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Each oscillator in a linear chain (a string) interacts with a local Ising spin in contact with a
thermal bath. These spins evolve according to Glauber dynamics. Below a critical temperature,
there appears an equilibrium, time-independent, rippled state in the string that is accompanied
by a nonzero spin polarization. On the other hand, the system is shown to form “metastable”,
nonequilibrium but long-lived ripples in the string for slow spin relaxation. The system vibrates
rapidly about these quasi-stationary states which can be described as snapshots of a coarse-grained
stroboscopic map. For moderate observation times, ripples are observed irrespective of the final
thermodynamically stable state (rippled or not). Interestingly, the system can be considered as a

“minimal” model to understand rippling in clamped graphene sheets.
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I. INTRODUCTION

Mechanical systems coupled to spins are used to de-
scribe structural phase transitions. Examples include the
collective Jahn-Teller effect [1], structural phase transi-
tions with a scalar order parameter exhibiting a central
peak in the dynamic response function [2] and critical-
ity in martensites and externally driven models [3]. In
many of these models, the mechanical system provides a
long range interaction between the spins that produces a
phase transition in which the spin polarization ceases to
be zero below a critical temperature. While most studies
consider the effective spin system obtained after eliminat-
ing the mechanical degrees of freedom, it is interesting to
focus instead on the effect of the phase transition on the
mechanical system. In this paper, we consider mechani-
cal systems coupled to Ising spins that undergo Glauber
dynamics [4] in contact with a thermal bath (a single har-
monic oscillator connected to Ising spins in the simplest
case [5]). There is a phase transition at a critical temper-
ature below which the spin polarization is nonzero and
ripples appear in the mechanical system. These thermo-
dynamically stable ripples are inhomogeneous stationary
states of the mechanical system, which are quite sim-
ple below the critical temperature. On the other hand,
there are long-lived dynamical ripples with a wide va-
riety of shapes at any temperature provided the period
of mechanical vibrations is short compared to the spin
relaxation time. In this limit, the spins are frozen dur-
ing long time intervals between spin flips and they fix a
quasi-stationary state about which the mechanical sys-
tem oscillates. Observations of the system may consist
of time averages over intervals sufficiently long to include
many oscillation periods but short compared to the in-
tervals between spin flips. Then these observations will
sample a coarse-grained stroboscopic map consisting of
successive quasi-stationary states that show ripples. Af-

ter a much longer time during which sufficiently many
spin flips have occurred and due to the dissipation intro-
duced by the Glauber spin dynamics, the ripples eventu-
ally evolve to the simple version obtained from the equi-
librium thermodynamics of the spin-mechanical system.

These considerations may apply to the evolution of
ripples in suspended graphene sheets. Ripples are on-
dulations of the sheet with characteristic amplitudes and
wave lengths that, according to experiments, do not have
a preferred direction [6]. Time resolved ripples and de-
fects in graphene sheets can be observed using aberration
corrected TEMs that collect data every other second, a
time much longer than microscopic times such as the one
it takes a sound wave to cross one lattice constant [7]. As
a direct generalization of theories of defect motion in pla-
nar graphene [8], atom motion in a suspended graphene
sheet may be described by the von Karman equations
discretized on a hexagonal lattice [9]. Coupling the ver-
tical motion of graphene atoms with an Ising spin located
at the same lattice point may account for a spontaneous
trend of the sheet to bend upwards or downwards. Spin
dynamics adds dissipation to the von Karman equations
and thus the spin relaxation time should be much longer
than microscopic mechanical times. Experimental obser-
vations are taken over long time intervals and therefore
should correspond to different takes of a coarse-grained
stroboscopic map similar to that described in this paper.

