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Abstract. The determinant representation of the n-fold Darboux transfor-
mation of the Hirota equation is given. Based on our analysis, the 1-soliton,
2-soliton and breathers are given explicitly. Further, the first order rogue wave
solutions are given by Taylor expansion of the breather solutions. In partic-
ular, the explicit formula of the rogue wave has several parameters, which is
more general than earlier reported results and thus provides a systematic way
to tune experimentally the rogue waves by choosing different values of them.
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1. Introduction

It is well known that the completely integrable nonlinear Schrödinger equation
(NLSE)

iqt + 2|q|2q + qxx = 0 (1)

plays an important role in many branches of physics and applied mathematics, such
as nonlinear optics [1,2], plasma physics [3] and nonlinear quantum field theory [4].
Especially in nonlinear optics, the propagation of a picosecond optical pulse in an
optical fiber is governed by the NLSE. After theoretical prediction of the existence
of solitary waves [5] and experimental demonstration of the optical solitons [6], the
research on optical soliton is more and more fascinating since it may be applied as
bit rates in the next generation of optical communication system.

The NLSE has been used successfully to describe the propagation of a picosecond
optical pulse. However, for the propagation of subpisecond or femtosecond pulse,
the higher order effects should be taken into account and one version of higher-order
nonlinear Schrödinger equation (HNLSE) is of the form

iqt + α1qxx + α2q|q|
2 + iα3q + iα4qxxx + α5q(|q|

2)x + iα6(q|q|
2)x = 0. (2)

This equation was first proposed by Hasegawa and Kodama [7]. Mathematically, for
equation(2), many authors have obtained the following four completely integrable
cases:

(1) α1 : α2 : α3 : α4 : α6 : Im(α5) + α6 = 1
2 : 1 : 0 : 0 : 1 : 1;

(2) α1 : α2 : α3 : α4 : α6 : Im(α5) + α6 = 1
2 : 1 : 0 : 0 : 1 : 0;
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(3) α1 : α2 : α3 : α4 : α6 : Im(α5) + α6 = 1
2 : 1 : 0 : 1 : 6 : 0, which implies the

Hirota equation [8, 9];
(4) α1 : α2 : α3 : α4 : α6 : Im(α5) + α6 = 1

2 : 1 : 0 : 1 : 6 : 3, which implies the
Sasa-Satsuma equation [10, 11]
by using different approaches like the Painlevé test [12], the Galilean transforma-
tion [13], the Wahlquist-Estabrook prolongation method [14]. There are multi-
component extensions [15–17] of the above NLSE.

In recent years, a new wave called rogue wave attracts much attention. It was
observed in many fields, such as oceanics [18–22], nonlinear optics [23–25]. Though
rogue wave has caused many marine disasters, fortunately, there are already some
achievements to understand this natural phenomenon. In [24], a system of ex-
tremely steep and large wave has been studied and the observation of rogue wave
has been reported in an optical fiber. In [25], a mathematical solution called Pere-
grine soliton as a prototype of ocean rogue wave has been observed in a physical
system. In [26], the authors have used an experimental set up to observe Peregrine
soliton in a water wave tank.

The rogue wave of the Hirota equation is given by a very simple and powerful
Darboux transformation(DT) with the help of the author’s very rich empirical
ideas [27]. However, there are two unusual points in this work, i.e., 1) the Lax
pair does not contain spectral parameters and 2) the “seed” solution ψ = eix is
too special, such that its rogue wave is not universal enough. Considering the wide
applicability of the Hirota equation, we shall try to find a more general form of
the rogue wave of the Hirota equation by the DT [28–31] from a general “seed”
solution. Specifically, we follow the AKNS procedure [32] to construct the Lax pair
with spectral parameters and the corresponding Hirota equation takes the form

iqt + α(2|q|2q + qxx) + iβ(qxxx + 6|q|2qx) = 0, (3)

with the choice of coefficients α1 : α2 : α3 : α4 : α6 : Im(α5)+α6 = 1 : 2 : 0 : 1 : 6 : 0.
If letting α = 1, β = 0, equation (3) reduces to equation (1). Note that equation
(3) is another equivalent form of the Hirota equation [27]. This Lax pair is more
convenient to construct the DT due to its parameters. Furthermore, solitons are
derived from zero “seed” and breathers are derived from a periodic “seed” with
a constant amplitude. At last, the rogue wave of equation (3) is given by Taylor
expansion of the breather, which implies the rogue wave [18, 19] of NLSE (1).

