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Twisted and rope-like assemblies of filamentous molecules are common and vital structural ele-
ments in cells and tissue of living organisms. We study the intrinsic frustration occurring in these
materials between the two-dimensional organization of filaments in cross section and out-of-plane
interfilament twist in bundles. Using non-linear continuum elasticity theory of columnar materials,
we study the favorable coupling of twist-induced stresses to the presence of edge dislocations in the
lattice packing of bundles, which leads to a restructuring of the ground-state order of these materials
at intermediate twist. The stability of dislocations increases as both the degree of twist and lateral
bundle size grow. We show that in ground states of large bundles, multiple dislocations pile up into
linear arrays, radial grain boundaries, whose number and length grows with bundle twist, giving
rise to a rich class of “polycrystalline” packings.

PACS numbers:

I. INTRODUCTION

Topological defects populate the ground states of many
frustrated systems in condensed matter physics [1, 2]. A
key example occurs when crystalline order forms on two-
dimensional surfaces of non-zero curvature, where the in-
compatibility between globally straight and parallel di-
rections generates geometrically-induced stresses that fa-
vor defects in the crystalline order. On spheres, where
topology requires a minimal number of twelve 5-fold
disclinations, the problem of determining the ideal struc-
ture of in-plane order is known alternately as the Thom-

son or Thames problem [3, 4]. This problem has impor-
tant connections to the structure of viral capsids, which
are closed-shell assemblies of proteins [5, 6], and more
recently has been the subject of experimental interest in
the context of particle-stabilized emulsion droplets [7, 8].
A clear physical picture of the coupling between sur-
face curvature and the presence of topological defects
has emerged based on the continuum elasticity theory
of crystalline membranes [9–12]. In this theory, disclina-
tions carrying a discrete topological charge act as point
sources for in-plane stress that can be screened by a more
homogeneous distribution of “topological charge” gener-
ated by the appropriate Gaussian curvature of the mem-
brane. From this viewpoint, the net topological charge of
disclinations in the lowest energy states of curved mem-
branes is rationally expected to increase with the inte-
grated Gaussian curvature of a membrane, a prediction
which has recently been tested experimentally for 2D
crystals on surfaces of both positive and negative cur-
vature [13].
Recently, we have shown that frustration of crystalline

order on spherically-curved surface is fundamentally con-
nected to frustrated order in a distinct class of two-
dimensionally ordered materials, namely, twisted fila-

ment assemblies [14, 15]. Twisted assemblies of fibrous
proteins are common and important structural elements
in many biological materials, such collagen [16, 17] and
fibrin [18]. In these assemblies, helical twist of the assem-
bly derives from the nature of interactions between chi-
ral biofilaments, while the dense in-plane packing results
from strong cohesive interactions between filaments [19–
24]. Unlike the case of crystalline membranes where frus-
tration arises from out-of-plane deflections, the frustra-
tion of cross-sectional order in the twisted-filament bun-
dle derives from a unique geometrical coupling of in-
plane strains and filament tilts [14]. Despite the dis-
tinct geometrical origin, twist generates stresses in the
cross-section of filament bundles that are formally equiv-
alent to those induced by a positive Gaussian curvature

in a membrane, corresponding to a spherical geometry
of effective radius, Reff = Ω−1/

√
3, where 2π/Ω is the

pitch of helical bundle twist. Strictly speaking, due to the
free surface at the boundary of the bundle, the twisted-
filament packing maps more closely onto the problem
of crystalline order of a partial, spherical cap, a prob-
lem that has be studied theoretically for both the cases
with [25] and without [26] topological defects. Based on
this connection, in previous work [14, 15] it was argued
that the ground-state order of filament bundles becomes
unstable to one or more 5-fold disclinations in the cross
sectional order, when the twist is greater than a criti-
cal value, |ΩR|c =

√

2/9 ≃ 0.47, where R is the bundle
radius. Therefore, a range of multi-disclination ground
states were predicted for sufficiently large and twisted
bundles.

In this paper, we study the continuum elasticity theory
of twisted bundle cross sections to explore a fundamen-
tally distinct class of topological defect configurations in
the ground states: “neutral” 5-7 disclination pairs, or
edge dislocations in the cross-sectional packing. Though
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the positive topological charge of a bare 5-fold disclina-
tion best neutralizes the negative effective charge gen-
erated by the twist, we find a broad range of conditions
for which configurations of 5-7 dipoles, or dislocations, in
the bundle cross section provide a lower-energy means of
screening the geometrically-induced costs of twist. Inter-
estingly, we find that appropriately polarized dislocations
are universally attracted to a radial position at R/

√
3

away from the bundle center, a point associated with van-
ishing azimuthal stresses in twisted bundles. In untwisted
bundles, as in a flat 2D crystal, edge dislocations incur an
elastic cost per unit volume of roughly K0|b|2 ln(R/|b|),
where b is the Burger’s vector, K0 is the 2D Young’s
modulus [27]. In twisted bundles, we show that an elastic
coupling between geometrically-induced stress and dislo-
cations leads to an additional elastic energy gain per unit
volume for optimaly-placed dislocations proportional to
−K0Ω