The plan of the paper is as follows. In Section II, we
introduce the model and study the rippling phase tran-
sition which appears therein. Section III is devoted to
the analysis of the slow spin relaxation regime. In this
limit, we will see that meastable long-lived ripples ap-
pear, which are different from the “static” ripples found
in sec. II. We present arguments that support that these
metastable ripples are the relevant ones, in connection
with the rippling of graphene sheets. The continuum
limit of the model, together with the opposite limit of



fast spin relaxation, is investigated in Section IV. Fi-
nally, we present the main conclusions of the paper in
section V.

II. MODEL AND RIPPLING PHASE
TRANSITION

Our mechanical system is a chain of oscillators with
next-neighbor interaction which becomes a string in the
continuum limit:
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with w9 = 0 = uny4+1. The jth oscillator is coupled
linearly to an Ising spin o; = £1. The spins are in

contact with a thermal bath at temperature 7" and flip
stochastically following Glauber’s dynamics [4] at tem-
perature T'. Unlike the case of a regular mass-springs
chain, here each triplet is biased against being straight,
with wj41 — u; = u; —u;—1. The applied force (whose
sign flips at random) makes the “preferred” state at any
instant a wedge shape. This translates the loose idea
that the three carbon links each atom shares to build the
graphene sheet do not want to be in a plane because of the
fourth “free” link (which may push the atoms up or down
the horizontal planar configuration). The free chemical
bonds of the carbon lattice in the graphene sheet may
be assimilated to our spins, which interact with phonons
modeled by the oscillators. Of course, in order to have
a more realistic model of a clamped graphene sheet, the
structure of its 2D lattice should be taken into account.
Nevertheless, we hope that this simple model will be able
to capture the main physical mechanism involved in the
rippling of graphene sheets. In our model, we have chosen
boundary conditions (bc) corresponding to a suspended
graphene sheet that is clamped at its edges. We can con-
sider different bc, corresponding to other physical situa-
tions, but the bc do not affect the physical mechanism
giving rise to ripple formation. For the sake of brevity,
we will only consider the clamped case throughout this
paper.

Thus at any time ¢, the system may experience a tran-
sition from (u, p, o) to (u,p, R;0) at a rate given by [4]

Wj(ofu,p) =
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where R;o is the configuration obtained from o by flip-
ping the j-th spin and kp is the Boltzmann constant.
The parameter o gives the characteristic attempt rate
for the transitions in the Ising system. Individual spins
experience a mutual long-range interaction through their
coupling to the string. This long-range interaction causes
a phase transition of the spin system: the spins have non-
zero polarization for T" < T, whose counterpart for the
string is the formation of ripples. To see this, we find

the following effective potential by integrating e~/ (*87T)

over the spin configurations [5], with the result:
N1 fu;
Vg = Z [EmW2(uj+1 —u;)? —kgTln cosh(kB%)} .

j=0
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The extrema of this potential satisfy

mw? (U1 +uj—1 — 2u;) + f tanh S =0. (4
kT

Let us analyze the stability of the trivial solution u; =
0 (horizontal string, no ripples). We look for solutions
U; = % of the linearization of eq. (4),
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with clamped bc Uy = Un41 = 0. The condition Uy = 0
implies that we only have to consider the imaginary
part, U; = sin(jk), whereas Uyt1 = 0 restricts the
possible values of k, so that only k, = nn/(N + 1),
n = 1,...,N + 1, are possible. Finally, if U; solves
eq. (5), the wave number k must be related to the tem-
perature through f2/(mw?kpT,) = 4sin?(k,/2). This
expression defines a set of critical temperatures T,,, at
which rippled solutions, characterized by a wave num-
ber k,, of Eq. (5) emerge. The largest possible critical
temperature corresponds to n =1,
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T.=T, Ky = [2sin(k/2)] 7 ~ — (6)

in the large system size limit N > 1.