2. Lax pair of the Hirota equation

The Lax pair assures the complete integrability of a nonlinear system and is
often used to obtain explicit solutions by DT. In this section, we use the AKNS
procedure [32] to get the Lax pair with spectral parameters of Hirota equation (3).

By a similar way of the AKNS system, the Lax pair for equation (3) can be
expressed as follows

ϕx =Mϕ,ϕt = Nϕ, (4)

where ϕ = (ϕ1, ϕ2)
T , and

M =

(

−iλ q

−q∗ iλ

)

,

N = λ3
(

−4βi 0
0 4βi

)

+λ2
(

−2αi 4βq
−4βq∗ 2αi

)

+λ

(

2βi|q|2 2βiqx + 2αq
2βiq∗x − 2αq∗ −2βi|q|2

)

+
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(

iα|q|2 + β(qq∗x − q∗qx) iαqx − β(qxx + 2|q|2q)
iαq∗x + β(q∗xx + 2|q|2q∗) −iα|q|2 − β(qq∗x − q∗qx)

)

,

and λ is a complex spectral parameter, “*”denotes the complex conjugate. One can
verify that the compatibility condition Mt−Nx+[M,N ] = 0 gives rise to equation
(3), where the bracket represents the usual matrix commutator.

3. Darboux Transformation

The DT [28–31] is an effective method to construct solutions including n−soliton
and breather solutions. In this section, we would like to introduce a simple gauge
transformation of spectral problems (4) as follows

ϕ[1] = Tϕ. (5)

It can transform linear problems (4) into the same type of linear problems, namely,

ϕ[1]
x =M [1]ϕ[1], ϕ

[1]
t = N [1]ϕ[1], (6)

whereM [1], N [1] have the same forms withM,N except that of q, q∗ in the matrices
M,N are replaced with q[1], q[1]∗ in the matrices M [1], N [1]. It is easy to obtain the
equations

M [1]T = Tx + TM, (7)

N [1]T = Tt + TN. (8)

In general, the transformation T is a polynomial of the parameter λ, according
to Hirota equation (3), we can start from

T =

(

a1 b1
c1 d1

)

λ+

(

a b

c d

)

, (9)

where a1, b1, c1, d1, a, b, c, d are all functions of the variables x and t.
From equations (7) and (9), it is easy to have

(

a1x b1x
c1x d1x

)

λ+

(

ax bx
cx dx

)

=

(

c1q
[1]λ− ia1λ

2 d1q
[1]λ− ib1λ

2

ic1λ
2 − a1q

[1]∗λ id1λ
2 − b1q

[1]∗λ

)

+

(

cq[1] − iaλ dq[1] − ibλ

icλ− aq[1]∗ idλ− bq[1]∗

)

−

(

−ia1λ
2 − b1q

∗λ a1qλ+ ib1λ
2

−ic1λ
2 − d1q

∗λ c1qλ+ id1λ
2

)

−

(

−iaλ− q∗b aq + ibλ

−icλ− q∗d qc+ idλ

)

. (10)

and comparing the coefficients of λk(k = 0, 1, 2) of the above formula gives

b1 = c1 = 0, for k = 2, (11)

a1x = d1x = 0,

−2ib+ q[1]d1 − qa1 = 0, 2ic− q[1]∗a1 + q∗d1 = 0, for k = 1, (12)

ax = q[1]c+ q∗b, bx = q[1]d− qa,

cx = −q[1]∗a+ q∗d, dx = −q[1]∗b− qc, for k = 0. (13)

By using the calculation above, it is obvious that a1, d1 can be constanted and
let them equal to 1 without loss of generality, so DT for equation (3) could be in
the form of