2R|b|. Thus, we show that twisted bundles become
unstable to edge dislocations for reduced bundle twists
above a threshold value, |ΩR| > (ΩR)∗ ∼ a/R ln(R/a),
where a ≈ |b| is the lattice spacing of the bundle. Unlike
the case of disclination stability [15], find that the sta-
bility of dislocations is governed by both the twist of the
bundle, (ΩR), as well as the size of the bundle relative
to the microscopic size of filaments, R/a. Importantly,
this analysis shows that the critical twist for dislocation
stability, (ΩR)∗, decreases, albeit slowly, to zero as the
bundle grows macroscopic in size, as R/a → ∞. A key
consequence of this analysis is that large bundles are un-
stable to dislocations over a range of intermediate twist
before 5-fold disclinations are favored for |ΩR| > (ΩR)c.

Within this intermediate range of twist (ΩR)∗ <
|ΩR| < (ΩR)c, we predict a range of complex
multi-dislocation ground states, which are quite dis-
tinct in structure from well-separated defects in multi-
disclination packings of twisted bundles studied in ref.
[14]. In these ground states multiple 5-7 dipoles form ex-
tended, linear chains, or grain boundaries, aligned along
the radial directions. Grain boundaries in twisted bun-
dles run from the free surface of bundles and termi-
nate before reaching the central core. An example of a
two grain boundary packing of twisted bundles is shown
in Figure 1. The multi-dislocation ground states of
twisted bundles are quite similar to the “grain boundary
scars” predicted [11, 28] and observed [8, 13] on spheri-
cal crystals in which neutral 5-7 pairs decorate the twelve
topologically-required 5-fold disclinations on the sphere.
Despite the similar affinity of twist-induced stresses in
bundles for positively-charged disclinations, at interme-
diate levels of twist, the energetically favored defects ar-
rays are “neutral”, possessing no excess of 5-fold discli-
nation charge. Based on numerical and scaling analysis
of grain boundary screening of twist induced stress we
deduce the dependence of the total number of disloca-
tions, Nd, and number of grain boundaries, M , on twist
and bundle size. Far above the critical twist we find that
Nd ∼ (R/a)(ΩR)2 and M ∼ Nd.

The organization of this article is as follows. In Sec.

FIG. 1: (Color online) Cross-sectional view of the microscopic
model of a helical filament bundle with two small-angle grain
boundary arms, each with four dislocations. Dislocations are
polarized such that 5-fold disclinations (red) are closer to the
bundle center than 7-fold (blue).

II we review the continuum theory of two-dimensionally
ordered filament arrays. In Sec. III we derive the effec-
tive energy of dislocations in the cross sections of twisted
bundles, and determine the stability of neutral (dislo-
cations) and charged (disclinations) topological defects
in the ground states of twisted bundles. In Sec. IV
we analyze the structure and thermodynamics of multi-
dislocation ground states and appearance of multiple
grain boundaries in the cross sections. We also exploit a
scaling argument based on the geometry of small-angle
grain boundaries to establish the quantitative connection
between the length and number of defect arrays in the
“polycrystalline” ground states of twisted bundles.

II. CONTINUUM THEORY OF FILAMENT

BUNDLES

The derivation of the equations of mechanical equi-
librium in the non-linear continuum elasticity theory of
twisted filament bundles have been presented in detail
previously [15]. In this section we briefly review the key
elements of this analysis, which allow us to construct the
effective theory of dislocations in the next section.

We consider a cylindrical bundle of radius, R, of fila-
ments of unlimited length. The stress-free reference state
is a hexagonal packing of the straight filaments in the
cross section. We describe the elastic cost of deforma-



3

tions of the cross section order by the following energy,

E =
1

2

∫

dV (λu2
kk + 2µuijuij). (1)

Here, λ and µ are the Lamé elastic coefficients charac-
terizing the elastic properties of the material and cor-
respond to compressive and shear distortion of the array
respectively, and uij is the 2D strain of cross sectional or-
der, defined below. In this theory, the elastic energy will
penalize distortions of the array that change distances
between filaments in a plane locally perpendicular to the

filament tangent direction, t̂. Hence, eq. (1) describes
the elastic response of hexagonal-columnar material [29].
While the filaments are uniformly aligned along the ẑ di-
rection in the initial configuration, displacements of the
array in general lead to filaments that are tilted into the
xy plane of initially perfect hexagonal order [30]. This
relationship is captured by introducing a two-component
displacement field, u(x) = r⊥(x) − x⊥, describing the
local deviation in the xy plane of a filament initially at
x and displaced to a position r(x). For small strains,
the in-plane displacement is related to the filament tilt
geometrically by, t̂(x) = ẑ + ∂zu.
To satisfy the symmetry considerations described

