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Abstract

This paper develops a reduced order equivalent-structure based model for polystyrene (PS)

in a rigid body molecular dynamics framework. In general, a coarse grained (CG) model for

polymers is obtained by replacing a group of chemically connected atoms by an effective particle

and deriving a coarse grained interaction potential that reproduces the structure and dynamics

at the desired length and time scale. In the current model, a detailed (∼ 16 atoms) polystyrene

monomer referred to as basic structural element (BSE) is replaced by an equivalent model with

spherical backbone particles and an ellipsoidal particle that represents the styrene side-group. The

governing principals of this homogenization is based on the mass, centroid, angular momentum

and energy equivalence between the detailed and the proposed reduced order model. The bonded

interactions parameters are readily obtained in the optimization of the equivalent structure

from the detailed representation. The non-bonded interactions are treated separately. In order

to capture the stereochemistry of the polystyrene molecule, an anisotropic biaxial non-bonded

interaction potential function known as RE-squared (RE2) interaction has been used between

pairs of ellipsoidal and/or spherical particles in the system. The required calibration of the

non-bonded parameters is carried out by matching with the experimental density and the local

structure using radial distribution function. This homogenization process scales up the modeling

system size significantly as the higher frequency motions like -C-H- vibrations and side-group

movements are suppressed. The accuracy of the model is established by comparing with fine-scale

simulation with explicit representations

∗ Corresponding author: Tel: +1 (410) 516 7833. Email: sghosh20@jhu.edu

2



I. INTRODUCTION

Molecular simulation methods, e.g. molecular dynamics (MD) have emerged as powerful

techniques for studying static and dynamic properties of bulk amorphous polymers such as

polystyrene or PS. Short range structure and local heterogeneities at the nanometer scale

can be evaluated in great detail using atomic trajectories that are generated from these

simulations. The level of sophistication required for modeling polystyrene necessitates more

than just linear chain models, because of presence of phenyl groups at alternate backbone

carbon atoms. This complex atomic structure poses severe computational challenges, espe-

cially when real polymeric systems are concerned. It is prohibitively demanding to solve real

polymer physics problems using currently available computational resources. For example,

in polymer thin film experiments, the surface layer itself extends to as much as 10 nm [1].

An overall thickness of approximately 40 nm may provide adequate length scale effects in

the simulation system to yield an acceptable degree of reliability in the molecular models [2].

In MD simulations, a 40 nm PS thin film system would entail solving a system of equations

for around 12,000 monomers. With periodic boundary conditions imposed on the 10nm ×

10nm square region in the lateral plane along the X-Y directions, this is equivalent to solving

for ∼ 200,000 atoms with explicit representation of hydrogen and carbon atoms or equiva-

lently for ∼ 100,000 united atoms [3]. Coarse-grained or reduced order representations of

atomic systems are often implemented as a means of reducing computational requirements.

In these models, explicit representation of every atom in the atomic system is replaced by

”super-atoms” that are units made up of a group of chemically connected atoms. Coarse

graining also facilitates MD simulations on longer timescales that are typically necessary for

simulating experimentally observed phenomena.

Generally speaking, the objective of coarse graining is to have as many atoms as possible

in the reduced-order super-atom unit to achieve maximum advantage in terms of computing

at large length and time scales. However, coarse graining too many atoms into a single unit

can result in a loss of local information like atomic packing and local arrangement. One of

the widely practiced coarse-graining procedures was introduced by Tschope et. al. [4, 5].

The underlying principle in this method is to identify the fast or high frequency internal

degrees of freedom from independent simulations of explicit isolated chains, and subsequent

averaging. A number of other similar coarse-graining schemes have been proposed for poly-
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FIG. 1. (a) Representative volume element (RVE) of a polystyrene system, and (b) the basic

structural element (BSE) representing the fundamental building block of the molecular chain.

carbonate and polystyrene systems in [6–8]. In particular, a variety of reduced order models

have focused on polystyrene [8–12], it being one of the most widely studied polymers with

ample opportunity for experimental validation. The models are generally founded upon

statistics-based potential of mean force inversion methodology, where interactions are ob-

tained from sampling distributions using explicit atomistic simulation of isolated polymers.

