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We investigate the connection between the theory of complete scaling and a field-theoretic (FT)
treatment of asymmetric fluid criticality. To facilitate the comparison we develop an equation of
state from a simplified form of the complete scaling transformations and systematically compare this
equation of state with the equation of state generated by a FT treatment of an asymmetric Landau-
Ginzburg-Wilson Hamiltonian. We find, with care in interpretation, that these two approaches may
be read as equivalent up to terms involving an independent higher-order asymmetric correction-to-
scaling exponent.
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I. INTRODUCTION

Universality is a central feature of critical phenomena
[1, 2]. It is well established, primarily through exper-
iment [3], that the liquid-vapor critical point in one-
component fluids and the liquid-liquid consulate point
in binary mixtures belong to the universality class of the
three-dimensional (3D) Ising model. The isomorphism
between members of a universality class can be estab-
lished by mapping the thermodynamic variables of one
system onto another. However, the choice of mapping
between fluids and the Ising system is not obviously de-
termined by thermodynamics.
The canonical mapping of the liquid-vapor critical

point onto Ising criticality is given by the lattice-gas
model [4]. This model can easily be extended to bi-
nary fluids and fluid mixtures through a reassignment
of variables and the principle of isomorphism [5]. For the
remainder of the text, we will focus on the liquid-vapor
system for concreteness. The lattice-gas model preserves
the exact symmetry of uniaxial Ising-type ferromagnets
and consequently, the liquid-vapor coexistence curve of
the lattice gas is symmetric with respect to the density
ρ. The order parameter of the lattice gas is the reduced
density, ∆ρ̂ = (ρ − ρc)/ρc, where ρc is the value of the
number (molar) density at the critical point. If the liquid
and vapor branches of the coexistence curve are denoted
by “+” and “−” respectively, the asymmetric portion of
the density is given by the excess density

∆ρ̂d =
∆ρ̂+ +∆ρ̂−

2
. (1)

For the lattice gas ∆ρ̂d = 0. However, real fluids do not
possess the symmetry of the Ising model, and in general
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∆ρ̂d 6= 0. Even the coexistence curve of 3He, the most
symmetric fluid known, exhibits some small asymmetry
[6]. In asymmetric systems, the leading behavior is still
determined by the Ising-type behavior and asymmetric
corrections appear as sub-leading terms in quantities like
the density. In mean-field models of the liquid-vapor crit-
ical point, such as the van der Waals model, the asym-
metry of the coexistence curve is described by the “law”
of rectilinear diameter [7]

∆ρ̂d = D1|∆T̂ |, (2)

where the reduced temperature is defined by ∆T̂ =
(T − Tc)/Tc, with Tc being the critical temperature.
While some one-component fluids such as xenon [8] seem
to asymptotically follow this “law”, others, like SF6 [9],
show strong deviations from rectilinearity in the critical
region.
Models such as the Widom-Rowlinson penetrable-

sphere model [10] and Mermin’s decorated-lattice models
[11, 12] predict non-classical, i.e., non-mean-field, behav-
ior of the excess density. On the basis of these models, a
non-classical theory of fluid criticality, known as “revised
scaling” [13] was proposed. The formulation of revised
scaling postulates that the Ising scaling fields are analytic
functions of the chemical potential µ and temperature T ,
whereas the lattice gas model assumes that µ and T are
the correct scaling fields. This field mixing produces the
following asymptotic behavior:

∆ρ̂d ≈ D1−α|∆T̂ |
1−α +D1|∆T̂ |, (3)

where α ≃ 0.11 [14] (1− α ≃ 0.89) is a universal critical
exponent, which characterizes the divergence of the heat-
capacity.
Additional theoretical support for revised scaling came

from Nicoll and Zia [15], and Nicoll [16], who performed
a field-theoretic (FT) analysis of an asymmetric Landau-
Ginzburg-Wilson (LGW) Hamiltonian and found that re-
vised scaling arises naturally from the inclusion of asym-
metric operators in the Hamiltonian. In addition, they
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found that these asymmetric operators also lead to a non-
analytic correction to the excess density characterized by
a new asymmetric correction-to-scaling exponent θ5. The
excess density predicted by their analysis goes as

∆ρ̂d ≈ D1−α|∆T̂ |
1−α +D1|∆T̂ |+Dβ+θ5 |∆T̂ |

β+θ5 , (4)

where β ≃ 0.326 [14]. The universal exponent θ5 was
found to be θ5 = 1/2 + ǫ = 3/2 in the first-order ǫ-
expansion, where ǫ = 4 − d and d is the spatial dimen-
sionality [17, 18]. Working to order ǫ3, Zhang and Zia
[19], found their results to be consistent with the bound
θ5 & 1.0.
More recently, Fisher and co-workers [20, 21] have ar-

gued for an extended formulation of scaling, originally
discussed by Rehr and Mermin [13], which is now known
as “complete scaling”. This theory of asymmetric fluid
criticality is an extension of the field-mixing in revised
scaling and incorporates the hypothesis of Griffiths and
Wheeler [22] that preferred thermodynamic variables do
not exist. This concept implies that pressure P , chemi-
cal potential µ, and temperature T should all be treated
on equal footing in any formulation of scaling for the
liquid-vapor critical point. The Ising scaling fields should
therefore be treated as analytic functions of all three. In
contrast, revised scaling assigns a special role to the pres-
sure P (µ, T ) as the field-dependent thermodynamic po-
tential. Complete scaling predicts that the excess density
is asymptotically given by

∆ρ̂d ≈ D2β |∆T̂ |
2β +D1−α|∆T̂ |

1−α +D1|∆T̂ |, (5)

where 2β ≃ 0.65. This result clearly differs from the FT
prediction, Eq. (4). In the mean-field approximation, the
connection between complete scaling and the asymmet-
ric Landau expansion has been investigated by Anisimov
and Wang [23, 24], who demonstrated that the two ap-
proaches appear to be consistent. Complete scaling has
also been extended to inhomogeneous fluids by Bertrand
and Anisimov [25]. That the penetrable-sphere model
does not exhibit complete scaling, has been investigated
by Ren et al. [26], who found that this is due to a special
symmetry of the model.
In addition to the leading 2β term in the excess density,

complete scaling also predicts a divergence in the second
derivative of the chemical potential along the coexistence
curve

(
d2µ

dT 2

)

cxc

∼ |∆T̂ |−α, (6)

where the subscript cxc denotes the conditions of phase
coexistence. This so-called Yang-Yang anomaly derives
its name from the Yang-Yang relation [27]