above, the non-linear strain tensor has the form

uij =
1

2
(∂iuj + ∂jui + ∂iu · ∂ju− ∂zui∂zui), (2)

which, like the displacement, only has components in the
xy plane. The first two terms on the right hand side are
the standard symmetric derivatives in the elastic strain
tensor. Additionally, there are two non-linear contribu-
tions to the strain tensor. The third term ensures the ro-
tational invariance of the 2D solid around the ẑ axis. The
final term is unique to the theory of columnar materials
and preserves the invariance of the elastic energy about
an axis in xy plane [30]. Since t̂⊥ ≃ ∂zu, intuitively this
contribution to uij shows that for a fixed separation in
the xy plane, when neighboring filaments are tilted with
respect to each other, the distance of closest approach be-
tween them is reduced. The presence of this non-linear
coupling between filament tilts and in-plane strain neces-
sarily introduces stress in twisted filament bundles [21].
In this study, we consider helically-twisted filament

bundles in which the cross-sectional positions of filaments
are reorganized due to the presence of geometrically-
induced stresses. Formally, we compose the displace-
ment field of the helically twisted assembly from two
deformations: an initial (z-invariant) in-plane displace-
ment, u(x), followed by a uniform helical twist, at a
rate Ω, around the ẑ axis. We denote the composite
(z-dependent) displacement as uΩ, which has the form

uΩ(x) = cos(Ωz)
[

(x+ ux)x̂+ (y + uy)ŷ
]

− sin(Ωz)
[

(y + uy)x̂− (x+ ux)ŷ]− x⊥. (3)

In this configuration is it is straightforward to show that

in-plane components of filament orientation have the fol-
lowing texture,

t̂⊥ ≃ ∂zu = Ωρφ̂, (4)

where ρ is the radial distance of the filament from the

bundle center in the deformed state, and φ̂ is the az-
imuthal direction, also defined with respect to the de-
formed, or “current” position of the filament.
The helical symmetry of these configurations allow us

to describe the state of strain for all z, based on the in-
plane displacement field, u(x) at z = 0. We assume the
rate of twist and filament orientation, described by dis-
placement uΩ, eq. (3), to be fixed and allow for mechan-
ical equilibrium by relaxing the in-plane displacements
u. This assumption has the advantage that it reduces
the problem energy minimization to one of 2D elasticity
theory. Minimization of the elastic energy, eq. (1), with
respect to variations in u(x) leads to the Euler-Lagrange
equations that describe the static mechanical equilibrium
of the system,

δ(E/L)

δui

≃ −∂jσij = 0 (5)

where L is the length of the bundle and the stress tensor
has the standard form an isotropic, 2D elastic medium,
σij = λukkδij + 2µuij . Here, as in ref. [15] we have
neglected a term tjσjk∂tk/∂rj from eq. (5) because it
contributes to the stress balance of twisted bundles at
higher order in reduced twist, ΩR, which is assumed to
be smaller than unity. As the surface of the bundle is
free to move, we solve for states of mechanical equilib-
rium subject to a vanish normal stress at the boundary
of bundle

r̂iσij(ρ = R) = 0. (6)

We proceed to solve for the divergence-free stress, in
terms of the Airy stress function χ [31], related to the
stress tensor by,

σij = ǫikǫjℓ∂k∂ℓχ. (7)

While this definition of σij satisfies eq. (5) by construc-
tion, it is necessary to enforce extra conditions on χ that
ensure that the stress corresponds to the physical config-
uration of u. As in ref. [10], this compatibility relation
may be derived be equating the anti-symmetric deriva-
tives of strain, ǫikǫjℓ∂k∂ℓuij , from which we derive

K−1
0 ∇4

⊥χ = s(x) +∇⊥ × b(x) −KT . (8)

where K0 = 4µ(λ + µ)/(λ + 2µ) is the 2D Youngs mod-
ulus. The right-hand side of eq. (8) may be viewed as
sources for Airy stress. The first and second of these de-
note the sources of stress generated by topological defects
in a bundle cross section, disclinations and dislocations
respectively, for which the solution for u(x) is not single-
valued. The final term, denoted as the intrinsic twist,
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derives from the non-linear contribution to uij from fila-
ment tilt,

KT =
1

2
ǫikǫjℓ∂k∂ℓtitj = 3Ω2. (9)

A similar contribution derives from the non-linear cou-
pling of elastic strain and membrane tilt in the contin-
uum theory of elastic membranes, where it is known that
minus the Gaussian curvature of the membrane acts a
source for Airy stress [10]. Hence, we see that twist in
filament bundles generates in-plane stresses that are for-
mally equivalent to those generated by spherical mem-
branes of curvature 3Ω2.