ϕ[1] = Tϕ = (λI − S)ϕ, (14)

where λ is a complex spectral parameter, I is a 2×2 identity matrix and S is a
nonsingular matrix.
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Substituting the expressions of M,M [1] and T into equation (7), and then the
coefficients of λ becomes

(

0 q[1]

−q[1]∗ 0

)

=

(

0 q

−q∗ 0

)

+ i[S, σ],

where σ =

(

1 0
0 −1

)

, S =

(

s11 s12
s21 s22

)

. Therefore, the new solutions are given

by

q[1] = q − 2is12,−q
[1]∗ = −q∗ + 2is21, (15)

under a constraint

s∗12 = −s21. (16)

Similar to the case of the NLSE [28, 29], to obtain the explicit formula of S by
the solutions of the Lax pair, we introduce

S = HΛH−1, (17)

with

H =

(

f1 g1
f2 g2

)

,Λ =

(

λ1 0
0 λ2

)

,

where (f1, f2)
T is a solution of the eigenvalue equation of Lax pair (4) when λ = λ1.

It is useful to know that (g1, g2)
T = (−f∗

2 , f
∗

1 )
T is a solution of (4) when λ = λ∗1.

In order to satisfy the constraint of S, let λ2 = λ∗1 and (g1, g2)
T = (−f∗

2 , f
∗

1 )
T ,

then

S =
1

∆

(

λ1|f1|
2 + λ∗1|f2|

2 (λ1 − λ∗1)f1f
∗

2

(λ1 − λ∗1)f
∗

1 f2 λ1|f2|
2 + λ∗1|f1|

2

)

, (18)

here ∆ = |f1|
2 + |f2|

2. By a direct calculation, constraint (16) of the S can be
verified. So from (15) and (18), the DT generates a new solution of the Hirota
equation as

q[1] = q −
2i

∆
(λ1 − λ∗1)f1f

∗

2 . (19)

In fact, as in the case of the NLSE [28,29,33], the DT of the Hirota equation also
has determinant representation, which is convenient to get the solutions generated
by the higher order transformation. Here we rewrite one-fold DT (19) in the form
of determinant as

q[1] = q − 2i
S2

W2
= q − 2i

∣

∣

∣

∣

f1 λ1f1
g1 λ2g1

∣

∣

∣

∣

∣

∣

∣

∣

f1 f2
g1 g2

∣

∣

∣

∣

, (20)

under the reductions g1 = −f∗

2 , g2 = f∗

1 , λ2 = λ∗1. For the two-fold DT, we obtain

q[2] = q − 2i
S4

W4
, (21)

where

S4 =

∣

∣

∣

∣

∣

∣

∣

∣

f1 f2 λ1f1 λ21f1
g1 g2 λ2g1 λ22g1
f3 f4 λ3f3 λ23f3
g3 g4 λ4g3 λ24g3

∣

∣

∣

∣

∣

∣

∣

∣

,W4 =

∣

∣

∣

∣

∣

∣

∣

∣

f1 f2 λ1f1 λ1f2
g1 g2 λ2g1 λ2g2
f3 f4 λ3f3 λ3f4
g3 g4 λ4g3 λ4g4

∣

∣

∣

∣

∣

∣

∣

∣

,
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and under the reductions g1 = −f∗

2 , g2 = f∗

1 , g3 = −f∗

4 , g4 = f∗

3 , λ2 = λ∗1, λ4 = λ∗3.
Similarly, the n−fold DT could be written as determinant form

q[n] = q − 2i
S2n

W2n
, (22)

where

S2n =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

f1 f2 λ1f1 λ1f2 . . . λn−1
1 f1 λn1 f1

g1 g2 λ2g1 λ2g2 . . . λn−1
2 g1 λn2 g1

f3 f4 λ3f3 λ3g3 . . . λn−1
3 f3 λn3 f3

g3 g4 λ4g3 λ4g4 . . . λn−1
4 g3 λn4 g3

...
...

...
...

. . .
...

