of two spherical tissue aggregates. First, we have
determined the dimensionless CPD parameters (i.e., ex-
pressed in CPD units; see Sec. II B) such that the shape
of the fusing aggregates during CPD simulation resemble
as close as possible to spherical caps. Second, we have
determined the characteristic fusion time τ by fitting the
data for [r(t)/R(t)]2, obtained respectively from experi-
ment, CPD and KMC simulations, to Eq. (16). Finally,
the CPD time unit can be calculated as t0 = τexp/τCPD.
Once t0 is known, one can predict through CPD simu-
lation the time evolution of an arbitrary 3D tissue con-
struct built from the same type of cells for which the time
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calibration was performed through the above method
(i.e., fusion of spherical aggregates). Clearly a similar
calibration strategy can be used for the KMC method.

III. RESULTS AND DISCUSSION

To test and compare the KMC and CPD methods
described in Sec. II, we have applied them to simulate
two important morphogenetic processes: (A) tissue fu-
sion (the fusion of two identical spherical multicellular
aggregates), and (B) cell-sorting (within a spherical mul-
ticellular aggregate formed by two types of cells with dif-
ferent adhesivities).

A. Fusion of Two Spherical Cell Aggregates

As described in Sec. II C, the fusion of two identical
spherical aggregates can quantitatively be characterized
by the time dependence of the radius, r(t), of their circu-
lar contact region. According to Eq. (16), r(t) obtained
from experiment and from KMC and CPD simulations,
can be used to determine the characteristic fusion time
τ , Eq. (13). Thus, for a given cell type, by comparing
the experimental τ with that obtained from computer
simulations one can calibrate the time scale of the cor-
responding computer model. Once such a calibration is
done, one can make quantitative in silico predictions of
the time evolution of various multicellular processes that
involve the same cell type [34].

In this section we present KMC and CPD simulation
results for the fusion of two identical spherical aggregates.
We show that in both cases the computed (r/R)2 vs t/τ
dependence can be reasonably well fitted by Eq. (16).
Then, using experimental results for aggregate fusion
[35], the calibration of the KMC and CPD simulation
time scales is exemplified for the case of cardiac cushion
tissue (CT). Finally, KMC and CPD simulations are used
to predict the formation of a toroidal structure by cell ag-
gregate fusion, an important structure in the engineering
of tubular tissue constructs [8].

1. KMC simulations

The initial radius of the two identical fusing aggregates
used in our KMC simulation was R0 = 10 cell diame-
ters. Each aggregate contained 5,927 cells, with a cell-cell
work of cohesion εcc = 0.9. The medium-medium (cell-
medium) work of cohesion (adhesion), εmm (εcm), was
considered to be negligibly small. A total of 10 KMC
simulations of the same fusion process were carried out,
each time using a different seed of the random number
generator. Each simulation was run for 105 KMC time
steps.

Representative snapshots during the KMC fusion sim-
ulation are shown in Fig. 2. The sought (r/R)2 vs t/τ

CPDKMC

(a)

(b)

(c) 

(d)

FIG. 2. Time evolution of the fusing aggregates in the KMC
(left) and CPD (right) simulations. The snapshots were taken
at: (a) t = 0, (b) t = 0.19τ , (c) t = 2.8τ , and (d) t = 5.5τ .
The solid-line contours represent the theoretical shapes of the
fusing aggregates determined by Eqs. (15).

dependence, obtained by averaging over the 10 KMC sim-
ulations, is shown in Fig. 3 (dashed curve). The corre-
sponding standard deviation ∆[(r/R)2] was less than 0.04
at all times.

Apart from the beginning of the fusion process (i.e.,
t < τ) the KMC result appears to match rather well both
the theoretical prediction (thick-solid curve), Eq. (16),
and the experimental results corresponding to the fusion
of CT aggregates (open-circle) [35].