In general, two types of defects contribute to the
right-hand side of equation (8) as the sources of the
stress: disclinations and dislocations [10]. Disclinations
are disruptions of the orientational symmetry of the lat-
tice and are associated with singular configurations of
θ6(x) =

1
2ǫij∂iuj, the bond angle of the lattice. Around

a single disclination, θ increases or decreases by an inte-
ger multiple of 2π/6,

∮

dℓ · ∇⊥θ6 = s, (10)

where s = (2π/6)n is the topological charge of the discli-
nation. Dislocations are associated with singular config-
urations of u(x) and defined in terms of a closed loop
integral around which u changes by an integer multiple
of the lattice spacing along one of the six-fold directions,

∮

dℓ · ∇⊥ui = bi, (11)

where b is the Burgers vector. Multiple point defects
in the cross section correspond to the defect densities,
s(x) =

∑

α sαδ
(2)(x−xα) and b(x) =

∑

α bαδ
(2)(x−xα).

In the presence of twist- and defect-induced stresses,
eq. (8) may be solved for χ and subsequently the elastic
energy may be computed from,

E =
1

2K0

∫

dV (∇2
⊥χ)

2. (12)

In ref. [15] these equations were solved in the presence
of an arbitrary array of disclinations in the cross section
of filament bundles by multi-pole expansion, yielding an
effective energy written purely in terms of charge and
position of disclinations and bundle twist

E

VK0
=

3(ΩR)4

128
+
∑

α

sα
32π

[sα
π

− 3(ΩR)2

2

](

1− ρ2α
R2

)

+
1

2

∑

α6=β

sαVint(xα,xβ)sβ , (13)

where V is the bundle volume and

Vint(xα,xβ) =
1

16π2

(

1− ρ2α
R2

)(

1−
ρ2β
R2

)

+
|∆xαβ |
16π2R2

ln

[ |∆xαβ |2
(R2 − ρ2α)(R

2 − ρ2β)/R
2 + |∆xαβ |2

]

,

(14)

and ∆xαβ = xα − xβ . This energy has three contribu-
tions: the first term describes the elastic cost of twist; the
second term is the defect self energy and twist-defect in-
teraction; and the third term describes the elastic interac-
tion between disclinations. Importantly, both the discli-
nation self-energy terms in (13) and interaction terms
in (14) vanish continuously as disclinations approach the
bundle surface, ρα → R. As noted in [15], this property
derives from the screening of far-field stresses induced by
topological defects by boundary-induced stresses as de-
fects draw near to the free boundary.

III. ELASTIC ENERGY OF DISLOCATIONS IN

TWISTED BUNDLES

A. Dislocation energies and interactions

In this section, we take advantage of the dual descrip-
tion of dislocations, which may be constructed from neu-
tral 5-7 pairs of disclinations [27] to derive the contin-
uum theory of dislocation energies and interactions in
twisted bundles. The theory of edge dislocations in the
cross section of (untwisted) cylindrical crystals was orig-
inally studied in detail by Koehler [32]. In this study,
the resulting forms for dislocation self-energy and in-
teraction energies were derived in terms complex area-
integrals of stress distribution overlap, which were then
analyzed numerically. In the present study, the exact,
closed-form expressions for disclinations energies derived
in ref. [15] allow us to derive the algebraic formula for
the full position- and orientation dependence of disloca-
tion energies in cylindrical crystals.
From eq. (8) we may show that far field stresses gen-

erated by a single dislocation of Burgers vector b at x,
may be constructed by superposing a 5-fold disclination,
s = +2π/6, at x+a/2 and 7-fold disclination, s = −2π/6,
at x − a/2, where ẑ × a = (2π/6)b. Defining χ+(x) as
the Airy stress generated by a single 5-fold disclination,
s = +2π/6, which was calculated exactly in ref. [15], the
Airy stress corresponding to a dislocation at x, denoted
by χdisl(x), is given by

χdisl(x) = |b| lim
a→0

[χ+(x+ a/2)− χ+(x− a/2)

a

]

. (15)

To calculate the energy of a single edge dislocation in the
bundle cross section, we simply superpose a 5-7 disclina-
tion pair separated by a vector a, sum the self- and in-
teraction energies described in eq. (13), and expand the
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resulting energy to second order in a/R. This results in
the following energy for a single dislocation,

Edisl = Eself + Etwist. (16)

where,

Eself

V K0
=

b2φ
8π2R2

( ρ

R

)2

+
|b|2

8π2R2

[

ln
(

1− ρ2

R2

)

+ ln

(

R

a

)]

(17)

and

Etwist

V K0
= −3Ω2

16π
bφρ

(

1− ρ2

R2

)

. (18)