Since the sampling distribution functions are temperature dependent, the transferability of

these models across a range of temperatures is subject to corrections. Besides temperature

dependence, atomistic details like information on stereochemistry and side-group orientation

are usually lost with coarse-graining of the polymer structure. For example, such losses are

evident in the 2:1 coarse-grained model for PS in [7, 8, 10], where each PS monomer is de-

scribed by two CG super atoms. The super atoms in this model are spherical in nature with

the side-group compressed in the backbone. To improve the stereochemistry representation,

some models have made special provisions to account for the different tacticities of adjacent

monomers [9]. Different potential functions are defined based on the whether the initial

state of monomer pairs was racemic or meso in nature, thus making the method dependent

on initial structure. Moreover, since the coarse-grained particle is generally assumed to be

spherical, anisotropic phenomena like alignment of polystyrene side-groups in the direction

of applied strain [13] cannot be captured using these models.

The proposed coarse-grained model in this study is developed to overcome some of the

shortcomings mentioned above. In this model, a monomer is replaced by an equivalent

structural element where the side group is configurationally represented as an ellipsoid. The
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(a) (b) (c)

FIG. 2. (a) Stage 1 reduced order: United atom representation, (b) Stage 2 reduced order: Equiv-

alent ellipsoidal representation, and (c) Side group as ellipsoid with axial lengths

three backbone united atoms make up the other units of the basic structural element of the

molecular chain structure. To overcome the limitations of orientation dependence associated

with conventional coarse-graining methods, a rotational dynamics based MD framework

is implemented in the software LAMMPS [14]. The reduced order model is capable of

reproducing the basic structural properties like density and pair-correlation function of the

explicit MD model. It is expected that it will enable larger polymeric nano-systems (∼

40-100 nm) to be studied within the constraints of available computational resources.

II. REPRESENTATION OF AN EQUIVALENT BASIC STRUCTURAL ELE-

MENT

Figure 1(a) shows an atomic scale RVE for PS with explicit representation of molecular

chains and configurations. The corresponding basic structural element (BSE) delineating

the fundamental constitution of the material at this scale is shown in figure 1(b). Coarse

graining to generate reduced order MD models of PS is executed in two stages. In the first

stage, the BSE which corresponds to an explicit PS monomer consisting of ∼ 16 atoms is

reduced to a united atom representation as shown in figure 2(a). In this nominally reduced

order representation, the chemically connected hydrogen and carbon atoms are consolidated

into one united atom that is assumed to be a spherical point with zero volume or no moment

of inertia. Subsequently each monomer consists of 9 united atom as shown in 2(a). Detailed

studies of PS with this united atom representation has been carried out by the authors in
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[3, 15]. In the second stage of coarse graining, the phenyl ring of PS monomer is replaced by

an equivalent ellipsoid, and consequently the BSE consists of four structural units as shown

in figure 2(b). The three backbone united atoms are represented as spherical particles,

whereas the phenyl side group is represented as a single ellipsoidal rigid body. The repeat

unit of the BSE are shown in figure 2(b) where backbone atoms are labeled as A and B

while the phenyl side group is labeled as C.

The configuration and geometric properties of the ellipsoid are determined from its struc-

tural equivalence with the explicit system, i.e. by equating the zero-th, first and second

order moments of inertia of the ellipsoid with those of the side-group atoms in the BSE. As

shown in figure 2(c), the phenyl side-group in the PS monomer consists of six united atoms

in the explicit styrene ring. Equating the zero-th moment of inertia conserves the total mass

of the system and determines the volume of the equivalent ellipsoid. Thus,

mell =

6
∑

i=1

mi (1)

where mell is the total mass of the equivalent ellipsoid and mi is the mass of individual

particles in the united atom representation. The six atoms are labeled C3 to C8 in figure

2(a) with a masses of 12 atomic mass units or amu for C3 and 13 amu for the other five

resulting in a total ellipsoid mass of 77 amu. The bond length between the chemically

connected atoms is ∼ 1.4 Å.

Equating the first moment of inertia conserves linear momentum and determines the cen-

troid position of the ellipsoid. The centroidal coordinates xellc , yellc and zellc of the equivalent

ellipsoid are thus expressed as:

xellc =

∑

6

i=1
mixi

∑

6

i=1
mi

, yellc =

∑

6

i=1
miyi

∑

6

i=1
mi

, zellc =

∑

6

i=1
mizi

∑

6

i=1
mi

(2)

where xi, yi and zi are the position coordinates of the i−th united atom in the phenyl

side-group.