ρCV

T
=

(
d2P

dT 2

)

cxc

− ρ

(
d2µ

dT 2

)

cxc

, (7)

where CV is the isochoric heat capacity. Complete scal-
ing implies the divergence of the isochoric heat capacity

is shared between the second derivatives of the pressure
and the chemical potential. In contrast, revised scaling
predicts that (d2µ/dT 2)cxc remains finite at the critical
point. Nicoll’s analysis also predicts non-analytic behav-
ior of the chemical potential, spefically,

(
d2µ

dT 2

)

cxc

∼ |∆T̂ |−α−β+θ5 , (8)

however, the relatively large value of θ5 ensures that this
quantity remains finite at the critical point.
Fisher and co-workers have found support for complete

scaling in heat capacity measurements [28] and computer
simulations of highly asymmetric fluid models [29–33].
However, heat capacity measurements alone may not
be sufficient evidence for complete scaling, since small
traces of impurities can mimic a Yang-Yang anomaly
[34]. Anisimov and Wang have demonstrated that com-
plete scaling is also supported by data on liquid-vapor
coexistence in highly asymmetric fluids [23, 24]. Some of
the most compelling evidence for a 2β contribution has
come from experiments near the critical consulate point
in binary mixtures [35–40]. Several further investigations
supporting the existence of a Yang-Yang anomaly have
also recently been made [41, 42]. There is also at least one
model that exhibits the type of field mixing characteris-
tic of complete scaling [43]. Complete scaling remains,
however, an essentially phenomenological theory.
In this paper, we investigate the connection between

complete scaling and the FT approach to asymmetric
fluid criticality. After reviewing the thermodynamic im-
plications of complete scaling in Section II, we develop
a complete scaling equation of state in Section III. In
Section IV we extend the asymmetric LGW model and
the resulting equation of state to systems that exhibit
a Yang-Yang anomaly. The complete scaling and FT
equations of state are systematically compared in Sec-
tion V, with the finding that they are equivalent up to
a term involving the higher-order asymmetric correction
to scaling exponent θ5. Additionally, we investigate the
possibility of extracting the complete scaling mixing pa-
rameters from a mean-field equation of state. In Section
VI we discuss implications of these results.

II. COMPLETE SCALING

Critical phenomena of the Ising universality class are
characterized by two independent scaling fields, h1 and
h2, known as the “ordering” and “thermal” fields respec-
tively, and a dependent scaling field h3(h1, h2), which
serves as the thermodynamic potential. Asymptotically
close to the critical point, the thermodynamic potential
behaves as

h3(h1, h2) ≈ |h2|
2−αg±

(
h1

|h2|2−α−β

)
, (9)

where the superscript ± on the function g distinguishes
between h2 > 0 (+) and h2 < 0 (−). The critical point



3

is defined by the condition h1 = h2 = h3 = 0. The inde-
pendent scaling fields are thermodynamically conjugate
to two scaling densities, φ1 and φ2, known as the “order-
parameter” and the “weakly-fluctuating density” respec-
tively. The scaling fields and densities are connected by
the thermodynamic relation

dh3 = φ1dh1 + φ2dh2, (10)

so that

φ1 =

(
∂h3
∂h1

)

h2

, φ2 =

(
∂h3
∂h2

)

h1

. (11)

The system exhibits stable two-phase equilibrium for
h1 = 0 and h2 < 0. These two conditions define the Ising
coexistence curve. Along the branches of the coexistence
curve, the order parameter behaves asymptotically as

φ1 ≈ ±B0|h2|
β , (12)

where the ± refers to the h1 > 0 and h1 < 0 sides of the
coexistence curve, respectively. The weakly-fluctuating
density has the same value along both branches, namely,

φ2 ≈ −
A−

0

1− α
|h2|

1−α +Bcr|h2|. (13)

In these expressions A−

0 and B0 are non-universal critical
amplitudes. The term proportional to Bcr is an analytic
fluctuation-induced contribution to φ2 [44]. For zero or-
dering field and positive h2, the system is characterized
by a single phase with φ1 = 0.
In one-component fluids, the thermodynamic fields are

the temperature T , the chemical potential µ, and the
pressure P , and the conjugate densities are the number
density ρ and the entropy density s. The physical vari-
ables are interrelated by the Gibbs-Duhem relation

dP = ρdµ+ sdT. (14)

Consequently, the densities are derived from the pressure
as

ρ =

(
∂P

∂µ

)

T

, s =

(
∂P

∂T

)

µ

. (15)

In addition to the reduced density ∆ρ̂ and reduced tem-
perature ∆T̂ ,

∆ρ̂ =
ρ− ρc
ρc

, ∆T̂ =
T − Tc
Tc

, (16)

it is convenient to define

∆ŝ =
s− sc
ρckB

, ∆P̂ =
P − Pc

ρckBTc
, ∆µ̂ =

µ− µc

kBTc
, (17)

where kB is Boltzmann’s constant.

For the liquid-vapor transition, the principle of com-
plete scaling asserts that the scaling fields can be ex-
panded in ∆µ̂, ∆T̂ , and ∆P̂ . In the lowest order approx-
imation, the scaling fields are given by

h1 ≃ a1∆µ̂+ a2∆T̂ + a3∆P̂ , (18)

h2 ≃ b1∆T̂ + b2∆µ̂+ b3∆P̂ , (19)

h3 ≃ c1∆P̂ + c2∆µ̂+ c3∆T̂ + c23∆µ̂∆T̂ , (20)

where the constant coefficients are called mixing coeffi-
cients. In general, the complete scaling transformations
should include terms of all orders in ∆T̂ , ∆µ̂, and ∆P̂ .
Consequently, some justification of the truncated trans-
formations presented above is required. In this work we
only consider contributions to the excess density ∆ρ̂d
which are of order |∆T̂ | or lower. Two second-order terms

satisfy this criterion, ∆µ̂∆T̂ when added to h3 and ∆T̂ 2

when added to h1 and h3. However, we have omitted
explicit ∆T̂ 2 terms from the relations for h1 and h3 since
these can be absorbed into the regular, i.e. non-critical,
portion of the thermodynamic potential without affect-
ing our results. The exact connection between the trans-
formations, Eqs. (18)-(20), and the excess density will
be derived in the following paragraphs. Once this con-
nection is established, one can verify that the remaining
second-order terms ∆µ̂∆P̂ , ∆P̂∆T̂ , ∆P̂ 2, and ∆µ̂2 do
not need to be included for our purposes.
As discussed by Wang and Anisimov [24] and Bertrand

[45], the transformations, Eqs. (18)-(20), can be signifi-
cantly simplified by selecting normalizations for the scal-
ing fields, adopting a particular value of ŝc = sc/ρckB,
which is arbitrary in classical thermodynamics, and ne-
glecting higher order terms. Specifically, we choose ŝc =
(dP/dT )h1=0,c. These simplification can be implemented
by adopting the following choice of coefficients

a1 = (1 − a), a2 = −aŝc, a3 = a, (21)

b1 = 1, b2 = b, b3 = 0, (22)

c1 = 1, c2 = −1, c3 = −ŝc, c23 = c. (23)