Eself is the elastic energy of a single dislocation in an
untwisted bundle, which depends largely on the radial
position, ρ, and weakly on orientation of the dislocation.
This energy is maximal for a central dislocation, ρ = 0,
and reduces to the well known logarithmically divergent
cost for a single dislocation in a bulk crystal [33, 34]. The
radial dependence of Eself shown in Fig. 2a, becomes
singular as the dislocation approaches the bundles surface
as the boundary-induced force on a dislocation diverges
as ∼ (R−ρ)−1 [32]. Hence, in the limit that R−ρ ≪ a,
the 5-7 disclination superposition is non-analytic as a →
0, and hence the small-a expansion of eq. (17) becomes
inaccurate.
Etwist describes the elastic coupling between the twist

induced stresses and the dislocation stresses shown in
Fig. 2b. Notably, this coupling is negative and minimal
for b = bφ and ρ = R/

√
3, demonstrating that twist

favors dislocations of a certain polarization and located
at a specific radial position in twisted bundles. The fa-
vorable orientations of dislocations correspond to discli-
nation dipoles oriented along the radial direction, with
the 5-fold end oriented towards the bundle center. Alter-
natively, we may view such a dislocation as a partially
removed row of filaments extending from the free bundle
surface to the dislocation.
To understand the origin of an optimal location of dis-

location in twisted bundles, we consider an alternative
derivation of Etwist based on the Peach-Koehler force [35]
generated by twist-induced stress. The force per unit
length on a dislocation line along ẑ subject to imposed
stress σij is given by,

fPK
i = ǫijσjkbk. (19)

The stresses generated by twist are described by the so-
lution to K−1

0 ∇4
⊥χtwist = −3Ω2, which can be readily

solved to show the following azimuthal stress distribu-
tion,

σtwist
φφ (ρ) =

3K0Ω
2

16
(R2 − 3ρ2). (20)

This stress distribution divides the bundle into two re-
gions: tensile hoop stresses, σtwist

φφ > 0, at the bundle core
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FIG. 2: (Color online) The dislocation self-energy is plotted
in (a) vs. radial position, ρ. In (b), we show the radial de-
pendence of the elastic coupling between twist and dislocation
stresses. In (c), a schematic showing the Peach-Koehler force
on disclocations in the presence of twisted induced stress,
where ⊥ indicates the position of an edge dislocation. The
dashed line indicates a contour of vanishing hoop stress, to
which dislocations in highly-twisted bundles are driven. For
each figure, the dislocation orientation is b = bφ̂.

for ρ < R/
√
3; and due to large azimuthal tilt of filaments

at the periphery, compressive hoop stresses, σtwist
φφ < 0,

for ρ > R/
√
3. Since twist induces a radially symmetric

stress, σtwist
φr = 0, the force of a dislocation whose Burg-

ers vector is oriented along φ (with a 5-7 dipole along
r̂) is in the r̂ direction. As shown in Fig 2c, for such a

defect in the compressive zone, for ρ > R/
√
3, the Peach-

Koehler force drives the dislocation inwards, while in the
tensile zone, for ρ < R/

√
3, this force drive the dislo-

cation outwards. Hence, the force vanishes where σtwist
φφ

vanishes at ρ = R/
√
3, the stable position. Combining

eqs. (19) and (20), energetic coupling between twist and
dislocations, eq. (18), may be readily calculated from
the mechanical work of driving a defect into the bundle,

Etwist = −bφ
∫ R

ρ
dρ′σtwist

φφ (ρ′).

We end this section with an analysis of dislocation-
dislocation interactions in cylindrical bundles. As with
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Eself and Etwist, we derive these from the interactions
between two neutral disclination pairs. To compute inter-
dislocation energies, we sum disclination interactions
over two disclinations, s±1 = ±2π/6 at x±

1 = x ± a1/2,

and the second pair of disclinations, s±2 = ±2π/6 at
x±
2 = x ± a2/2. Again, we retain terms to lowest order

in a from the expansion of multiple disclination interac-
tions, yielding the interaction energy

Eint

K0V
=

1

4π2R2

[

− (b1 · b2)
(

ln cos2 ξ + sin2 ξ
)

+
(r1 × b1)(r2 × b2)

R2
sin4 ξ +

(b1 ×∆x12)(b2 ×∆x21)

|∆x12|2
(

1− cos4 ξ
)

+
(b1 ×∆x12)(b2 × r2)(1 − ρ21/R

2) + (b2 ×∆x21)(b1 × r1)(1 − ρ22/R
2)

(R2 − ρ21)(R
2 − ρ22) + |∆x12|2

sin2 ξ

]

(21)

Here, ri measures the position of ith dislocation with
respect to the bundle center, and ξ is defined by

cos2 ξ =
|∆x12|2

(R2 − ρ21)(R
2 − ρ22) + |∆x12|2

. (22)

Due to the presence of the free boundary, this pair poten-
tial encodes a significantly more complex dependence on
defect orientation and position than the well-known elas-
tic interactions of dislocations in 2D crystals [27, 33, 34].
However, we notice the well-known form of logarithmic
dislocation interactions in bulk crystals is easily obtained
by taking the limit that ρi/R → 0 of eq. (21), for
which cos ξ → |∆x12|/R and sin ξ → 1. Additionally,
we note that when in the limit where either dislocation
approaches the boundary, ρi/R → 1, the dislocations in-
teractions vanish, which can easily be verified for the case
cos ξ → 1 and sin ξ → 0.