The fusion time in KMC time unit, t0 = w−10 , ob-
tained by fitting (r/R)2, averaged over the 10 KMC tra-
jectories, to Eq. (16), was τ0 = 1.1 × 109. Since the
experimental characteristic fusion time for CT aggre-
gates τexp ≈ 5h [35], it follows that the KMC time unit
(for CT aggregates used in [35]) has the calibrated value
t0 = w−10 = τexp/τ0 = 1.6× 10−5s.

To estimate the relative error ∆τ0/τ0, first differentiate
both sides of Eq. (16) and then replace the differentials
with absolute errors, i.e., ∆[(r/R)2] = (t/τ) exp(−t/τ) ·
(∆τ/τ) ≤ e−1(∆τ/τ), where e ≈ 2.72. Thus, in general
∆τ/τ ≥ e ·∆[(r/R)2]. For our KMC fusion simulations
∆τ0/τ0 ≥ 10%.
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FIG. 3. (color online). Comparison of (r/R)2 vs t/τ for the
fusion of two spherical aggregates obtained from KMC simu-
lations (dashed line), CPD simulations (thin solid line), con-
tinuum theory (thick solid line) and experiment (circles) using
cardiac cushion tissue (CT) aggregates [35].

2. CPD simulations

Each of the two spherical aggregates used in the CPD
simulation of aggregate fusion contained 2000 cells. The
used CPD parameters and integration timestep, in CPD
units, are described in Sec. II B. The equilibrated ag-
gregates were placed within a distance of one σ before
starting the fusion simulation.

Representative snapshots during the fusion process are
shown, and compared with the corresponding KMC sim-
ulation results, in Fig. 2. While in both KMC and CPD
simulations the profiles of the fusing aggregates for in-
termediate stages of the fusion process (Fig. 2b-c) agree
quite well, these show noticeable differences with respect
to the theoretical prediction, Eq. (16), shown as solid-line
contours in Fig. 2.

The (r/R)2 vs t/τ dependence in the CPD simulation
is also shown in Fig. 3. The CPD and KMC simula-
tion results are similar. Apart from short times (t < τ)
they agree quite well with both the theoretical prediction,
Eq. (16), and the experimental results for CT [35].

The characteristic CPD fusion time is determined to
be τ ≈ 540t0. By equating this with τexp ≈ 5h, one finds
that the CPD time unit calibrated for CT aggregates is
t0 ≈ 0.6 min.

To estimate the relative error of τ , we note that
∆[(r/R)2] ≈ 2(r/R)2(∆r/r + ∆R/R) ≤ 2(∆r/r +
∆R/R). Thus, ∆τ/τ ≥ 5.4 × (∆r/r + ∆R/R). Assum-
ing that both r and R can be determined with a relative
error of 1%, one obtains ∆τ/τ & 11%, which is similar
to the KMC result (see Sec. III A 1).

The CPD simulations were preformed on 32 CPUs of
a dual core 2.8GHz Intel Xeon EM64T cluster with a
performance of around 5 million timesteps/day (which is
equivalent to 500t0 and slightly less than 1τ).

3. Toroidal structure formation

Once the KMC and CPD time scales have been cali-
brated from the fusion of two spherical CT aggregates,
one can employ KMC and CPD simulations to describe
and predict the time evolution of more complex CT struc-
tures, which are not tractable analytically. To exemplify
this point, here we consider the formation of a toroidal
structure as a result of the fusion of 10 identical CT
spherical aggregates initially arranged in a circular con-
figuration as shown in Fig. 4a. The corresponding KMC
and CPD simulations were carried out using the same
model parameters as in the fusion of two aggregates de-
scribed above. In both KMC and CPD simulation the
fusion process into a toroidal ring appeared to be com-
pleted in ∆t ≈ 2.5τ ≈ 12.5 h, as shown in Fig. 4b. This
prediction can be tested experimentally by investigating
the toroidal structure formation through the fusion of ten
spherical, cushion tissue aggregates.