When these coefficients are substituted into the complete
scaling transformations, we find, after defining for nota-
tional convenience

∆P̃ = ∆P̂ −∆µ̂− ŝc∆T̂ , (24)

that the transformations reduce to

h1 = ∆µ̂+ a∆P̃ , (25)

h2 = ∆T̂ + b∆µ̂, (26)

h3 = ∆P̃ + c∆µ̂∆T̂ . (27)

In the mean-field approximation, ∆µ̂ ∼ |∆T̂ |3/2 and

∆P̂ ∼ |∆T̂ |2, so that each asymmetric term in the com-
plete scaling transformations is smaller than the leading
term by a factor of |∆T̂ |1/2. The revised scaling transfor-
mations are reproduced in the absence of pressure mixing
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(a = 0), and the lattice gas model is recovered when all
mixing coefficients are set to zero (a = b = c = 0).
The physical densities can be found in terms of the

scaling densities, by combining Eq. (10), Eq. (14), and
Eqs. (25)-(27), with the result

∆ρ̂ =
φ1 + bφ2 − c∆T̂

1− aφ1
, (28)

∆ŝ =
φ2

1− aφ1
, (29)

where φ1 and φ2 are given by Eqs. (12) and (13) respec-
tively. To leading order in the asymmetry and reduced
temperature these expressions are given by

∆ρ̂ ≃ φ1 + a(φ1)
2 + bφ2 − c∆T̂ , (30)

∆ŝ ≃ φ2. (31)

When the scaling densities presented in Eqs. (12) and
(13) are substituted into Eq. (30), the complete scaling
excess density introduced in Eq. (5) is reproduced with
the coefficients

D2β = a(B0)
2, (32)

D1−α = −b
A−

0

1− α
, (33)

D1 = Bcr + c. (34)

We note that the leading 2β term is proportional to the
pressure mixing coefficient a. The same is true of the
Yang-Yang anomaly, which follows from the first com-
plete scaling relationship, Eq. (25), as

(
d2µ̂

dT̂ 2

)

cxc

≃ −a

(
d2P̂

dT̂ 2

)

cxc

= −aA−

0 |∆T̂ |
−α, (35)

where, to leading order, the coexistence curve is defined
by h1 = 0.
Complete scaling also predicts the effects of fluid asym-

metry on other thermodynamic properties. In partic-
ular, the physical susceptibilities, such as the isother-
mal compressibility, volumetric expansivity, and the heat
capacity are found to be combinations of three scal-
ing susceptibilities: “strong” χ1 = (∂φ1/∂h1)h2

, “weak”
χ2 = (∂φ2/∂h2)h1

, and “cross” χ1 = (∂φ1/∂h2)h1
[24].

III. COMPLETE SCALING EQUATION OF

STATE

The complete scaling transformations Eqs. (25)-(27)
are equivalent to an equation of state (EOS). In partic-
ular these transformations describe the way in which an
asymmetric EOS can be constructed from the symmetric
Ising-type EOS, h3. The third transformation, Eq. (27),
when written as

∆P̃ (∆µ̂,∆T̂ ) = h3(h1, h2)− c∆µ̂∆T̂ , (36)

is almost in the desired form, except that h3 is a function
of the scaling fields h1 and h2 and not the physical fields.
The dependence of the potential h3 on ∆µ̂ and ∆T̂ can
be made manifest by expanding in the asymmetric terms.
If we define

h
(0)
3 (∆µ̂,∆T̂ ) = h3(h1 = ∆µ̂, h2 = ∆T̂ ), (37)

φ
(0)
1 (∆µ̂,∆T̂ ) =

(
∂h3
∂h1

)

h1=∆µ̂,h2=∆T̂

, (38)

φ
(0)
2 (∆µ̂,∆T̂ ) =

(
∂h3
∂h2

)

h1=∆µ̂,h2=∆T̂

, (39)

then the double Taylor expansion of h3 around h1 = ∆µ̂
and h2 = ∆T̂ can be written

h3(h1, h2) ≃ h
(0)
3 + φ

(0)
1 (a∆P̃ ) + φ

(0)
2 (b∆µ̂). (40)

We note that the functions h
(0)
3 , φ

(0)
1 , and φ

(0)
2 are the

same functions as h3, φ1, and φ2, as introduced in Eqs.
(10) and (11). The superscript (0) has been added to
emphasize that these function are now being evaluated
at (∆µ̂, ∆T̂ ) instead of at the defined variables (h1, h2).
Equation (27) can now be written

∆P̃ (∆µ̂,∆T̂ ) = P̂sym + aP̂a + bP̂b + cP̂c (41)

where

P̂sym(∆µ̂,∆T̂ ) = h
(0)
3 (∆µ̂,∆T̂ ) (42)

is the leading symmetric (lattice gas) EOS and where the
asymmetric corrections are given by

P̂a(∆µ̂,∆T̂ ) = φ
(0)
1 (∆µ̂,∆T̂ )h

(0)
3 (∆µ̂,∆T̂ ), (43)

P̂b(∆µ̂,∆T̂ ) = φ
(0)
2 (∆µ̂,∆T̂ )∆µ̂, (44)

P̂c(∆µ̂,∆T̂ ) = −∆µ̂∆T̂ . (45)

To leading order in the asymmetry, the content of the
complete scaling transformations is fully contained in the
EOS given by Eq. (41). However, it is challenging to
write an explicit expression for h3 as a function of h1 and
h2 that satisfies the analyticity requirements discussed
by Griffiths [46]. The same is not true of the Helmholtz
energy density f(ρ, T ), which can be written as an ex-
plicit function of ρ and T , at least in the context of the
ǫ-expansion.
The derivation of the complete scaling EOS for

the Helmholtz energy density, ∆f̂(∆ρ̂,∆T̂ ) = (f −
fc)/ρckBTc, which, for brevity, we henceforth call the
Helmholtz energy, closely follows the previous derivation
for ∆P̂ (∆µ̂,∆T̂ ). The Helmholtz energy and pressure
are related by the Legendre transformation

f(ρ, T ) = µρ− P. (46)

The analogous quantity in the symmetric Ising system,
ψ, is defined by

ψ(φ1, h2) = h1φ1 − h3. (47)
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Using Eq. (11) one can show that

h1 =

(
∂ψ

∂φ1

)

h2

, φ2 = −

(
∂ψ

∂h2

)

φ1

. (48)

Applying the transformations Eqs. (46) and (47) to Eq.
(27), we find, with the aid of the definition

∆f̃ = ∆f̂ − µ̂c∆ρ̂+ ŝc∆T̂ , (49)

that the Helmholtz energy can be written as

∆f̃ = (1 + aφ1)ψ + bφ2h1. (50)