B. Defect phase diagram of twisted bundles

Here, we analyze the stability of disclination and dislo-
cations in the cross section of twisted bundles. As shown
previously [14, 15], and eq. (13), twist-induced stresses
couple favorably to the presence of positively charged
(s = +2π/6), 5-fold disclinations, and above a critical

threshold of reduced twist, |(ΩR)c =
√

2/9 ≃ 0.47, this
energetic coupling is sufficient to compensate for the pos-
itive self-energy cost of a single disclination at any posi-
tion. Thus, bundles are unstable to one or more 5-fold
disclinations for |ΩR| ≥ (ΩR)c.
We consider the stability of a dislocation by consider-

ing the energy of a single dislocation, which is polarized

by twist-induced stress such that b = bφ̂. Minimizing
the sum of eqs. (17) and (18) over radial position, ρ, we
find the value of twist, (ΩR)∗ at which the net cost of a
single dislocation vanishes, Edisl(ρ∗) = 0, where ρ∗ is the
stable position of the dislocation [43] For larger bundle
twists |ΩR| ≥ (ΩR)∗, one or more dislocations is stable
in the low-energy packing of twisted bundles.
In Fig. 3 we show the value of both the threshold for

disclinations and dislocations, (ΩR)c and (ΩR)∗, respec-
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FIG. 3: (Color online) The phase diagram indicating stabil-

ity of appropriately oriented (b = bφ̂) dislocations and 5-fold
disclinations in cross sectional order of twisted filament bun-
dles in terms of reduced twist and reduced size of bundles.

tively, as functions of R/a, the size of the bundle in units
of the lattice spacing, a ≃ |b|. The threshold for 5-fold
disclinations is independent of bundle size; however, we
find that (ΩR)∗ < (ΩR)c for all R/a ≥ 2. Thus, for fixed
bundle size R/a, for increasing values of (ΩR), twisted
bundles become unstable to neutral defects, dislocations,
before becoming unstable to the 5-fold disclinations in
their ground-state packing.
We can roughly estimate the size dependence of (ΩR)∗

in the regime of large bundles. In this limit, the position
of the dislocation is determined by the twist energy alone,
which is minimal for ρ∗ = R/

√
3. Solving Edisl(R/

√
3) =

0 critical twist (ΩR)∗, we find

(ΩR)2∗ ≃
√
3|b|
πR

[

ln

(

R

a

)

− 0.072

]

. (23)

This formula highlights the balance between the logarith-
mic self-energy of a single dislocation, ∼ K0|b|2 ln(R/a),
and the compensating dislocation-twist coupling, ∼
−K0Ω

2R|b|. Hence, we find that the threshold twist
necessary for stabilizing dislocations in the cross section
becomes arbitrarily small as bundles become macroscopic
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in radius, in the R/a → ∞ limit. This analysis suggests
that dislocations proliferate in large bundles, and there-
fore, understanding the ground state packing requires the
study of multi-dislocation structure and energetics.

IV. MULTI-DISLOCATION GROUND STATES

A. Numerical study

In this section we explore the structure of multi-
dislocation cross sections in the region of intermediate
twist, (ΩR)∗ < |ΩR| < (ΩR)c. We base our analy-
sis on a certain class of mechanically stable and high-

symmetry dislocation geometries where parallel, b = bφ̂
dislocations concentrate along M identical radial lines,
or “arms”, spaced evenly at angular intervals of 2π/M ,
around the bundle. A similar class multi-dislocation
geometries have been studied in the context of grain-
boundary screening of isolated disclinations in 2D crys-
tals [36]. In these geometries, each radial line of dislo-
cations is line of mirror symmetry in the defect packing
so that σrφ = 0 along these lines and, by eq. (19), the
φ component of force (the glide direction) vanishes for
each dislocation. The remaining force balance along the
radial direction results from repulsive inter-dislocation
forces that favor expansion of the array and the Peach-
Koehler force on dislocations arising from twist-induced
stresses that favors a restoring compression of the array.
As shown in Fig. 1, extended strings of alternating 5-
and 7-fold defects constitute tilt grain boundaries across
which the orientation of two domains of crystalline order
rotates by a discrete angle [34].
To determine the radial position of dislocations in these

minimal-energy configurations, we consider the total en-
ergy of configurations possessing Nd total disclinations,
composed of M equivalent arms of n = Nd/M disloca-
tions per arm. For a fixed dislocation geometry, reduced
twist and bundle size, the sum of the single defect energy,
eq. (16), and interaction energy between defect pairs, eq.
(21), is numerically minimized with respect to the radial
position of the n dislocation “rings” in the array. In this
analysis, the minimum spacing between successive dislo-
cations along the array is set to be, a, the lattice spacing.
Fig. 4 shows the results for the number and arrange-