Finally, equating the second moments conserves angular momentum and determines the

principal axes directions. The second moment of inertia for the phenyl group of six atoms
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is defined as:

I =

6
∑

i=1

mi(ri ⊗ ri) (3)

where mi and ri are mass and position vector of the six particles in the united atom rep-

resentation respectively and ⊗ is the tensor product symbol. While mass and centroid are

uniquely determined for the ellipsoid, the nine moments of inertia for the three principal

axes and the corresponding three principal directions gives rise to an over-determined system

of equations. Consequently, a minimization scheme is employed to obtain the best fitting

second moment of I for the equivalent ellipsoid from a hexagonal arrangement of atoms. The

three eigen-values of the second moment of inertia I1, I2 and I3 provide the three principal

axis lengths (2a, 2b and 2c) of the equivalent ellipsoid, from the equations:

a =

√

5(−I1 + I2 + I3)

2mell
, b =

√

5(I1 − I2 + I3)

2mell
, c =

√

5(I1 + I2 − I3)

2mell
(4)

For the polystyrene phenyl ring, the principal axes lengths a, b and c of the equivalent

ellipsoid are found to have values of 3.45 Å, 3.45 Å and 1.0 Å respectively. This corresponds

to a spheroid.

The orientations of the three principal axes x′, y′,z′ can be determined as the eigen-vectors

of the second moment of inertia matrix I. Various types of orientation representation in-

cludes the rotation matrix, axis-angles or Euler angles. Alternatively a singularity free, four

parameter quaternion representation, introduced in [16], is implemented for designating ori-

entation. Unlike Euler angles, quaternions do not suffer from the possibility of ”gimbal lock”

when two planes overlap causing one of the Euler-angles to become ambiguous. Quaternion

algebra is numerically more stable and require far less number of parameters to be stored

than in the rotation matrix representation. Like real number and complex number systems,

quaternions correspond to a number system that can be used to represent a point in space

by a single number or quaternions [17].

The quaternion rotation is written as a normalized four-dimensional vector

q̂ = [q0 q1i q2 j q3k ]
⊤. (5)
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where q21 + q22 + q23 + q24 = 1. Furthermore, according to the quaternion number system

mathematics [16], i2 = j2 = k2 = ijk = −1. Calculating the quaternion of a given phenyl

side group in the reduced order system involves the derivation of a orientation matrix Q for

the BSE and calculation of its eigen-values and eigen-vectors.

The process is first executed on the staring configuration to generate the initial configu-

ration of the reduced order system. The centroidal position and quaternions of the reduced

order system evolves with subsequent increments of the molecular dynamics simulations.

The orientation matrix for the ellipsoid is written in terms of three orthogonal basis vectors,

derived for the phenyl side group. The x′ direction is in the plane perpendicular to the

phenyl ring, while the line joining atoms C3 and C6 in figure 2(a) is assumed to correspond

to the z′ direction. The y′ direction is constructed from the line joining the bisectors of the

lines C4-C5 and C7-C8 respectively.

Q =











x′1 y′1 z′1

x′2 y′2 z′2

x′3 y′3 z′3











(6)

The eigenvalues of Q are given as:

λ = {1, cos(θ) + i sin(θ), cos(θ)− i sin(θ)} (7)

where θ is the rotation angle. The eigenvector (ê) corresponding to eigenvalue 1 is an

invariant principal axis of rotation. The four components of quaternions are expressed in

terms of the principal axis ê = [e1 e2 e3]
⊤ and the angle θ as:

q0 = cos(θ/2)

q1 = e1 sin(θ/2)

q2 = e2 sin(θ/2)

q3 = e3 sin(θ/2)

(8)
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At any given instance, quaternions can also be used to obtain the rotation matrix as:

R =















−1 + 2q21 + 2q20 2(q1 ∗ q2 − q3 ∗ q0) 2(q1 ∗ q3 + q2 ∗ q0)

2(q1 ∗ q2 + q3 ∗ q0) −1 + 2q22 + 2q20 2(q2 ∗ q3 − q1 ∗ q0)

2(q1 ∗ q3 − q2 ∗ q0) 2(q1 ∗ q0 + q2 ∗ q3) −1 + 2q23 + 2q20















(9)

The mass, centroidal position, orientation in terms of quaternions, and the principal axes

lengths complete the description of the equivalent ellipsoidal rigid body side-group of the

PS monomer at any time instance. The other three particles which form the backbone are

simply represented by their position vectors with no size (hence zero moment of inertia).