Whereas Eq. (27) establishes the relationship between
the pressure P and the symmetric potential h3, the above
equation establishes the analogous relationship between
the Helmholtz energy f and the symmetric potential ψ.
We note that the relationship between reduced potentials
can be compactly expressed as

∆f̃ = ∆µ̂∆ρ̂−∆P̃ . (51)

To obtain an expression for ∆f̃ which is manifestly de-
pendent on ∆ρ̂ and ∆T̂ , the potential ψ, which is natu-
rally a function of φ1 and h2, can be expanded in asym-
metric terms, as was done for h3 in Eq. (40). If we define

ψ(0)(∆ρ̂,∆T̂ ) = ψ(φ1 = ∆ρ̂, h2 = ∆T̂ ), (52)

h
(0)
1 (∆ρ̂,∆T̂ ) =

(
∂ψ

∂φ1

)

φ1=∆ρ̂,h2=∆T̂

, (53)

φ
(0)
2 (∆ρ̂,∆T̂ ) = −

(
∂ψ

∂h2

)

φ1=∆ρ̂,h2=∆T̂

, (54)

then the double Taylor expansion of ψ around φ1 = ∆ρ̂
and h2 = ∆T̂ is given by

ψ(φ1, h2) ≃ ψ(0) + h
(0)
1 (c∆T̂ − a∆ρ̂2 − 2bφ

(0)
2 ). (55)

Again, we note that the functions ψ(0), h
(0)
1 , and φ

(0)
2 are

the same functions as ψ, h1, and φ2, as introduced in
Eqs. (47) and (48). The superscript (0) has been added
to emphasize that these function are now being evalu-
ated at (∆ρ̂, ∆T̂ ) instead of at the defined variables (φ1,
h2). Eventually, we will compare the Helmholtz energy
derived from the complete scaling transformations, Eqs.
(25) - (27), with that resulting from a field-theoretic ap-
proach. In order to distinguish the two, we will add a
subscript CS to the complete scaling Helmholtz energy.
Equation (50) can now be rewritten as

∆f̃CS(∆ρ̂,∆T̂ ) = f̂sym + af̂CS
a + bf̂CS

b + cf̂CS
c , (56)

where we have introduced the definition

f̂sym(∆ρ̂,∆T̂ ) = ψ(0)(∆ρ̂,∆T̂ ), (57)

which is the leading symmetric (lattice gas) Helmholtz
energy, and where the asymmetric corrections are given
by

f̂CS
a (∆ρ̂,∆T̂ ) = ∆ρ̂ψ(0)(∆ρ̂,∆T̂ )−∆ρ̂2h

(0)
1 (∆ρ̂,∆T̂ ),

(58)

f̂CS
b (∆ρ̂,∆T̂ ) = −φ

(0)
2 (∆ρ̂,∆T̂ )h

(0)
1 (∆ρ̂,∆T̂ ), (59)

f̂CS
c (∆ρ̂,∆T̂ ) = ∆T̂ h

(0)
1 (∆ρ̂,∆T̂ ). (60)

We will refer to Eq. (56) as the complete scaling EOS.

Expressions for f̂CS
a , f̂CS

b , and f̂CS
c , based on an ǫ-

expansion analysis of the symmetric LGW Hamiltonian,
are given in the mean-field approximation in the following
subsection and are presented to order ǫ2 in the Appendix.
For practical applications a parametric equation of state,
such as the linear model [47], which has been shown to
match the symmetric EOS, Eq. (57), to order ǫ2 [48],
may be used instead of the explicit ǫ-expansion.
Up until this point, nothing has prohibited us from

including symmetric correction-to-scaling exponents and
scaling functions in our definitions of the potential func-
tions h3 and ψ, since we have treated the complete scaling
transformations as a prescription that can be applied to
any symmetric equation of state. In contrast, the forth-
coming field-theoretic results hold when only the leading
asymptotic terms are considered. Hence, we will now re-

strict f̂sym to contain only the leading asymptotic terms
and no higher-order Wegner corrections, so as to avoid
confusion.

A. Complete scaling EOS in the mean-field

approximation

In the mean-field approximation, which serves as illus-
trative example for the concepts presented in this section,
the complete scaling EOS takes on a particularly simple
form. The asymptotic part of the symmetric Helmholtz
energy is given by the following Landau expansion

f̂sym,mf = ψ
(0)
mf = −

(∆T̂ )2

2u
+

1

2
∆T̂∆ρ̂2 +

u

4!
∆ρ̂4. (61)

where u is a constant. The corresponding ordering field
and weakly-fluctuating density are found from Eq. (48)
to be

h
(0)
1,mf = ∆T̂∆ρ̂+

u

6
∆ρ̂3, (62)

and

φ
(0)
2,mf =

∆T̂

u
−

1

2
∆ρ̂2. (63)

This last equation is the mean-field approximation of Eq.
(13) with Bcr = 0. The asymmetric contributions to the
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Helmholtz energy are found from the definitions given in
Eqs. (58)-(60) to be

f̂CS
a,mf = −

1

2

(∆T̂ )2

u
∆ρ̂−

1

2
∆T̂∆ρ̂3 −

u

8
∆ρ̂5, (64)

f̂CS
b,mf = −

(∆T̂ )2

u
∆ρ̂+

1

3
∆T̂∆ρ̂3 +

u

12
∆ρ̂5, (65)

f̂CS
c,mf = (∆T̂ )2∆ρ̂+

u

6
∆T̂∆ρ̂3. (66)

When these equations are substituted into Eq. (56), we
find

∆f̃CS,mf = f̂sym,mf + (cu− b−
1

2
a)

(∆T̂ )2

u
∆ρ̂

+
1

3!
(2b− 3a+ cu)∆T̂∆ρ̂3 +

u

5!
(10b− 15a)∆ρ̂5. (67)

That the cubic term is proportional to the reduced tem-
perature, ensures that the EOS exhibits a critical point,
instead of a first-order transition.