The dependance of this critical temperature with the
system size N hinges on how the model parameters m,
w, f scale with N. Of course, these scalings depend on
the details of the microscopic model which, in some limit,
can be described by the stochastic dynamics we have in-
troduced. We assume that the frequency w o< N, while m
and f are independent of the system size. In Section IV
of the paper, we will show that this scaling implies that
both the effective potential (3) and the nonlinear equa-
tion (4) have a well-defined continuum limit [10]. This is
a sensible property, since graphene sheets are often and
successfully modeled by means of continuum elasticity
[11-15]. Thus we define wy = w/ Ky, which is of the or-
der of unity in the large system size limit as N > 1. Then
the critical temperature T, remains finite as N — oo,

f? _ W
Tc = mwng, wo = KN . (7)

Let us briefly consider other possible scalings of the
hamiltonian parameters with the system size. For other
scalings, the expression (7) for the critical temperature
T, remains valid, but wp is no longer of order 1. For in-
stance, if all the parameters in the hamiltonian (1) are
independent of the system size, T, diverges in the large



system size limit N > 1. This means that the flat con-
figuration of the string becomes unstable for all temper-
atures in this limit. Nevertheless, for any finite value of
N, there should be an “effective” critical temperature Tk,
above which the flat configuration would be stable.

In the following, we will restrict ourselves to the case
wo = O(1), independent of the system size. There is a
well-defined phase transition at T' = T, then we define
a dimensionless temperature § = T/T,. For T > T,
(0 > 1) the trivial solution of (4) is linearly stable
and for T < T, (@ < 1) it is unstable and there ap-
pear stable non-uniform states corresponding to static
ripples in the string. Using nondimensional variables
ut = fu;/(kpT.) = mwgu;/f and omitting the aster-
isks so as not to clutter the formulas, the first such state
is proportional to the sinusoidal mode with k;

u; = £2v1 -6 sm(

L)oo, @
in the limit as the reduced temperature 6 tends to 1 from
below. Equation (8) is derived in Appendix A, making
use of bifurcation theory. According to Appendix A, ini-
tial conditions that are not orthogonal to sin[jz/(N +1)]
decay to (8) as e7%%/2 for § = a/wy < 2.and 6 ~ 1. At the
lower critical temperatures 6,, = sin? kq / sin? k,, < 1,n>
1, other non-uniform states proportional to the sinusoidal
modes with k& = k,, (n — 1 interior nodes) bifurcate from
the trivial solution. These non-uniform solutions have
a nonzero spin polarization (o;) ~ tanh(fu;/(ksT,))
and therefore the critical temperatures 6,, are associated
with cooperative Jahn-Teller phase transitions, in which
coupling to phonons (the string) breaks the symmetry
of a doubly degenerated electronic state (the spins) [1].
Numerical simulations of the spin-string system confirm
this. Below T, stable string configurations are station-
ary, nonuniform and exhibit ripples. To test the bifurca-
tion theory, we have performed stochastic simulations at
temperatures § > 1 and 6 = 0.9 for § = 0.1 and N = 10%.
In Figure 1, we show how an initially flat string at rest
evolves to a state close to (8). The initial conditions are
random spins, such that the average spin polarization has
a sinusoidal shape, and a horizontal, zero-velocity string
profile. A qualitatively analogous behavior is found for
the majority of initial spin configurations, but for some of
them the unstable flat string configuration is stabilized
(see Appendix A). This is a stabilization of the ther-
modynamically unstable state akin to the one previously
found for a single oscillator coupled to Glauber spins [5].
For lower temperatures a similar stationary state with-
out internal nodes is stable whereas the stationary states
with n — 1 internal nodes that bifurcate from the flat
string configuration at temperatures 7}, are unstable.