ment of dislocations in a bundle of size R = 100a for
a range of twist below the threshold for stable 5-fold
defects. As the twist increases beyond (ΩR)∗ ≃ 0.16,
the number of dislocations favored in the cross section
increases quickly. For each value of Nd, the geometry
of the dislocation packing is labeled by the integer pair,
(M,n), denoting the number of grain boundary arms and
the number of dislocations per arm, respectively. Along
with the total dislocation number, the number of radial
grain boundaries also grows with (ΩR), leading 2-, 3-, 4-
and 6-fold grain boundary geometries depicted in Fig. 4.
In Fig. 5 we show results for Nd vs. (ΩR) for a much

larger bundle, R = 700a. While this bundle shows a simi-
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FIG. 4: (Color online) (Top) The total dislocation number for
ground-state configurations of twisted bundles with multiple
dislocations for a bundle of size, R = 100a. Integer pairs,
(M,n), refer to the number grain of boundary arms and the
number of dislocations per arm, respectively. (Bottom) A, B,
C, and D show 2-,3-, 4- and 6-fold grain boundary geometries,
where ⊥ labels the position of a single dislocation.

lar trend with increasing twist, we note that the threshold
for stable dislocations is markedly reduced, (ΩR)∗ ≃ 0.07
and a distinct sequence of dislocation geometries is pre-
dicted as Nd increases rapidly with twist. Notably, we
find for all multi-dislocation geometries over a range from
R/a = 20 to 700, that grain-boundary arms penetrate
only a fraction of the distance from the bundle surface
to the bundle center, terminating in the bulk at a finite
radius, a feature uncommon in bulk crystalline materials.

To investigate the evolution of grain-boundary struc-
ture in bundles with increasing twist, in Fig. 6 we plot
the number of grain boundary arms, M , vs. Nd for all
values of R/a studied. Over the range of dislocations
explored here (up to Nd = 50) we find little systematic
dependence of the growth in the number of grain bound-
aries on bundle size. Despite more than an order of mag-
nitude variation of bundle size, the trend of increasing
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FIG. 5: (Color online) The total dislocation number for
ground-state configurations of twisted bundles with multiple
dislocations for a bundle of size, R = 700a. Data points are
labeled as in Fig. 4.
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FIG. 6: (Color online) Plot of number of grain boundarm
arms, M , vs. total dislocation number, Nd for bundle sizes in
the range R/a = 20− 700.

number of grain boundaries is consistent with a roughly
linear relationship, M ∼ Nd for all R/a. This suggests
that the optimal dislocation geometry is nominally de-
termined by Nd alone, which in turn is regulated by ΩR
in a manifestly size-dependent manner, as evidenced by
the results for R = 100a and R = 700a bundles, of Figs.
4 and 5, respectively.

B. Scaling analysis

Above, we found that the gross structure of the multi-
dislocation ground state is predominantly sensitive to
the total dislocation number. Here, we consider a sim-
ple scaling argument to understand the dependence of
Nd on bundle twist and size. This argument is similar
to the geometric analysis of “grain-boundary scars” on
spherical crystals [11], with the notable exception that
in the present case, neutral grain boundaries form in the

absence of excess point disclinations. According to the
compatibility relation, eq. (8), we can formally consider
the source of twist-induced stresses, KT = 3Ω2, to be a
uniform areal density of negatively charged disclinations.
Integrating this charge density over the cross section of
the bundle we define an effective disclination charge,

seff = −3π(ΩR)2. (24)

As argued in ref. [11], the strain generated by this “topo-
logical defect” can be compensated by the presence of M
radial grain boundaries, each of which accommodates a
rotation of θ ≃ a/d, where d is the mean dislocation
spacing along the boundary [37]. Equating the effective
topological charge to the total grain boundary rotation,
we find the mean-spacing between dislocations,

d−1 ≈ a−1(ΩR)2/M. (25)

Integrating the linear density of dislocations along the
length of grain boundaries (∼ R) we find the mean num-
ber of dislocations per arm,

n ≈ (R/a)(ΩR)2/M. (26)

Multiplying n by the number of grain boundaries in
the cross section, we argue that for large twist, Nd ∼
(R/a)(ΩR)2. To capture both limiting cases of large
twist and the critical twist at which Nd vanishes, we
construct the following scaling form for total disclination
number,

Nd ∼ (R/a)
[

(ΩR)2 − (ΩR)2∗
]

. (27)

Hence, not only do larger bundles become unstable to
dislocations at smaller values of bundle twist, the growth
of the optimal number of dislocations with “excess” twist
in large bundles is also more rapid than in smaller bun-
dles.
In Fig. 7 we compare the total dislocation number of

the numerically-determined ground states to the scaling
prediction, eq. (27). We find that the scaling prediction
agrees well with numerical results over the range of Nd

and the large range of bundle sizes explored here, 20 ≤
R/a ≤ 700.