IV. EXTENDED ASYMMETRIC

LANDAU-GINZBURG-WILSON MODEL

Within a field-theoretic (FT) approach, Nicoll has ana-
lyzed the addition of asymmetric terms to the symmetric
LGW Hamiltonian, such that the full Hamiltonian is of
the form [16]

H = Hsym +Hasym, (68)

where the symmetric Hamiltonian is given in terms of the
spatially dependent field variable ϕ(x) by

Hsym = −
(∆T̂ )2

2u
+

1

2
(∆T̂ )ϕ2 +

u

4!
ϕ4 −

1

2
ϕ∇2ϕ, (69)

and where the asymmetric portion can be written

Hasym = u1O1 + u3O3 + u5O5 + uλOλ, (70)

with

O1 =
(∆T̂ )2

u
ϕ, O3 =

1

3!
(∆T̂ )ϕ3 (71)

O5 =
u

5!
ϕ5, Oλ = −

1

3!
ϕ2∇2ϕ. (72)

We will refer to the ui as asymmetry coefficients. We
note that Hsym is symmetric under the transformation
ϕ → −ϕ, whereas Hasym is antisymmetric. In terms of
the ordering field h1, the Hamiltonian is related to the

pressure, ∆P̃ = ∆P̃ (h1,∆T̂ ), by the following functional
integral:

∆P̃ = ln

{∫
Dϕ exp

[∫
dx (ϕh1 −H)

]}
. (73)

The phase boundary is described by h1 = 0, at least in
the symmetric case and to leading order in the asym-
metric case. The field-theoretic treatment itself does
not provide any immediate guidance for specifying the
relationship between h1 and the physical fields. both
h1 = ∆µ̂ − ∆µ̂cxc(T ) and h1 = ∆P̂ − ∆P̂cxc(T ) or a
combination of the two appear to be satisfactory, where
the subscript cxc denotes the conditions of phase coexis-
tence. However, the ordering field cannot be a singular
function of the temperature, so not every choice is ac-
ceptable. In particular, the relationship between h1 and
the physical fields should differ depending on whether
or not the system exhibits a Yang-Yang anomaly, i.e.

d2µcxc/dT
2 ∼ |∆T̂ |−α. If µcxc(T ) is analytic, i.e. no

Yang-Yang anomaly, the ordering field can be taken as

h1 = ∆µ̂−∆µ̂cxc(T ). (74)

A term proportional to ∆P̂ − ∆P̂cxc(T ), i.e. pressure

mixing, cannot be included, since ∆P̂cxc(T ) is not ana-
lytic in T . In this case, as discussed below Eq. (20), the
term ∆µ̂cxc(T ) can be absorbed into the regular part of
the thermodynamic potential leaving

h1 = ∆µ̂, (75)

which is the definition of the ordering field for both the
lattice-gas (a = b = c = 0) and revised scaling (a =
0). As seen from Eq. (73), h1 is thermodynamically
conjugate to 〈ϕ〉, where the brackets denote an ensemble
average. Therefore 〈ϕ〉 = ∆ρ̂ in the absence of a Yang-
Yang anomaly.
In contrast, when µ̂cxc(T ) is non-analytic in T at the

critical point, Eq. (74) is no longer valid. Instead, the
pressure is “mixed” into h1 as

h1 = [∆µ̂−∆µ̂cxc(T )] + a[∆P̂ −∆P̂cxc(T )], (76)

where the value of a is selected to ensure the analyticity
of h1. This leads to the complete scaling relation for the
ordering field (cf. Eq. (25)), since for our choice of ŝc,

∆µ̂cxc(T ) ≈ −a∆P̃cxc(T ). The pressure mixing ensures
the analyticity of h1 when µ̂cxc(T ) is non-analytic. By
taking a functional derivative of Eq. (73) with respect to
h1, we find that

〈ϕ〉 ≃ ∆ρ̂− a(∆ρ̂)2. (77)

The relationship between the Helmholtz energy, ∆f̃ =

∆f̃(〈ϕ〉 ,∆T̂ ), and the Hamiltonian is found by applying
a Legendre transformation, Eq. (51), to Eq. (73), with
the result

∆f̃ = − ln

{∫
Dϕ exp

[∫
dx (ϕh1 −∆µ̂∆ρ̂−H)

]}
.

(78)

This integral can be evaluated perturbatively in the loop
expansion [49]. To linear order in the asymmetry, each
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operator Oi in H produces a distinct contribution, f̂FT
i ,

to the total Helmholtz energy, which may now be written
as

∆f̃ = f̂sym(〈ϕ〉 ,∆T̂ ) + ∆µ̂∆ρ̂− h1 〈ϕ〉

+ u1f̂
FT
1 + u3f̂

FT
3 + u5f̂

FT
5 + uλf̂

FT
λ , (79)

where the asymmetry coefficients, ui, were introduced
in the definition of the asymmetric LGW Hamiltonian,

Eq. (70). We note that f̂sym in this expression only
includes the leading asymptotic portion of the symmetric
Helmholtz energy and does not include any symmetric
correction-to-scaling terms. The above result can now
be expanded to linear order in a, which produces

∆f̃FT(∆ρ̂,∆T̂ ) = f̂sym + af̂CS
a + u1f̂

FT
1

+ u3f̂
FT
3 + u5f̂

FT
5 + uλf̂

FT
λ , (80)

where f̂CS
a is given by Eq. (58) and where the subscript

FT has been used to differentiate this Helmholtz energy
from the complete scaling EOS, Eq. (56). We will refer

to this as the FT EOS. Expressions for f̂FT
3 , f̂FT

5 , and

f̂FT
λ are given in the mean-field approximation in the
following subsection and are presented to order ǫ2 in the
Appendix.

A. FT EOS in the mean-field approximation

In the mean-field approximation, the f̂FT
i are given by

f̂FT
1,mf =

(∆T̂ )2

u
∆ρ̂, f̂FT

3,mf =
1

3!
∆T̂∆ρ̂3 (81)

f̂FT
5,mf =

u

5!
∆ρ̂5, f̂FT

λ,mf = 0. (82)

The asymmetric gradient operator O3′ does not con-
tribute at the mean-field level for a homogeneous system
(∇ρ̂ = 0), but does affect inhomogeneous systems [25].
When these results are combined with Eq. (80) for the
FT EOS, the resulting Helmholtz energy is given by the
asymmetric Landau expansion

∆f̃FT,mf = f̂sym,mf + (u1 −
1

2
a)

(∆T̂ )2

u
∆ρ̂

+
1

3!
(u3 − 3a)∆T̂∆ρ̂3 +

u

5!
(u5 − 15a)∆ρ̂5, (83)

where f̂sym,mf is given by Eq. (61). Generally, when a
Taylor expansion of a mean-field EOS, such as the van
der Waals EOS, is made around the critical point (ρc, Tc)
the result is expressed with only a single coefficient for
each term, for example

∆f̃mf = f̂sym,mf + k1
(∆T̂ )2

u
∆ρ̂

+
1

3!
k3∆T̂∆ρ̂

3 +
u

5!
k5∆ρ̂

5. (84)

Hence, if the expansion coefficients are known these
should be associated with k1, k3, k5, and not the asymme-
try coefficients from the asymmetric LGW Hamiltonian,
Eq. (70), since they differ by terms proportional to the
mixing coefficient a. Of course, the two are related by

k1 = u1 −
1

2
a, (85)

k3 = u3 − 3a, (86)

k5 = u5 − 15a. (87)