While it seems that both KMC and CPD methods are
capable of providing a fairly good description of the shape
evolution of a multicellular system during its biomechan-
ical relaxation process, the actual cellular dynamics in
the two methods is quite different. Indeed, unlike in
CPD simulations, in KMC simulations the motion of in-
dividual cells is unrealistically fast. This point is man-
ifest in Fig. 4. By the time the toroidal ring structure
is formed, in the KMC simulation, cells from adjacent
aggregates (colored differently) appear to be completely
mixed. This is clearly not the case in the CPD simu-
lations, where, similarly to existing experimental results
[8, 35], there is little mixing between the cells of the fused
adjacent aggregates.

To further emphasize this point, we have quantified
the degree of cellular mixing during the fusion, along the
x-axis, of two identical spherical aggregates [labeled as L
(left) and R (right)], with initial radius R0 (see Fig. 1),
by calculating the time dependent mixing parameter

dmix(t) =
4

M

M∑
m=1

∆NL
m(t) ·∆NR

m(t)

[∆Nm(t)]2
. (17)

Here ∆NL
m(t) [∆R

m(t)] is the number of CPs situated ini-
tially (at t = 0) in the L (R) aggregate and having, at
time t, the x(t) coordinate in the interval {−2R0 + (m−
1)∆x,−2R0 + m∆x}, 1 ≤ m ≤ M , with M a prop-
erly chosen, sufficiently large integer, ∆x = 4R0/M , and
∆Nm(t) = ∆NL

m(t) + ∆NR
m(t). Clearly, dmix can take

values between 0 (completely unmixed system) and 1
(uniformly mixed system).

The time evolution of dmix(t) is shown in Fig. 5. In
the KMC simulation cellular mixing is almost complete
(dmix = 1) after the characteristic fusion time τ , i.e., sig-
nificantly sooner than the completion of the fusion pro-
cess (∼ 6τ). By contrast, in the CPD simulation even at
the end of the fusion dmix ∼ 0.2 � 1. Based on these
results one may conclude that: (i) the cellular dynam-
ics that drives aggregate fusion in the KMC simulations



8

KMC CPD

(a)

(b)

(c)

FIG. 4. KMC (left) and CPD (right) simulations of toroidal
structure formation through the fusion of 10 cell aggregates.
Top view of the fusing aggregates at (a) the beginning (t = 0),
and (b) the completion of fusion. (c) Cross-section through
the median plane of the fused toroidal structure shown in
(b). Otherwise identical cells, initially located in adjacent
aggregates are colored differently to emphasize the degree of
mixing during fusion.

is unrealistic (i.e., the system is too liquid-like), and (ii)
the CPD model provides a more realistic and attractive
approach to describe biomechanical relaxation processes
of multicellular systems.

B. Cell Sorting in Two Component Aggregates

When two populations of cells of different adhesivi-
ties are randomly mixed within a multicellular aggregate,
they sort such that the more adhesive cells occupy the in-
ternal region while being surrounded by the less adhesive
cells. Cell sorting has been extensively studied both in
vitro [26, 40, 51, 52] and in silico [14, 15, 53].

According to DAH, the outcome of cell sorting in

0 1 2 3 4 5 6
 t/τ

0.0

0.2

0.4

0.6

0.8

1.0

d m
ix

KMC

CPD

FIG. 5. Time evolution of the mixing parameter dmix calcu-
lated for the fusion of two cellular aggregates from the CPD
(solid line) and KMC (dashed line) simulations.