...
g2n−1 g2n λ2ng2n−1 λ2ng2n . . . λn−1

2n g2n−1 λn2ng2n−1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

,

W2n =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

f1 f2 λ1f1 λ1f2 . . . λn−1
1 f1 λn−1

1 f2
g1 g2 λ2g1 λ2g2 . . . λn−1

2 g1 λn−1
2 g2

f3 f4 λ3f3 λ3g3 . . . λn−1
3 f3 λn−1

3 f4
g3 g4 λ4g3 λ4g4 . . . λn−1

4 g3 λn−1
4 g4

...
...

...
...

. . .
...

...
g2n−1 g2n λ2ng2n−1 λ2ng2n . . . λn−1

2n g2n−1 λn−1
2n g2n

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

It is convenient to calculate the multi-solitons, multi-breathers, and higher order
rogue waves of the Hirota equation. This result under α = 1 and β = 0 is consistent
with the corresponding determinant representation of references [28, 29, 33].

4. soliton and breather solution

In this section, we start from a zero “seed” solution and a periodic “seed” so-
lution to construct new solutions(including soliton and breather solutions) by the
DT obtained above, then the first order rogue wave could be obtained by Taylor
expansion from the breather solution.

(1) Now let the “seed” q = 0 and λ1 = ξ + iη, then

f1 = e−i(ξ+iη)x−(4βi(ξ+iη)3+2αi(ξ+iη)2)t, f2 = ei(ξ+iη)x+(4βi(ξ+iη)3+2αi(ξ+iη)2)t. (23)

Taking f1, f2 given by equations (23) back into DT (20), we can get 1-soliton
solution (See Fig.1)

q
[1]
soliton = 2ηe2i(−ξx−4βξ3t−2αξ2t+12βξη2t+2αη2t) sech(−2ηx−24βηξ2t+8βη3t−8αηξt).

(24)
(2)Let the “seed” q = 0 and λ1 = ξ + iη, λ3 = θ+ iϑ, by solving linear problems

(4), the eigenfunctions can be obtained as follows,

f1 = e−i(ξ+iη)x−(4βi(ξ+iη)3+2αi(ξ+iη)2)t, f2 = ei(ξ+iη)x+(4βi(ξ+iη)3+2αi(ξ+iη)2)t,

f3 = e−i(θ+iϑ)x−(4βi(θ+iϑ)3+2αi(θ+iϑ)2)t, f4 = ei(θ+iϑ)x+(4βi(θ+iϑ)3+2αi(θ+iϑ)2)t.

According to the reductions g1 = −f∗

2 , g2 = f∗

1 , g3 = −f∗

4 , g4 = f∗

3 , λ2 = λ∗1, λ4 =
λ∗3, the 2-soliton is given explicitly by DT (21), which is plotted in Fig.2.

(3) In order to get non-trivial periodic solutions, we set “seed” q = ceiρ with
ρ = ax+ bt, here a, b, c are all real constants under a condition b = α(2c2 − a2) +
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Fig. 1. (Color online)The 1-soliton solution of the Hirota equation with
η = 0.1, ξ = 0.05, α = 1, β = 1 (left) and its profiles at different times
t = 1(red/right),t = 30(green/middle),t = 100(yellow/left).

Fig. 2. (Color online)The 2-soliton solution of the Hirota equation with
η = 0.1, ξ = 0.8, θ = 0, ϑ = 1, α = 1, β = 1 (left) and its trajectory lines

(right).

β(a3 − 6ac2). The corresponding solutions of the eigenvalue equations of the Lax
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pair are given by

f1 = cei[(
1

2
a+c1)x+( 1

2
b+2c1c2)t], f2 = i(

1

2
a+λ1 + c1)e

i[(− 1

2
a+c1)x+(− 1

2
b+2c1c2)t], (25)

where

c1 =
1

2

√

4c2 + 4λ21 + 4λ1a+ a2, c2 = (αλ1 + 2βλ21 −
1

2
aα− βc2 +

1

2
βa2 − λ1aβ).