Their quaternion parameters [q0 q1 q2 q3] stay constant at [1 0 0 0]. The table I depicts

the system size and total degree of freedoms for a system with 8 chains and 320 monomers

corresponding to different stages of coarse-graining.

Units/d.o.f. Explicit Atom United Atom Equivalent Ellipsoid

System System System

no of units/monomer 16 9 4

d.o.f./monomer 48 24 13

d.o.f.(1x80 monomers) ∼ 3840 ∼ 1920 ∼ 1040

d.o.f.(8x320 monomers) ∼ 122880 ∼ 61440 ∼ 33280

TABLE I. Degrees of freedom associated with different stages of reduced order representation of

polystyrene in MD simulations

The reduced order system decreases the degrees of freedom by approximately a factor of

3.6 for the 8 chain, 320 monomer model.

III. POTENTIAL ENERGY FUNCTIONS OF THE REDUCED ORDER SYSTEM

Atoms in the polymeric chains are chemically connected by various springs and joints that

provide the bonded interactions and maintain the kinematics and the local morphology of

the polymer chain. Besides the bonded interactions, the dynamics of atoms in the polymer

chains are also governed by non-bonded interactions. These are non-local in nature and take
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FIG. 3. Modes of deformation: (a) twisting (b) out-of-plane bending (c) in-plane deformation

place between atoms, which are not bonded directly. Thus, the molecular interactions for

a polymer system includes bonded energy (Ubd) and non-bonded energy (Unb) terms. The

total potential energy (Utotal) of the system is thus written as (see [15]):

Utotal = Ubd + Unb (10)

The bonded and non-bonded interactions for the reduced order model are discussed next.

A. Bonded Interactions

The configuration and kinematics in the explicit representation of polymeric chains are

effectively modeled by including terms like angular, torsional, improper and out-of-plane

interactions along with the spring-like bond interactions as shown in figure 3. The potential

function in the explicit model for bonded interaction is given as [3, 15]:

Ubd =
1

2
kb(r − r0)

2 +
1

2
kθ(θ − θ0)

2 +
1

2

3
∑

j=1

kjφ
[

1 + (−1)j+1cosj(φ)
]

+
1

2
kψ(ψ − ψ0)

2 (11)

Here ro, θo and ψo are the equilibrium bond-length, angle, dihedral angle and improper

angle respectively, and kb, kθ, kφ and kψ are the corresponding stiffness co-efficients.

Development of the functional form for the bonded-potential of the reduced order model

is executed in the following steps.
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1. MD simulation of the full monomer chain system in its explicit representation is carried

out at a given temperature.

2. The centroidal positions of random particle-pairs A and B (see figure 2(b)) in the en-

semble are determined and their trajectory is sampled for distribution of bond lengths

AB,BC, angles ABA and ABC and dihedral angle ABA′B′. This sampling is done for

approximately 1000 temporal instances so that a reliable statistics can be developed

for the reduced order model.

3. Distribution functions P (r), P (θ) and P (φ) for the chains are obtained from the above

sampling. Rigorous convergence study is carried out to ensure that these probability

distributions are statistically unbiased and independent of the number of sampling

points.

4. These probability distributions correspond to the Boltzmann factors of the generalized

intra-chain interaction potentials U(r). These are written as:

P (r) = exp

{

−U(r)

kBT

}

(12)

P (θ) = exp

{

−U(θ)

kBT

}

(13)

P (φ) = exp

{

−U(φ)

kBT

}

(14)

where kB is the Boltzmanns constant, U(r) is the bonded length potential of the

reduced order chain model, and U(θ) and U(φ) are the corresponding bond angle and

torsion potentials. Thus far there is no fitting procedure needed and it is directly the

result of mapping energetic and entropic contributions from the finer scale explicit

model.