a two-component multicellular aggregate (composed of
two types of cells, labeled ‘a’ and ‘b’) depends on
the relative magnitude of the corresponding works
of cohesion/adhesion needed to separate cells of the
same/different types (i.e., εaa, εbb, and εab), respectively
[43]. Here we employ both KMC and CPD simulations
(described in Secs. II A and II B) to investigate cell sort-
ing in a spherical aggregate of two cell types a and b, with
εaa < εbb. We consider three cases, referred to as C1, C2
and C3, that lead to qualitatively different experimental
outcomes [43]. C1: For intermediate adhesion between a
and b cells, i.e., εaa < εab < (εaa+εbb)/2, the less cohesive
a cells engulf the more cohesive b cells, thus leading to
the complete segregation (see Fig. 6b). C2: For strong
a–b adhesion, i.e., (εaa + εbb)/2 < εab, there is limited
sorting and the spherical aggregate remains more or less
homogeneously mixed (see Fig. 6c). C3: For weak a–
b adhesion, i.e., εab < εaa < εbb, the two types of cells
completely separate by transforming the initial spheri-
cal aggregate into two attached homogeneous spheroidal
caps (each containing either a or b cells) as shown in
Fig. 6d. Thus, the degree of cell sorting is enhanced (re-
duced) for small (large) values of the adhesion energy
εab, compared to the corresponding cohesion energies εaa
and εbb. Note that in terms of the interfacial tension γab
(defined below Eq. (2), for “1” = a and “2” = b), case
C1 corresponds to γab > 0 and εab > εaa, while case C2
corresponds to γab < 0. The inequalities defining case
C3 also imply γab > 0. Thus, in a multicellular aggre-
gate with two types of cells, in order to have cell sorting
(segregation) the corresponding interfacial tension must
be positive (i.e., γab > 0). The larger this parameter the
more efficient and complete the sorting.

The results of our KMC and CPD simulations, pre-
sented next, appear to be in good agreement with in
vitro experimental findings for these three cases [43].
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KMC CPD

(a)

(b)

(c) 

(d)

FIG. 6. 3D snapshots from KMC (left) and CPD (right) sim-
ulations of the cell sorting in an initially spherical aggregate
composed of two randomly mixed cell types (black and light
grey). The snapshots represent the (a) initial, and (b-d) final
configurations of the simulated system. The latter correspond
to (b) intermediate (case C1), (c) strong (case C2), and (d)
weak (case C3) cell adhesion energy, as explained in the text.
For better visualization of cell mixing/sorting in (a)-(c) only
half of the spherical aggregate is shown. (Images rendered
with VMD [54]).

1. KMC simulations

We have performed three KMC simulations of cell sort-
ing starting with a spherical aggregate composed of a
random mixture of Na = 3, 589 less cohesive cells of type
a and Nb = 2, 362 more cohesive cells of type b (i.e., with
εaa < εbb). Thus, the spherical aggregate had a total
of N = 5, 951 cells, and a radius of about 10 cell diam-
eters. The values of the model parameters used in the
three KMC simulations, corresponding to cases C1, C2
and C3 described above, are listed in Table I. Each KMC
simulation was performed up to 105 (non-uniform) time
steps, given by Eq. (5), leading to the final configurations
shown in Fig. 6b-d.

To quantify the degree of cell sorting as a function
of time during the KMC simulations, we used a sorting

TABLE I. Values of the model parameters (energies expressed
in units of ET ) used in the KMC and CPD simulations shown
in Fig. 6.

Simulation εaa εab
εaa+εbb

2
γab Case Outcome

KMC 1.0 1.1 1.4 0.3 C1 Fig. 6b left

KMC 1.0 1.5 1.4 -0.1 C2 Fig. 6c left

KMC 1.0 0.3 1.4 1.1 C3 Fig. 6d left

CPD 0.8 0.9 1.0 0.2 C1 Fig. 6b right

CPD 0.8 1.1 1.0 -0.1 C2 Fig. 6c right

CPD 0.8 0.2 1.0 0.8 C3 Fig. 6d right

parameter s defined as [55]

s =
1

N

N∑
i=1

Nti
Ni

, (18)

whereN is the total number of cells in the system, and for
a given cell i, Ni (Nti) is the number of nearest neighbor
cells regardless of their type (of the same type ti as the
cell i). The sum in Eq. (18) runs over all cells in the sys-
tem. Clearly, 0 < s < 1, and the larger s the more com-
plete the sorting. Note that even for completely sorted
multicellular systems, built from two (or more) different
cell types, the presence of the interface(s) between the
segregated regions renders the maximum possible value,
smax, of the sorting parameter smax < 1. For example,
in the above case C1, when at the end of sorting Na cells
of type a completely engulf Nb cells of type b, one can es-
timate smax as follows. For simplicity, assume that both
cell types have spherical shape with the same diameter
d. Let ∆N be the number of cells (of either type a or
b) situated at the spherical interface, of mean radius Rb
and width ∆R, between the two segregated regions (see
Fig. 6b), and N = Na +Nb. Since for a cell i situated at
the interface Nti/Ni ≈ 1/2, according to Eq. (18),

smax ≈
1

N

[
1

2
×∆N + 1× (N −∆N)