III. SLOW SPIN RELAXATION

Additional insight can be obtained in the limit § =
a/wy < 1, in which the spin flip rate is slow compared
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FIG. 1: (Color online) Stable ripple state without internal
nodes for 6 = 0.9, 6 = a/wo = 0.1 and N = 10*. For each
trajectory, the initial configuration consists of a flat string at
rest and random spins, such that the average spin polarization
has a sinusoidal shape. Averages over 100 trajectories and
spatial averages over 100 oscillators centered at a given one
have been performed in order to ensure good averages. See
also movie in the Supplemental Material [17].

to the characteristic string frequency. In the following,
we will use a dimensionless time t* = wyt, and omit the
asterisks as before. Then the u;’s obey the equation of
motion

iy — K (w1 +ujm1 — 2u) = 0, (9)
for 5 =1,..., N with boundary conditions uy = uny4+1 =
0 (it = d*u/dt?). The spins o; are stochastic variables
which flip at a rate W;(o|u,p) = 6(1 — B,0;)/2, B; =
tanh(u;/0), 0 = T /T, instead of (2). Let us consider a
trajectory of the system, for given initial states of the
string and spins. Since the spin flip rate is very small,
the spins are frozen at fixed values during time intervals
that are long compared to the longest oscillation period
of the string. During the time interval before the spin
flip occurs, we may split the solution of (9) in a quasi-
stationary and a time-dependent part according to (see
Appendix B):

u;(t) = uji + v;(t), (10)

lgz( vi1)o j_iz(j—l)m], (1)

Mz

vi(t) = ) [A, cos(Qnt) + By, sin(Qnt)]én.j, (12)
n=1
where
Q, = 2Ky sin(Q(NL:L_U) (13)
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The string profiles in (10) represent vibrations of the
string about the quasi-stationary configuration in (11)
whose longest period is 27 (23 = 1 is the lowest fre-
quency). Now let the first spin that flips after ¢t = 0 be
0j,, which changes sign at time ¢;. Immediately after ¢,
the right hand side (RHS) of (9) should be replaced by
0;—26;,;0;,0(t—t1), where O(z) = 1forz > 0,0(z) =0
for z < 0 is the unit step function. The changes in u}
and v;(t) due to the spin flip at ¢, are
Aus = 2%

=222l — - - a)-i{1- g o

N N
A== (Z Aufobn’l) by cos[uft = t2)), - (17)

=1

n=1

respectively, for ¢ > t;. Successive spin flips produce
changes similar to (16) and (17) in the quasi-stationary
and time-dependent parts of w;(t), respectively, at times
to, t3,... witht;—t;_1 = O((N4)~!). Time averages over
sufficiently long time intervals that are short compared
to (N§)~! eliminate v;(¢). Thus successive snapshots
of averaged string profiles coincide with updated quasi-
stationary u; profiles. The latter constitute a coarse-
grained stroboscopic map showing how the ripples in the
string evolve to their final stable configurations: the hor-
izontal string for 6 > 1 or a simple parabolic-like profile
above or below the horizontal string for § < 1. Figure 2
depicts snapshots of the coarse-grained stroboscopic map
for an initially flat string at rest with (a) a spin configu-
ration exhibiting seven domains and (b) completely ran-
dom spins for a temperature § = 0.1, below the critical
one. For moderate time intervals stable ripples are ob-
served whereas the stationary configuration of the string
without internal nodes is reached at extremely long time
intervals. Rippling behavior is also observed for above
critical temperatures, § > 1, but the string eventually
approaches the flat configuration. In time-resolved exper-
iments such as those with suspended graphene sheets [7],
data are taken in long time intervals (1 second), which we
use as an estimate for the spin flip attempt rate a. Typi-
cal times w; * are 1 ps, therefore § ~ 10712 and the num-
ber of spins per linear dimension N ~ 10* for square 1
micron samples. Thus, 1/(N§) ~ 10® (much larger than
the value considered in Fig. 2) and ripple states corre-
sponding to snapshots of the coarse-grained stroboscopic
map are observed. The “true” thermodynamically sta-
ble state would only be reached for extremely long time
intervals, much longer than the total observation time
in an experiment. On a physical basis, one may expect
that the characteristic time associated to the spin flips
in graphene be larger than the data-collecting time (1 s),
so our estimate for the time between spin flips is actu-
ally a lower bound to the actual value. The movie in the
Supplemental Material illustrates how the string vibrates
rapidly about the quasi-stationary configurations corre-
sponding to successive snapshots of the coarse-grained
stroboscopic map [17]. Given the large separation be-
tween microscopic times, data collection times and dura-