5. As an example, the coefficient for the assumed bond-stretching potential function of

the reduced order model is obtained directly from equation (14) as:

U(r) = −kBT lnP (r) + Cr (15)

The coefficient Cr is added and evaluated to keep the minimum bond-length potential

to zero. Consequently, its value is Cr = kBT lnP (r0). The bond-stretching poten-
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tial for the reduced order model is assumed to be harmonic. Correspondingly, the

coefficient Kr is obtained from the equation

Ur =
Kr

2
(r − r0)

2 = −kBT lnP (r) + Cr (16)

The same procedure is repeated for the other bonded potential functions as well.

1 1.5 2 2.5 3 3.5
0

0.1

0.2

0.3

0.4

0.5

r(Å)

P
(r

)

 

 

K
r
 (kj/mol)
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2K
r
 (kj/mol)

FIG. 4. Probability distribution with respect to bond length. A higher Kr has sharper and higher

peak and narrower spread than a lower Kr. The figure shows distribution for original stiffness value

as well as distribution when the stiffness is halved and doubled.

For bonded interactions, the functional form of bond angle bending modes are described

using an harmonic potential, expressed as:

Uangle =
Kθ

2
(θk − θ0)

2 (17)

Values for the constants Kr, r0, Kθ and θ0 are listed in Table II.

The functional form for the torsional interaction is chosen to describe rotation along the

bonds in the backbone carbon atoms in accordance with the Transferable Potentials for

Phase Equilibria (TraPPE) potential form [3]:

Utorsion =
1

2
{k1φ(1 + cos(φ)) + k2φ(1− cos(2φ)) + k3φ(1 + cos(3φ))} (18)

Again the values of the constants are listed in table II. One of the consequences of coarse

graining is the possibility of loss of configurational integrity due to removal of hydrogen
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ChemicalBonds Kr(kj/mol/Å
2
r0(Å)

A - B 666.00 1.54

B - C 1000.00 2.91

Angular Bonds kθ(kJ/mol/rad2) θ0(degree)

A-B-A′ 520.0 112.0

A-B-C 1000.0 120.0

Dihedral Bonds k1φ(kJ/mol) k2φ(kJ/mol) k3φ(kJ/mol)

A-B-A′-B′ 5.904 -1.124 13.158

Improper Bonds kψ(kJ/mol/rad2) ψ0(degree)

B-C-A-A′ 167.40 31.00

TABLE II. Potential function parameters for reduced-order representation of polystyrene system.

Different units of angles for equilibrium values (degree) and force constants (radians) is used in the

table to maintain consistency with the representation followed in the Molecular Dynamics software

package LAMMPS that was used to carry out the simulations.

atoms at the chiral centers. As a result, the four united atoms, C1, C2, C3 and C
′

1 tend

to collapse into one plane. In order to prevent this collapse, an improper dihedral-angle

interaction potential has been proposed in [8, 18] as,

Uimp =
Kψ

2
(ψk − ψ0)

2 (19)

where ψ is the improper dihedral angle that conserves the structure of chiral center in the

molecules modeled as united atoms. The corresponding forces cause the unit normal to

the plane (C1,C2,C3) to oscillate about its mean position. To coincide with the equilibrium

position obtained from MD simulations with explicit structure representation, an equilibrium

value ψ0 = 35.04o is used with the united atom potential. This is the angle formed with the

-C2-H- vector in the equilibrium position. Though ψ0 = 35.04o was used for the united atom

simulation, the mean value of probability distribution for the equivalent angle in the new

representation of C, A, B, A’ was found to be 31o. One possible reason for this deviation

may be the difference in co-ordinates of site C3 in united atom representation and site C in
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equivalent coarse-grained representa

B. Non-bonded Interactions for Rigid Body Systems

Normally, non-bonded interactions between individual atoms are represented in terms of

distance-dependent potential functions. An example is the Lennard-Jones potentials, where

particles are assumed to be spherical and interactions have radial symmetry. However,

approximating a group of atoms as a spherical particle has its shortcomings especially for

systems like the phenyl side group, where the six atoms are arranged as part of a co-planar

hexagon. If the physical properties are dependent on the stacking direction of the side-group,

the spherical assumption may be misleading. In [13], it has been shown that phenyl side

groups in polystyrene chains tend to align themselves in the direction of applied tension

when a uniaxial load is applied. If the side group is assumed to be spherical, this alignment

cannot be captured when the system is subjected to an external load. In order to retain the

anisotropy in reduced order model framework, the side groups are assumed to form a rigid

body with moments of inertia specified from the explicit atomic structure.