]
= 1− 1

2

∆N

N
.

Furthermore, assuming that cells are distributed uni-
formly within the aggregate, one has Nb(d/2)3 ≈ R3

b ,

i.e., Rb ≈ N1/3
b d/2, and ∆N × (4π/3)(d/2)3 ≈ 4πR2

b∆R,

implying ∆N ≈ 6N
2/3
b (∆R/d). Finally, assuming that

the thickness of the interfacial layer, separating the seg-
regated cell regions, is ∆R = xd, where 2 < x < 3, one
obtains

smax ≈ 1− 3x
N

2/3
b

N
. (19)

Note that according to Eq. (19), as N →∞, i.e., for large
aggregates, smax approaches unity as N−1/3 (assuming
that Na and Nb are of the same order of magnitude).

The time evolution of the sorting parameter, s = s(t),
in our KMC simulation corresponding to case C1 is shown
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in Fig. 7. The insets represent snapshots of the sorting
process taken at times indicated by the arrows.

The sharp increase of s(t) at the beginning of the sim-
ulation followed by a slow asymptotic approach to smax
indicates that there are at least two sorting time scales.
Indeed, the entire time evolution of the sorting parameter
can be well fitted with the double exponential

s(t) = smax − s1e−t/τ1 − s2e−t/τ2 , (20)

where smax = 0.76 is in very good agreement with the
theoretically estimated value 0.78 obtained from Eq. (19)
for x = 2.5. The other fitting parameters in Eq. (20) are:
τ1 = 1.4t0, s1 = 0.27, τ2 = 58.5t0 and s2 = 0.11. The
shorter time scale τ1 corresponds to the local rearrange-
ment (sorting) of cells leading to small clusters of same
types of cells, while the longer time scale τ2 describes
the much slower engulfment process of the b cells by the
a cells, a process that requires large displacements by a
finite number of cells.

Although the results of our KMC simulations appear
to be in good qualitative agreement with experiments on
cell sorting [25, 26, 43], a quantitative comparison, e.g.,
in terms of the time evolution of the sorting parameter,
is complicated because s(t) is difficult to measure exper-
imentally [56]. Thus, there is no simple way to reliably
calibrate the time unit t0 (which is related to the model
parameter w0) used in the plot of s vs t/t0 in Fig. 7. How-
ever, s(t) can also be determined from CPD simulations,
thus allowing for a quantitative comparison between the
two computer simulation methods.

2. CPD simulations

We have also used CPD simulations to investigate cell
sorting corresponding to the three cases C1, C2 and C3
described above. The initially spherical aggregate con-
tained a random mixture of equal number Na = Nb =
1, 000 of cells of type a and b. While the CPD parameters
εaa ≡ εintera = εintraa = 0.8 and εbb ≡ εinterb = εintrab = 1.2
were kept the same in all three simulations, the parame-
ter εab ≡ εinterab had different values (similar to the ones
used in the KMC simulations) for the three cases C1, C2
and C3 as listed in Table I. The cell sorting patterns
obtained at the end of the corresponding CPD simula-
tions are shown in Fig. 6. As expected, these patterns
are similar to the ones obtained in the KMC simulations.