tion of a given experiment, it is important to remark that
ripples are observed for all current time-resolved experi-
ments no matter what the temperature and the thermo-
dynamically stable state are. Thus ripples are inherently
dynamical and explanations based on thermodynamically
stable states do mot capture the essence of rippling.
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FIG. 2: (Color online) Four snapshots of the coarse-grained
stroboscopic map for § = 0.1, § = 107% and N = 100
up to t = 10%. The initial configuration consists of a flat
string at rest and the spins are (a) initially distributed in
seven spin domains of alternating sign or (b) randomly dis-
tributed. The times corresponding to the spin flips which
change the quasi-stationary string profile are indicated. Rip-
ples with several domains persist for long times whereas the
stable configuration corresponding to a string without internal
nodes is reached in a much longer time larger than 10*. See
also movie in the Supplemental Material illustrating how the
string oscillates about quasi-stationary configurations given
by the coarse-grained stroboscopic map [17].

IV. CONTINUUM LIMIT AND FAST SPIN
RELAXATION

Further analysis of string ripples can be done in the
continuum limit N — oo. From (1) and (2), we obtain
equations for the averages of u; and o;. If we split the
variables u; = u; + Auj, where u; = (u;), set q; = (o)
and ignore the fluctuations Au; in the limit N — oo, we
get the following nondimensional macroscopic equations:

U = K3 (U1 + U1 — 2U5) + 4, (18)

3 = 5[tanh(%> - qNJ],

(19)



for 5 = 1,...,N. We now set 4;(t) = u(z,t) with
x = j/Ky and take the continuum limit. Then (18)-
(19) become

0’u 0% 04 0

S~ 5o =0 8—3+6q=5tanh(§>, (20)
to be solved with the boundary conditions u(0,t) =
t(m,t) = 0. In the limit § > 1 (fast relaxation of the
spins compared to the string time scale), we can approx-
imate the second equation in (20) by ¢ ~ tanh(@/6) +
(60 cosh?(/0)]~'01/dt and insert this in the first equa-
tion. The result is

0% 1 ou 0% i
_ = h — 21
o Socom?(B) o a2 " <9> 1)

whose stationary solutions satisfy the equation

ety y
—+ tanh(%) —0, (22)

which is the continuum limit of eq. (4). A stability anal-
ysis of the flat solution @(z) = 0 can be done along the
same lines of the study of its discrete version (4). The
result is that the flat solution @(z) = 0 is stable for 6 > 1,
while

i(x) = +£2v1 — 0 sinz + O(|]1 — 0)), (23)

is the stable string state just below § = 1. Of course, eq.
(23) is the continuum limit of the discrete expression (8).
Moreover, this solution can be rederived by analyzing the
minima of the continuum limit of the effective potential

3);

T 2
Vit ~ Nk:TC/O da E <%> ~ flncosh (%)]
(24)
where u is written in the same nondimensional units as
. The condition for a profile to be a extremum of the
effective potential is nothing but the nonlinear equation
(22) . The small damping term in (21) stabilizes the flat
solution u(x) = 0 above the critical temperature and the
stationary ripple solutions below it. The consistency of
the scaling introduced in section IT must be stressed: in
the continuum limit, the effective potential is an exten-
sive quantity, proportional to the system size N.