In this work, the styrene side group is represented as a spheroidal rigid body, based on

the geometry of phenyl ring as discussed in section II. Gay-Berne [19] have introduced the

ellipsoidal potential as an extension of L-J potential for anisotropic particles. Parameters

of the Gay-Berne potential however lack a well defined physical interpretation and their

calibration can be erroneous. A modification to Gay-Berne potential was proposed in [20],

where the parameters are related to the equilibrium energy, distance and orientation in a

more physical way. This potential is termed as RE2 potential. The potential energy VRE2

and is broken down into an attractive VA
RE2 and a repulsive interaction energy part VR

RE2

and is expressed as:

VRE2(r1,q1, r2,q2) = V A
RE2(Q1,Q2, r12) + V R

RE2(Q1,Q2, r12) (20)

where Q1 and Q2 are the transformation matrices from the global reference frame to

the local frame and r12 is the position vector joining the centroid of the particles. Since the

rotational degrees of freedom are also included in this potential function via Q1 and Q2, RE
2
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functional form is able to capture and evolve the different modes of deformation for phenyl

group as shown in figure 3. As a result, the modes of deformation like twisting, in-plane and

out of plane motion of the phenyl group are simulated without explicitly using any bonded

potential like torsional spring potentials. Moreover, the selection of parameters with the

RE2 form are very physical in nature. RE2 form gives the approximate interaction energies

between ellipsoids/spheres instead of a modified LJ-based formulation as in the Gay-Berne

potential [21]. RE2 potential is formulated in a way that the orientation dependence decays

at large distances and asymptotically reduces to the interaction energy between two spheres.

Moreover, it is known to give a more realistic intermediate and close contact interaction [20].

The full details of RE2 formulation can be obtained from [20, 22].

C. Numerical values of the Non-bonded parameters

From a purely computational view point, the RE2 potential interaction between particles

in the system can be defined if diagonal shape tensor Si and the relative well-depths values

along with the Hamaker constant A12 and the atomic interaction radius σ are known. The

shape tensor Si (i=1,2) is given in terms of the three principal radii ai, bi and ci of the

ellipsoid as:

Si =











ai 0 0

0 bi 0

0 0 ci











(21)

The relative well depth for each site can be expressed as:

ǫx = σ.
a

b.c
; ǫy = σ.

b

a.c
; ǫz = σ.

c

a.b
(22)

To define non-bonded interactions between ellipsoidal and/or spherical particles using

RE2 anisotropic potential in LAMMPS [14], following parameters must be exactly defined

for each pair of atoms:

A12ij = Hamker constant or energy prefactor for the pair (kj/mol)

σij = radius of the particle that represents excluded volume for the pair (Å)

ǫxi = relative well depth of particle i for side-to-side interactions

ǫyi = relative well depth of particle i for face-to-face interactions
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ǫzi = relative well depth of particle i for end-to-end interactions

ǫxj = relative well depth of particle j for side-to-side interactions

ǫyj = relative well depth of particle j for face-to-face interactions

ǫzj = relative well depth of particle j for end-to-end interactions

σc = cutoff distance (Å)

The side and face in the phenyl ring are same and is the plane of the phenyl group. The

end-to-end is the normal to the plane of the ring. These are easily obtainable geometric

properties of the ellipsoids and spherical sites for the molecule under investigation. The

simplification in terms of parameterization is made by using the assumption from Derjaguin

expansion [23] where energy well depth parameters are expressed in terms of local curvatures

of the ellipsoid.

The three kinds of particles used in the coarse-graining are denoted by A, B and C,

where A and B are the spherical backbone atoms and C is the ellipsoidal side group. The

calibrated parameters for non-bonded interactions used in this work are presented in table

III. A series of calibrations simulations were run with the chosen parameters before arriving

the final values. Tests were performed to observe energy conservation and these simulations

were validated against radius of gyration, radial distribution function and the density of PS

system. The final interaction radius σ for spherical sites is chosen to be 3.95 Å and 4.65 Å

respectively. These values are same as the interaction radius used in united atom represen-

tation [3, 8]. A larger value of 5.0 Å was chosen for the interaction radius of the elliposidal

site C. An arithmetic mean is used to obtain interaction values for unlike pairs of particles.