V. COMPARISON OF THE COMPLETE

SCALING AND FT EQUATIONS OF STATE

We are now in a position to ascertain the nature of
the relationship between the complete scaling and FT
equations of state, given by Eq. (56) and Eq. (80) re-
spectively. First, we note that, in the context of the

ǫ-expansion, f̂FT
1 is proportional to f̂FT

1,mf . Therefore f̂
FT
1

produces a contribution to ∆µ̂ proportional to ∆T̂ 2. As
discussed in the text below Eq. (20), this type of term
can be incorporated via field mixing or absorbed into
the regular part of the thermodynamic potential. Con-
sequently, we will treat the asymmetry coefficient u1 as
a free parameter, with the knowledge that the regular
part of the thermodynamic potential should be modi-
fied accordingly. Two of the asymmetric contributions

to the CS EOS (Eq. (56)), f̂CS
b and f̂CS

c , which are ex-
pressed in terms of the symmetric functions h1 and φ2
in Eqs. (59) and (60), can also be expressed in terms

of f̂FT
1 , f̂FT

3 , f̂FT
5 , and f̂FT

λ as derived from the asym-
metric LGW Hamiltonian, and introduced in Eq. (79).
Specifically one has

f̂CS
c = u

(
f̂FT
1 + f̂FT

3

)
, (88)

f̂CS
b = −f̂FT

1 + 2f̂FT
3 + 10f̂FT

5 + 3f̂FT
λ . (89)

These equalities can be verified in the mean-field approx-
imation by combining Eqs. (64) - (66) and Eqs. (81) and
(82), and to order ǫ2 using the results given in the Ap-

pendix. The simplicity of the expression for f̂CS
c stems

from the fact that the cubic operator O3 can effectively
be removed from the Hamiltonian, without altering other
terms at leading order, by transforming the field variable
as ϕ → ϕ − (u3/u)∆T̂ . This simply leads to a shift

proportional to ∆T̂ in the order parameter 〈ϕ〉. Inter-
estingly, Eqs. (88) and (89) are quite general and can be
proven outside the context of the ǫ expansion [16]. Like

f̂CS
b and f̂CS

c , the pressure-mixing term f̂CS
a can be ex-

pressed as a linear combination of f̂FT
1 , f̂FT

3 , f̂FT
5 , and

f̂FT
λ through order ǫ [45]. However, this type of relation-

ship breaks down for f̂CS
a at order ǫ2.

Equations (88) and (89) for f̂CS
b and f̂CS

c and our abil-
ity to select u1 allow us to rewrite the FT EOS, Eq. (80),
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as

∆f̃FT = f̂sym + af̂CS
a + bf̂CS

b + cf̂c + ueff5 f̂5, (90)

where

cu = u3 − (2/3)uλ. (91)

b = (1/3)uλ, (92)

ueff5 = u5 −
10

3
uλ, (93)

The term proportional to ueff5 is responsible for the asym-
metric correction-to-scaling exponent θ5 introduced in
Eq. (4). In particular, in Eq. (4), Dβ+θ5 is proportional
to ueff5 [16]. The relationship between the FT EOS, Eq.
(80), and the complete scaling EOS, Eq. (56), can be
compactly written as

∆f̃FT = ∆f̃CS + ueff5 f̂FT
5 . (94)

and the corresponding excess density can be written

∆ρ̂d ≈ D1−α|∆T̂ |
1−α +D2β|∆T̂ |

2β

+D1|∆T̂ |+Dβ+θ5 |∆T̂ |
β+θ5 , (95)

where the coefficients and exponents are the same as
those introduced in Section I. We note that the above
expression matches that proposed by Fisher and cowork-
ers [21], if one omits the symmetric Wegner correction as
we have. The implementation of complete scaling as de-
fined by Eqs. (25)-(27) assumes that all leading sources
of asymmetry can be mapped onto a symmetric EOS
through the mixing of fields. Equation (94) quantifies
the extent to which this assumption holds. Clearly the
term proportional to ueff5 prohibits an exact mapping.
This reflects the fact that θ5 is an independent critical
exponent and cannot be expressed in terms of Ising expo-
nents. However, since the θ5 contribution to thermody-
namic properties is significantly higher order in the scal-
ing regime than the lowest order mean-field contribution,
the term proportional to ueff5 cannot likely be resolved in
practical applications. However, as highlighted in the
following paragraph, some care is required in omittting
this term because it may compromise the thermodynamic
consistency of the theory.

A. Comparison of the complete scaling and FT

equations of state in the mean-field approximation

The mean-field approximation of Eq. (94) reads

∆f̃FT,mf = ∆f̃CS,mf + ueff5
u

5!
∆ρ̂5, (96)

where ∆f̃FT,mf and ∆f̃CS,mf are given by Eq. (83) and
Eq. (67) respectively. As previously noted, the term pro-
portional to ueff5 breaks the full isomorphism between the
symmetric and asymmetric Helmholtz energies. In the

mean-field approximation, the θ5 contribution stemming
from this term is of the same order as the other lead-
ing asymmetric terms, e. g. |∆T̂ |β+θ5 is proportional

to |∆T̂ | in the excess density, and therefore it cannot
be consistently neglected, as was the case in the scaling
regime. To emphasize the above point, we consider the
van der Waals EOS. For this EOS, the Landau expansion
has k1 = k3 = 0 [24], where k1 and k3 were introduced in
Eq. (84). These coefficients are consistently represented
by a = u1 = u3 = 0, hence

∆f̃vdW,mf = f̂sym,mf + ueff5
u

5!
∆ρ̂5, (97)

where f̂sym,mf is given by Eq. (61). As a consequence,
all asymmetry in the van der Waals excess density comes
entirely from the |∆T̂ |β+θ5 term. If ueff5 were simply ne-
glected for the van der Waals EOS, which would imply
that complete scaling as formulated in Section II is exact,
one instead finds non-zero values of a, b, and c. However,
these values would not have a thermodynamically consis-
tent connection to the scaling regime.
It seems physically plausible, for a simple intermolec-

ular potential, such as the Lennard-Jones potential, that
the coefficient in front of the asymmetric gradient term
uλ could be proportional to u5, the coefficient that defines
the asymmetry of the mean-field EOS. If this is the case
and the constant of proportionality is known, all of the
complete scaling mixing parameters could be extracted
from a mean-field EOS. This possibility leads us to con-
sider the particularly interesting case of an exact isomor-
phism between the symmetric and asymmetric equations
of state characterized by ueff5 = u5 − (10/3)uλ = 0. For
this case there is a special relationship between the com-
plete scaling mixing parameters and the mean-field ex-
pansion coefficients introduced in Eq. (84):

k1 = cu− b −
1

2
a, (98)

k3 = 2b− 3a+ cu, (99)

k5 = 10b− 15a, (100)

which can be found by combining Eq. (67) and Eq. (84).
These relationships can be inverted to yield expressions
for the mixing coefficients in terms of the Hamiltonian
coefficients. As an example, if we returning to the case
of the van der Waals EOS, we find

a =
3

20
k5, (101)

b =
1

8
k5, (102)

cu =
1

5
k5. (103)

As noted earlier, the value of u1 does not affect the phys-
ical quantities of interest. If for convenience we take
u1 = 0, which implies that k1 = −1/2a, then cu = b
and we are left with the mean-field relations of Wang



9

and Anisimov [24]

a =
2

3
k3 −

1

5
k5, (104)

b = k3 −
1

5
k5, (105)

who omitted the non-linear mixing contribution ∆µ̂∆T̂
from their analysis and implicitly set ueff5 = 0.