The opposite limit of § < 1 has already been studied
using the coarse-grained stroboscopic map. It is interest-
ing to note that we obtain a nonlinear Duffing equation
from a two-term expansion of the hyperbolic functions
in (21). Similar nonlinear equations have been recently
proposed to model graphene resonators on a phenomeno-
logical basis.[11, 16]

V. CONCLUSIONS

We have shown that stable ripples appear in a 1D
string when each oscillator is coupled to an Ising spin

and the latter are in contact with a thermal bath at tem-
perature T'. Below a critical temperature, the thermo-
dynamically stable string profile is not flat, but nonuni-
form without internal nodes. In spite of the simplicity of
the thermodynamically stable state, more complex rip-
ples appear when the spin flip rate is much smaller than
the oscillator period. Although strictly speaking these
ripples are evolving in time, they are very long-lived
metastable states. The ripples are snapshots of a coarse-
grained stroboscopic map depicting the average of the
rapid string motion over long time intervals. Whether the
final thermodynamically stable is the flat or bent string,
ripples should be observed on reasonable time intervals
at any temperature.

The system considered here is far from being a realis-
tic model of a graphene sheet. However, the free chem-
ical bonds of the carbon lattice in the latter may be as-
similated to our spins, which interact with the phonons
modeled by the oscillators. Thus, 2D ripples analogous
to the ones found here should appear. This opens the
door to understanding the characteristic rippling shown
by graphene sheets at any temperature as an inherently
dynamical phenomenon, whose physical mechanism con-
sists of the interaction between free bonds and phonons
with widely separated time scales.
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FEDER funds) and FIS2010-22438-E (Spanish National
Network Physics of Out-of-Equilibrium Systems), by
UCM/BSCH CM 910143 (AC) and by the National Sci-
ence Foundation grant DMS-0907955 (RRR).

Appendix A: Bifurcation calculations

Let us consider the nondimensional macroscopic equa-
tions (18)-(19) of the paper:

200
d*u;

o KR (w1 + w1 — 2uy) + gqj,

dq; Uj
o =0 () — o]
7=1,...,N, with up = 0, uny+1 = 0. Here we omit the

tildes for simplicity. Near the critical temperature § = 1,
we make the Ansatz

(A1)

(A2)

2
uj(tie) = el (t,5) + O(eY),

(A3)
=0
2
(4 €) — tH® 4
gj(t;e) =€) €Q;’(t,s)+O(e), (A4)
1=0
0=1—¢%0,, s=¢*t, t=t, (AD)

where € is a small parameter measuring the amplitude
of the bifurcating solution. Inserting these equations in



(Al) and (A2), we get the following hierarchy of equa-
tions:

o o _ % e o
Lu;” —q;7 = 512 +KN(2uj — Ujpq —ujfl)
©_ s _ 9 o s
Mg, — (5uj = 8—Jt + (5qj — (5uj =0, (A7)
Lut! q]m =0, (A8)
qu(-l) —sutt =0, (A9)
82ul”

Lu® — ¥ = o~ 4 Al

u;” — g, 5i0s (A10)
@ @ o 1 03\ 94

Mg, ouy’ =4 (92u ~3Y ) (?—Js’ (A11)

and so on.

At the critical temperature 6§ = 1, the eigenvalues cor-
responding to the linear system (A6) - (A7) are 0 and
—(gA:I:)i\/l —62/4 (for 6 < 2). Thus the solution of (A6)
- (A7) is

ul? = A(s)p1; = ¢\,

P15 = 2 sin mJ
LTV NT N+1)

where we have omitted terms that decrease exponen-
tially as e ~9%/2 cos[ty/1 — 62/4+~]. Insertion of (A12) in
(A10)-(A11) yields

(A12)

Luf) — q(-z) =0,

{ (A13)

dA A3

The right hand side of (A14) should be orthogonal to
the eigenvector ¢ ; for this system to have a solution

bounded as ¢ — oo. Using that Zjvzl 15 =1 (see eq.
(B10) of Appendix B) and

2 QZN:_4 5\ 3 (AL5)
N+1 j:1sm N+1) 2(N+1)
we obtain
dA A2
a0 ) (A16)

whose solution is

2(N +1)0
1 + 6729265 (2(N+1)92 _ 1) ’