The values for relative well depth are obtained using equation 22 for each pair. Geometric

mean is used to obtain the relative well depth for unlike sites. The cutoff distance σc was

chosen to be equal to united atom cut-off distance of 10 Å for particles A and B. A value of

12 Å was used for elliposidal particle C since it has bigger dimension and longer range for

non-bonded interactions. The initial values of prefactor A12 of the potential energy term

(Hamaker constants) were guessed to be 30 kj/mol for spherical sites and 80 kj/mol for the

ellipsoidal sites and were optimized by matching the total potential energy of the CG sys-

tem with the energy from the united atom simulation. The final values are shown in table III
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Particle: A-A B-B C-C A-B A-C B-C

σ 3.95 4.65 5.00 4.30 4.48 4.83

ǫx 3.95 4.65 5.00 4.28 4.44 4.82

ǫy 3.95 4.65 5.00 4.28 4.44 4.82

ǫz 0.3318 0.3906 0.42 0.36 0.3733 0.4050

A12 30.24 32.22 86.24 30.22 50.61 50.61

σc 10.00 10.00 12.00 10.00 12.00 12.00

TABLE III. RE2 parameters for the reduced order model

IV. SIMULATION RESULTS AND VALIDATION

Three PS systems containing different number of chains and monomers are studied in

this work for coarse graining. They are:

1. system containing one chain of 80 monomers

2. system containing one chain of 320 monomers, and

3. system consisting of eight chains of 320 monomers

The initial configuration of each system is obtained from a fully equilibrated explicit MD

system. As discussed in [3, 15], PS molecules in the explicit model are assembled using

the augmented Phantom Chain Growth or PCG scheme. In this algorithm, monomers are

introduced based on a sampling of a uniform random distribution of the backbone dihedral

angle. The total energy change ∆U resulting from the introduction of a new site is calculated

as the sum of the dihedral and non-bonded interactions. The probability of the acceptance

of the new monomer is given by

p = min [1, exp (−β∆U)] (23)

where β is the product of Boltzmann constant kB and the temperature of the system. If

a new monomer is not accepted after a certain number of trials, the chain is shortened by

removing the previous monomer, and the procedure is repeated.

The initial co-ordinates and the orientation of the ellipsoids are obtained using methods

discussed in section II. The initial velocity and angular velocity of the ellipsoids are assigned
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randomly such that total momentum is zero and the total kinetic energy is proportional to

the desired temperature. The system is validated at 350K. A time-step of 4 fs is chosen

for this work and the simulation at each temperature is run for approximately 2 ns. The

reduced order model is tested by mapping the coarse-grained trajectory at the end of the

simulation to a full scale local structure to confirm if the atomic level topology is retained.

Also, the robustness of the potential function developed for the reduced order model is

tested through convergence of radial distribution functions and density at a temperature

350K. The simulated densities at different temperature are found to be within a 10% error

range.

(a) (b)

FIG. 5. (a) A 3 monomer sample in the reduced order representation, (b) the reconstructed united

atom system at the end of the simulation

Figure 5 exhibits the result of reinsertion of atomic details in the molecular model at

the end of the simulation. A 3 monomer strip from the chain of 320 monomers is chosen

to highlight the remapping of the reduced order system to the detailed atomic system.

Figure 5(a) corresponds to the coarse-grained data obtained from MD simulation at a given

time-step. Figure 5(b) shows the 3 monomer system after it has been reconstructed using

the information about coordinates and orientation embedded in the reduced order model

trajectory. The backbone atoms are trivially mapped as they represent coordinate positions

of the same particles in both reduced order and united atom manifestations. The large

ellipsoidal particles in the reduced order system contains in itself the evolved centroid and

orientation information. Due to this information, the ellipsoid can be mapped back accu-

rately to the corresponding styrene side group as shown in figure. The mathematical details
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of this exercise is detailed in section II. The above result shows that, besides retaining the

information about the centroid position of the CG site like other sphere based model [7–11],

the current model also evolves the orientational degree of freedom because of its anisotropic

nature. Consequently, finer all-atom or united atom system can be easily and accurately

obtained from the existing coarse-grained system if required.