V. DISCUSSION

In summary, we have shown that geometric frustration
arising from helical twist in two-dimensionally ordered
filament bundles restructures the ground-state packing
at intermediate twist by favoring the presence of appro-
priately oriented, edge dislocations. Based on the con-
tinuum theory of disclinations and dislocations in fila-
ment bundles, we show that dislocations become favor-
able in the cross section at twist smaller than the crit-
ical twist needed to stabilize 5-fold disclinations. Un-
like the case of stable 5-fold disclinations studied previ-
ously [14, 15], here we find that the threshold for sta-
ble dislocations in bundles is highly dependent on the
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FIG. 7: (Color online) Plot of dislocation number vs. scaling
prediction, eq. (27), for bundle sizes in the range R/a =
20− 700.

size of the bundle compared to the microscopic inter-
filament spacing. Above the threshold single dislocations
in twisted bundles, we predict a rich spectrum of low-
symmetry ground-state order. Twist-induced stresses in
filament bundles lead to a natural tendency to “polyg-
onalize” the cross-sectional packing, giving rise to low-
energy structures where multiple crystalline domains are
separated by radially-extending grain boundaries that
terminate in the bundle bulk, not unlike the finite-length
grain-boundary scars of spherical crystals.
This study is significant in the context of frus-

trated order because it demonstrates that “neutral”
configurations of topological defects may effectively
screen “charged”, geometrically-induced stresses, like the
stresses generated by filament twist in bundles. Previous
studies of defects on curved, crystalline membranes, have
predicted extended chains dislocations, or scars, only in
the presence of excess disclinations that are themselves
either forced in by topology [11, 28] or, in the case of
a membranes with a free boundary, as the result of en-
ergetic coupling to curvature-induced stresses [25, 38].
In these cases, the dislocation arrays function to screen
the disclination stress more efficiently than the stresses
induced by Gaussian curvature. Here, we show that neu-
tral arrays of 5-7 disclination pairs flood the ground-state
packing of crystalline bundles well before twist favors
the incorporation of excess 5-fold defects. That is, dis-
locations arrays are also driven into the packing of frus-
trated materials by the tendency to screen geometrically-
induced stresses alone. Due to the formal relationship
between the non-linear elasticity of twisted bundles and
curved, crystalline membranes, we expect that the novel
grain-boundary geometries predicted here may also occur
as ground states of the latter system.
In the context of filamentous materials, the present

study is significant for two reasons. First, it identifies
ΩR and R/a as the two geometric parameters that gov-

ern the ground state packing of helically-twisted bundles.
Importantly, we show that the critical degree of twist at
which the bundle cross section becomes unstable to topo-
logical defects is crucially sensitive to bundle size, R/a.
We may relate the reduced twist of the bundle to the tilt
angle, θmax of the outermost filament with respect the
pitch axis of the helical bundle by, θmax = tan−1(ΩR).
For small bundles, less than a few radial filament layers,
the critical twist for stability of any defect type in the
cross section corresponds to a degree of tilt greater than
25◦. Because the critical twist decreases with bundle size
as (ΩR)∗ ∼ a/R ln(R/a), for bundles that are macro-
scopically large compared to filament size, say R = 100a,
the critical degree of filament tilt is markedly reduced to
nearly 9◦. For comparison, we note the helical twist of
certain collagen fibrils is in the range 15− 17◦ of helical
tilt [17, 39].
The case of collagen points to the second important re-

sult regarding the structure of optimally-packed twisted
fibers. In many tissue types, collagen fibrils form with
lateral dimensions hundreds of times larger than the
roughly 1 nm scale of constituent filaments, making mul-
tiple dislocations energetically favorable even in fibrils of
relatively modest twist. Notably the precise nature of
the cross-sectional ordering of collagen molecules in fib-
rils is a long-standing and open question, in part, due to
small-angle scattering data that suggest cross sections are
composed of unknown superpositions of crystalline inter-
molecular order and disordered inter-molecular packing
of some type. Numerous models have been proposed
to infer the real-space packing [40], many of which mix
aspects of crystalline and non-crystalline order in novel
ways [41]. To date, the model most consistent with ob-
served features of x-ray scattering data was proposed by
Hulmes, Wess, Prockop and Fratzl [42]. In this model,
multiple crystalline domains in a cylindrical bundles are
separated by grain boundaries extending radially from
a central, low-density region to the surface of the fibril.
Remarkably, this model is very similar in gross struc-
ture to the ground states of twisted bundles predicted for
large bundles of intermediate twist (for example in Fig.
4). Though this model of collagen fibril packing did not
take into account the effects of twist explicitly, we believe
many of the key features of the “disordered” packing of
these materials may be understood as crucial elements
of energy-minimizing packings of twisted bundles. Fu-
ture work will explore the form factor of ideal packings
of twisted bundles and critically test the intriguing and
putative connection between defects in the ground states
of twisted bundles and the disorder in the collagen fibril.
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