VI. CONCLUSION AND DISCUSSION

In this work we have established the nature of rela-
tionship between complete scaling and the FT approach
to asymmetric fluid criticality. In Eqs. (25) - (27), com-
plete scaling transformations were presented in a par-
ticularly succinct form, which emphasizes the connection
between the leading asymmetric corrections to thermody-
namic properties and the leading asymmetric corrections
to each scaling field. These transformations were used to
define the complete scaling equation of state presented
in Eq. (56). The previous treatment of the asymmetric
LGW Hamiltonian was extended to systems that exhibit
a Yang-Yang anomaly in Section IV and the resulting
“FT” equation of state was given in Eq. (80). It was
argued that pressure mixing is required to ensure the
analyticity of the ordering field when the chemical po-
tential along the coexistence curve is non-analytic. The
complete scaling and FT equations of state are nearly
identical, except that the FT equation of state has an ad-
ditional term responsible for the asymmetric correction-
to-scaling exponent θ5. The relationship between the two
equations of state is compactly summarized by Eq. (94).
For many practical applications, the contribution from
θ5 can be neglected. In this regime, the complete scal-
ing and FT approaches are equivalent. However, as em-
phasized in Section V, care is required in applying this
simplification to the mean-field approximation, because
the terms involving θ5 are the same order as the other
leading asymmetric corrections.
There is an analogy between the asymmetric

correction-to-scaling exponent θ5 and the Wegner
correction-to-scaling exponent ∆ ≃ ǫ/2 [51]. The Weg-
ner correction arises from the difference between the
renormalization-group fixed-point coupling constant u∗

and the system dependent mean-field value of the cou-
pling constant u. When the Wegner correction is in-
cluded, the Ising field-dependent potential (cf. Eq. (9))
reads [52]

h3,sym ≈ |h2|
2−αg±(z)

[
1 + |h2|

∆g±1 (z)
]
, (106)

where z = h1/|h2|
2−α−β and g±1 ∝ (u∗−u). The connec-

tion between the FT EOS and the complete scaling EOS
expressed through Eq. (94) suggests that FT EOS, Eq.
(80), which omits the Wegner correction, can be written
in a similar form as,

h3 ≈ |h2|
2−αg±(z)

[
1 + |h2|

θ5g±asym(z)
]
, (107)

where gasym ∝ ueff5 = u5−(10/3)uλ. As in the case of the
Wegner correction, which is associated with an additional
critical amplitude u∗ − u, the θ5 exponent is associated
with the new critical amplitude ueff5 . We note that if
u5 = (10/3)uλ, h3 includes only the leading asymptotic
terms and complete scaling becomes exact. The similar-
ity between Eqs. (106) and (107) suggests that the FT
EOS could be extended to include the Wegner correction
by writing it as

h3 ≈ |h2|
2−αg±(z)

[
1 + |h2|

∆g±1 (z) + |h2|
θ5g±asym(z)

]
.

(108)
However, there is a significant difference between these
two corrections-to-scaling. Unlike θ5, the exponent ∆
vanishes in the mean-field approximation ǫ = 0. This
explains why the Wegner correction can be consistently
omitted in the mean-field approximation. The same is
not true of θ5, because in the mean-field approximation
θ5 = 1/2.
An apparent ambiguity in the physical definition of

the order parameter is found for liquid-liquid mixtures,
where the number of physical densities, e.g., mole frac-
tion, volume fraction, mass fraction, is greater than in the
liquid-vapor case [40]. As shown by Wang et al. [36] the
dilemma of defining the correct complete scaling order
parameter is explicit for incompressible binary mixtures.
With an isomorphic choice of coefficients, the density ρ̂,
mole fraction x, and partial molar density ρ̂x are given
by

ρ̂ = 1 + aφ1, (109)

x =
xc + (1− a)φ1 + bφ2

1 + aφ1
, (110)

ρ̂x = xc + (1 − a)φ1 + bφ2, (111)

where, along the coexistence curve, φ1 and φ2 are given
Eqs. (12) and (13). Complete scaling predicts a 2β term
for the mole fraction but not for either the total density
or the partial molar density. This implies that in trans-
lating the results of this work to incompressible binary
mixtures the fluctuating field ϕ in Section IV to should
be connected to the mole fraction x by

〈ϕ〉 = x̂− ax̂2. (112)

As discussed by Bertrand and Anisimov [25], the
asymmetric-gradient coefficient uλ also contributes to the
asymmetry of the correlation length ξ via,

ξ2 ≃ (ξsym)2
[
1± (3a+ uλ)B0|∆T̂ |

β
]
, (113)

where the piece proportional to a originates from asym-
metry in the physical susceptibility (∂ρ/∂µ)T . By mea-
suring the physical susceptibility and the correlation
length in both the upper (lighter) and the lower (denser)
coexisting fluid phases by light scattering, one can obtain
a and uλ independently. These values could be compared
those those obtained from excess density data, to conclu-
sively determine the extent to which neglecting ueff5 is
good approximation.
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In the mean-field approximation the isochoric heat ca-
pacity does not diverge at the critical point, but instead
exhibits a jump discontinuity along the critical isochore.
In the scaling regime, this discontinuity develops into a
critical point singularity characterized by the exponent
−α. Similarly, d2µcxc/dT