A(s) = sign[A(0)]
A(0)2

As s — oo, A(s) vanishes for 6, = —1 and it tends to
+41/2(N + 1) for § = 1. This is the typical behavior of a
supercritical pitchfork bifurcation of stable non-uniform
stationary spin and string profiles from the trivial solu-
tion. For 6 < 1, we obtain the corresponding profiles
of the string and the spin systems by inserting (A17) in
(A12) and (A3) and restoring § = 1 — €263 and the orig-
inal time variable:

1-6

i =q; = 2sign[A(0
2O,

« sin (N”—il) +O(1 - 6)), (A18)
cA(0) = \/NZH iqj(()) sin <Nﬁ——i1) . (A19)

In (A18), we have ignored exponentially small terms pro-
portional to e~ %/2. Even when § < 1, these terms decay
much faster than the exponential e=2°(0=9)t in (A18) as
(1-6) - 0. Ast — oo, the stationary profiles vanish
only at the end points of the string:

uj = q; = 2sign[A(0)]v1 — 0 sin (Nw—j-1>
+0(|1 —6)). (A20)

For A(0) = 0, the above equation should be understood
as giving u; = ¢; = 0 for all j, because the solution of eq.
(A16) with the initial condition A(0)=0 is A(s) = 0 for
all s. Thus, the flat string configuration is stabilized for
initial conditions such that A(0) = 0; for any other dif-
ferent condition the system eventually reaches one of the
two symmetrical rippled profiles without internal nodes.
Similar calculations at the critical temperatures

Tn B f2KJ2\/' 0 — sin (—2(N+1))

=" n = , (A21)
Epmu i, sin (2(1\;T+1))

yield the following bifurcating stationary profiles

0, —0 sin min
Q, N+1

(A22)

uj = qj = 2sign[A(0)]
+0(|0, — 0)),

where 6,, = T,,/T,.. In the continuum limit, (A22) be-
comes

sin(nx)

u(z) = g(z) = £2Y7 =7

+0(|6, —0)), (A23)

(A17) with 6, = 1/n2, n = 1,2,.... The profiles (A23) vanish

at n — 1 interior points in 0 < x < .



Appendix B: Splitting of u;(¢) in the limit o < wo
The stationary part uj of u;(t) satisfies

— KR (w1 +uj1 — 2u;) = oy, (B1)

for j = 1,..., N according to Eq. (9) of the main text.
Defining w; = uj+1 — u;, (B1) becomes
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Ww; —Wj—1 = —
whose solution is

Ujr1 — U; = W5 = U1 — Z al, (B3)

Nz1

because wg = uy due to the boundary condition ug = 0.
Summing (B3) from 1 to j — 1, we find

l

= jui — K12 ZZO‘k (B4)

N 1=1 k=1

The other boundary condition w1 = 0 yields

N 1
Uy = N+1 ;;01@. (B5)

These formulas can be simplified using summation by
parts:

Substituting this in (B4) and (B5), we obtain

I -
—1)al -> 0 —z)al] , (B7)

=1

-5

=1

which is Eq. 11) for u; = uj.

To find v;(t) = wu;(t) — uj, we note that it satisfies
Equation (9) with zero RHS and insert in that equation
the eigenvector expansion

N
Z (t)bn, (BS)

_KN (an-,jJrl + (bnyj*l - 2¢n-,j) = Q?ﬁbmia (BQ)

where eigenfrequencies €),, and eigenvectors ¢, ; are
given by (13) and (14), respectively. Eq. (B9) can be
checked by direct computation. The eigenvectors ¢, ; of
the discrete Laplacian satisfy the orthogonality condition

N
Z ¢n,j¢m,j = dnm, (BlO)
n=1
The result is
Vi + 02V, =0, (B11)

thereby producing V,,; = A, cos(ut) + By sin(Q,t)
which, inserted in (B8), yields Eq. (12). Equation (13)
of the main text, giving A4,, and B, follows from the ini-
tial conditions for u;(¢) and the orthogonality condition
(B10) for the eigenvectors ¢, ;.
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