In order to quantify the degree of cell sorting in the
CPD simulations by employing the cell sorting parameter
s, defined through Eq. (18), we determined the position
of a cell by the center of mass of the constituent CPs,
and considered two cells to be neighbors if they were
separated by a distance less than 3.25 σ. For the CPD
simulation corresponding to case C1, s(t) is shown Fig. 7.
Similarly to the KMC result, s(t) can be fitted well with
the double exponential (20). Again, smax = 0.68 is in
good agreement with the theoretical prediction Eq. (19),
i.e., 0.67 for x = 2.2 (or 0.63 for x = 2.5). The other
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FIG. 7. (color online). Time dependence of the cell sorting
parameter, s = s(t), corresponding to case C1 described in
the text, for both KMC (top) and CPD (bottom) simulations.
The fits (red curves) correspond to Eq. (20), with values of the
fitting parameters indicated in the text. The insets represent
snapshots of half of the spherical aggregate taken at times
indicated by arrows.

fitting parameters in Eq. (20) are: τ1 = 0.68 t0, τ2 =
103 t0, s1 = 0.25 and s2 = 0.1. Note that while s1
and s2 have essentially the same values for both KMC
and CPD simulations, the time constants τ1 and τ2 are
quite different, as the corresponding time units t0 are
different in the two simulations. Moreover, the fact that,
for similar model parameters, τ2/τ1 = 41.8 in KMC is
about twice as large as τ2/τ1 = 21.7 in the corresponding
CPD simulation indicates that the self diffusive motion
of cells in KMC occurs much faster than in CPD. In
other words, the multicellular system is more liquid-like
in KMC than in CPD simulations.

IV. CONCLUSIONS

We have formulated two computer simulation meth-
ods, KMC and CPD, that are capable of describing
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and predicting the shape evolution in time of 3D mul-
ticellular systems during their biomechanical relaxation.
The KMC and CPD model parameters were deter-
mined and calibrated by using an original computational-
theoretical-experimental framework applied to the fusion
of two spherical cell aggregates. Our study was motivated
by the need to quantify biomechanical properties of en-
gineered tissue constructs, composed of compact tissues
made of adhesive and motile cells and to predict their
time evolution. The growing interest for understanding
shape changes in such tissue constructs stems from their
applications in tissue engineering in general and in the
emergent field of 3D bioprinting in particular [8].

The KMC method is based on a lattice representa-
tion of the 3D tissue construct and dynamics is described
in terms of rates associated with possible movements of
cells. Similarly to previously employed MMC studies, the
mixing pattern observed in KMC simulations disagrees
with experiments. In both methods an elementary move
consists in cells swapping positions with neighbors, which
overestimates cell motility. However, with proper time
scale calibration, KMC simulations can be used to de-
scribe and predict reasonably well the time evolution of
the shape of the simulated multicellular system.

The CPD method is based on modeling individual cells
in a tissue construct as interacting CPs. The dynamics
of the multicellular system are determined by integrat-
ing the equations of motion for each CP. The CPD force
field parameters are determined such that the time evolu-
tion of the shape of the fusing spherical aggregates in the
CPD simulation matches as closely as possible the exper-

imental one (i.e., two touching spherical caps). Once the
CPD model is calibrated, this can be used to simulate the
shape evolution of arbitrary 3D multicellular constructs.
It should be emphasized that in CPD (i.e., computer)
units the calibrated CPD parameters (and therefore the
outcome of a CPD simulation) are independent of the
used cell type. However, the CPD units (9) have spe-
cific values for different cell types. Thus, the CPD sim-
ulations reported here can be applied as is to different
cell types; the corresponding CPD time unit t0 should
be determined in each case by equating τsim ≈ 540 t0
(see Sec. III A 2) with the experimental fusion time τexp.

The reported CPD simulations provided a good de-
scription for both fusion and cell sorting of multicellular
spheroids. We found that CPD provides a more realistic
description of complex multicellular structure formation
than KMC. Indeed, the behavior of the studied multi-
cellular systems in CPD simulations resembles to that
of complex visco-elastic materials while in KMC simula-
tions to that of viscous liquids. It is to be expected that
by including more realistic features into the interaction of
the CPs the accuracy of the CPD method can be further
improved.
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