2 exhibits a jump discontinu-
ity in the mean-field approximation, for instance, for the
van der Waals EOS. However, unlike the case of the heat
capacity, a field theoretic treatment of the asymmetric
LGWHamiltonian, Eq. (70), does not predict whether or
not this discontinuity develops into a singularity or van-
ishes in the scaling regime. Instead, it appears, as discuss
in Section IV, that the interpretation of the FT results
can only be modified, through an appropriate assignment
of h1, to accommodate, but not predict, a singularity in
the second temperature derivative of the chemical poten-
tial along the coexistence curve. The results presented in
Section V shed light on a recent suggestion [50], based on
a mean-field-like analysis of an asymmetric LGW Hamil-
tonian, that complete scaling arises naturally from the
FT analysis of the asymmetric LGW Hamiltonian. Just
like the work of Wang and Anisimov [24], the results
presented in [50] are only applicable to the specific case
ueff5 = 0, but not to the general case. As mentioned in
the introduction, evidence for a Yang-Yang anomaly has
been found in computer simulations of model interaction
potentials. However, a full theoretical treatment of these
interaction potentials with an eye towards asymmetry
have yet to be undertaken and consequently the exact
“microscopic” origin of the Yang-Yang anomaly remains
a topic for future work. Hopefully, such work would shed
light on the strong correlation between the mixing coef-
ficient a and the ratio of the critical molecular volume to
the interaction volume, as determined by the correlation
length, observed for the liquid-vapor transition [24] and
similar correlations between the analogous mixing coef-
ficient and the ratio of molecular volumes observed in
nitrobenzene and n-alkane mixtures [36].
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Appendix A: Order ǫ
2 results

In this Appendix we give expressions to order ǫ2, in the
ǫ-expansion, where ǫ = 4− d and d is the spatial dimen-

sionality, for f̂CS
a , f̂CS

b , and f̂CS
c as defined by Eqs. (58) -

(60), and for f̂FT
3 , f̂FT

5 , and f̂FT
λ , which were introduced

in Eq. (79). The ǫ-expansion yields results for the crit-
ical exponents and the Ising EOS that are significantly

more accurate than those of the mean-field approxima-
tion used in Sections III A, IVA, VA [49]. While many
of the results contained in this Appendix have been pre-
sented elsewhere [16], we present them here for complete-
ness and to ensure notational consistency. In the text we
stated that Eqs. (88) and (89) hold to order ǫ2. In this
Appendix we provide the material necessary to verify this
statement.
To order ǫ2, the symmetric Helmholtz energy based on

the ǫ-expansion of the symmetric LGW Hamiltonian, Eq.
(69), is given by

ψ(∆ρ̂,∆T̂ ) = ψ
(0)
mf −

1

2

κ4

ǫ

[
κ−ǫ

1− ǫ
4

−B0

]
κ4

8

+
u

8
κ4(L + 1)2 +

u2

8
κ2∆ρ̂2(L2 − f), (A1)

where, by definition,

κ2 = ∆T̂ +
u

2
∆ρ̂2, (A2)

L = ln(κ2), f = 4 + π2 + 8λ (λ ≃ 1.17), B0 = 1 + ǫ/2,

and where ψ
(0)
mf is given by Eq. (61). Combining the

above expression for δψ with the definitions of h1 and φ2
furnished by Eq. (48), one finds that

h1(∆ρ̂,∆T̂ ) = h
(0)
1,mf + u∆ρ̂

κ2

ǫ

[
κ−ǫ − B0

]

+
u2

4
κ2∆ρ̂

[
(L + 1)(L+ 2) + L2 − f

]

+
u3

8
∆ρ̂3

(
L2 − f + 2L

)
, (A3)

and

φ2(∆ρ̂,∆T̂ ) = φ
(0)
2,mf +

κ2

ǫ

[
κ−ǫ −B0

]

−
u

4
κ2(L+ 1)(L+ 2)−

u2

8
∆ρ̂2

(
L2 − f + 2L

)
, (A4)

where h
(0)
1,mf and φ

(0)
2,mf are given by Eqs. (62) and (63)

respectively. For the following, it is helpful to define

δh1(∆ρ̂,∆T̂ ) = h1(∆ρ̂,∆T̂ )− h
(0)
1,mf(∆ρ̂,∆T̂ ), (A5)

and

δψ(∆ρ̂,∆T̂ ) = ψ(∆ρ̂,∆T̂ )− ψ
(0)
mf (∆ρ̂,∆T̂ ). (A6)

The pieces of the complete scaling Helmholtz energy, f̂CS
a ,

f̂CS
b , and f̂CS

c , can be calculated to order ǫ2 through Eqs.
(58)-(60), with the following results,

f̂CS
a (∆ρ̂,∆T̂ ) = f̂CS

a,mf + (∆ρ̂)δψ(∆ρ̂,∆T̂ )

−(∆ρ̂)2δh1(∆ρ̂,∆T̂ ), (A7)
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f̂CS
b (∆ρ̂,∆T̂ ) = f̂CS

b,mf +
2

3
∆ρ̂2δh1(∆ρ̂,∆T̂ )

+
u

4
∆ρ̂κ4

[
(L+ 1)2 +

(u
3
∆ρ̂2 − κ2

) (
L2 − f

)]
, (A8)

and

f̂CS
c (∆ρ̂,∆T̂ ) = f̂CS

c,mf + (∆T̂ )δh1(∆ρ̂,∆T̂ ), (A9)

where f̂CS
a,mf , f̂

CS
b,mf , and f̂CS

c,mf are given by Eqs. (64) -

(66).
The expressions, resulting from an ǫ-expansion analysis

of the asymmetric LGW Hamiltonian, Eq. (70), for the
asymmetric contributions to the Helmholtz energy in Eq.
(79), are

f̂FT
5 (∆ρ̂,∆T̂ ) = f̂FT

5,mf +
1

6
∆ρ̂2δh1(∆ρ̂,∆T̂ )

+
u

8
κ2∆ρ̂

[
κ2 (L+ 1)

2
+

2

3
u∆ρ̂2

(
L2 − f

)]
, (A10)

f̂FT
3 (∆ρ̂,∆T̂ ) = f̂FT

3,mf +
∆T̂

u
δh1(∆ρ̂,∆T̂ ), (A11)

and

f̂FT
λ (∆ρ̂,∆T̂ ) = f̂FT

λ,mf −
2

3

κ2

u
δh1(∆ρ̂,∆T̂ )

−
u

6
κ2∆ρ̂

{
3

2
u∆ρ̂2

(
L2 − f

)

+κ2
[
2 (L+ 1)

2
+

1

2

(
L2 − f

)]}
, (A12)

where f̂FT
5,mf , f̂

FT
3,mf , and f̂

FT
λ,mf are given by Eqs. (81) and

(82). The relationships between f̂CS
b , f̂CS

c , and f̂FT
3 , f̂FT

5 ,

and f̂FT
λ , given by Eqs. (88) and (89), can now be readily

verified to order ǫ2 with the expression presented in this
Appendix.
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[49] E. Brézin, J. C. Le Guillou, and J. Zinn-Justin, in Phase

Transitions and Critical Phenomena, edited by C. Domb
and M. S. Green, Vol. 6 (Academic, New York, 1976).

[50] V. L. Kulinskii and N. P. Malomuzh, Physica A 388, 621
(2009).

[51] F. J. Wegner, Phys. Rev. B 5, 4529, (1972).
[52] A. Pelissetto and E. Vicari, Physics Reports, 368, 549

(2002).