The radial distribution function for reduced order ellipsoid-ellipsoid system is plotted in

figure 6. As demonstrated in the figure, there is a local peak due to near-neighbor correlation,

which decays to unity after a length of 10 Å. This behavior is consistent with the theory. It

also validates the local structural inhomogeneity and far-field homogenized behavior. Figure

7 shows the density convergence of the reduced order system at 350K. The density converges

to experimental values within an error of 10 %. This is acceptable for this significant level

of coarse-graining. Furthermore, the rate of convergence of the reduced order model is much

faster than what is observed in full scale MD simulation [3], thus establish the advantage of

this model.

2 4 6 8 10 12
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

g(
r)

r (Å)
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FIG. 6. Radial distribution function of ellipsoidal particle system

One of the primary objectives of this coarse-graining is to facilitate and expedite the pro-

cess of estimating glass transition temperature Tg of bulk and thin-film polystyrene systems.

For numerical evaluation, the simulation is executed for a temperature range from 300K

to 450K in 25K intervals under constant pressure state. Periodic boundary conditions are
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FIG. 7. Convergence in density at 350K with the reduced order model. The initial system has

very sparse density(sim 0.2 gcc) and the CG model shows a very fast convergence to the the

experimental scale density. The experimental density of PS is ∼ 1.05 gcc at room temperature.
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FIG. 8. Density of PS between 300 K and 450 K with the reduced order model. The bold lines

are least square fit to the density data. The dashed vertical line is drawn to locate the point

of intersection of the two fitted lines, originating from the two ends. Temperature value at the

intersection is found to be 355 K. This is taken as the simulation Tg value, estimated at the

temperature where the co-efficient of thermal expansion changes. The experimental value of Tg is

∼370 K
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applied to the reduced order simulation boxes. The simulation is run for about 2 ns at each

temperature until convergence in density is achieved. The densities are plotted as a function

temperature in figure 8. The simulation results are within a range of 10 % of the exper-

imental value reported in [24] as 370K. The glass transition is under-predicted by about

15-20K using this method. However, given the scale of coarse-graining involved and the

model’s ability to accurately capture the molecular-level anisotropy, the Tg value is believed

to be predicted within an acceptable range. The difference withe experimental value can

be attributed to a variety of different factors like cooling rate, sampling limitations of MD

along with the parametrization done in this work. However, a reasonable estimate about

the glassy phase transition in the polymeric system can be made within a range, based on

the density plots, using the current method. Tranferability of simulation parameters across

temperatures is a known limitation in the coarse-graining literature [12], which makes any

prediction pertaining to Tg debatable. As shown in figure 8, the slope of the curve sig-

nifying the coefficient of thermal expansion is observed to change at around ∼350K. This

temperature can be assumed to signal the onset of the glassy phase and is an estimate of

Tg.

V. CONCLUSION

A molecular structurally equivalent reduced order model is developed for polymers in

this work. The overall intent of this coarse graining is to bridge the gap in length and

time-scales between experiments and computational models such that longer time periods

may be simulated. A statistically equivalent, reduced order model for polystyrene is arrived

at by rigorous sampling of the fine-scale trajectory. The model is shown to reproduce basic

structural properties like density and pair-correlation function within acceptable tolerances.

While this coarse-graining method has been applied to the polystyrene system only in the

current work, the model can be used to study realistic nano-systems (∼ 40-100 nm) of

polymeric materials within the available computational resources.

VI. ACKNOWLEDGMENTS

This work has been supported by the NSF Division of Engineering Education & Centers

through grant # EEC-0425626 to the Center for Affordable Nanoengineering of Polymeric

21



Biomedical Devices (CANPBD) at the Ohio State University. This sponsorship is grate-

fully acknowledged. Computer support by the Ohio Supercomputer Center through grant

PAS813-2 is also gratefully acknowledged.

[1] J. A. Forrest, Eur Phys J. E 8, 261 (2002).

[2] C. Alleman, A. Srivastava, and S. Ghosh, J. of Polymer Science: Polymer Physics 49, 1131

(2011).

[3] A. Srivastava and S. Ghosh, Int. J. Multiscale Comp. Engg. 8, 535 (2010).
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