By the principle of the superposition of the linear differential equation, the new
eigenfunctions associated with λ1 can be expressed by

F1 = f1 − f∗

2 , F2 = f2 + f∗

1 ,

then we use them to get following breather solution

q[1] = q −
2i

∆
(λ1 − λ∗1)F1F

∗

2 (26)

and ∆ = |F1|
2 + |F2|

2 by DT (20). By a tedious calculation, we finally get the
breather solution under a = −2Re(λ1) (See Fig.3)

q
[1]
breather = eiρ

[

c−
2η (η cosh(2d2)− iσ sinh(2d2)− c cos(2d1))

c cosh(2d2)− η cos(2d1)

]

, (27)

where
λ1 = ξ + iη, a = −2ξ, ρ = ax+ bt = −2ξx+ bt,

d1 = σx+ (4σαξ + 12σβξ2 − 4σβη2 − 2σ3β − 2σβη2)t, d2 = (2σαη + 12σβξη)t,

σ =

√

−b− 4αξ2 − 8βξ3

−2α− 12βξ
− η2.

Fig. 3. (Color online)Breather solution (27) of the Hirota equation
with α = 1, β = 1, ξ = −0.5, η = 0.1, b = 1 (left) and its density plot

(right).
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5. rogue wave solutions

There are at least two examples—the NLSE [18] and the derivative NLSE [34]
to get rogue wave by the Taylor expansion of the breather solutions. Here we shall
use this approach again to get the rogue wave of the Hirota equation from breather
solution (27).

The Taylor expansion at η =
√

−b−4αξ2−8βξ3

−2α−12βξ of breather solution (27) implies a

general form of the first order rogue wave of the Hirota equation

qroguewave = kei(−2ξx+bt)(1 −
2k1 + 2k2 + ik3t

k1 − k2
), (28)

where

k =

√

b+ 4αξ2 + 8βξ3

2α+ 12βξ
,

k1 = v1t
2 + v2xt+ v3x

2, k2 = α3 + 18α2βξ + 108αβ2ξ2 + 216β3ξ3,

k3 = 32ξ2α4 + 864αβ2ξ2b+ 144α2βξb+ 13824αβ3ξ5 + 13824β4ξ6

+1728β3ξ3b + 8α3b+ 4608α2β2ξ4 + 640α3βξ3,

v1 = −79872β3ξ7α2 − 13824β3ξ5bα− 832βξ3α3b− 4α3b2 − 22528β2ξ6α3

−92160β5ξ9 − 216β2b2αξ2 − 13824β4ξ6b− 432β3ξ3b2 − 3200βξ5α4

−138240β4ξ8α− 64bα4ξ2 − 24α2ξβb2 − 192α5ξ4 − 18β2b3 − 4992β2ξ4α2b,

v2 = −9216β4ξ7 − 144α2βξ2b− 64α4ξ3 − 576β3ξ4b− 384αβ2ξ3b+ 12αβb2

−10752β3ξ6α− 896α3ξ4β − 16α3ξb− 4608α2β2ξ5 + 72β2ξb2,

v3 = −8α3ξ2 − 576β3ξ5 − 72β2ξ2b − 2α2b− 24αβξb− 480αβ2ξ4 − 112α2βξ3.

It is not difficult to verify the validity of this solution. Obviously, this form of
the rogue wave qroguewave is more general than the known result [27] because of the
appearance of several parameters related to the background and the eigenvalue of
the Lax pair, and thus it also provides a possible way to tune experimentally the
rogue wave by choosing different values of them. Moreover, this controllability of
the rogue wave highly improves the possibility of observing it in laboratory. Set
ξ = 0 in (28), then a simple rogue wave

q[1]roguewave = eibt

√

b
2α (−2bα2x2 + 12b2αβxt− 18b3β2t2 − 4b2α3t2 + 8ibα3t+ 3α3)

4b2α3t2 + 2bα2x2 − 12b2αβxt + 18b3β2t2 + α3
,

(29)
is obtained, which is plotted in Fig.4. Furthermore, above rogue wave (29) reduces
to the known result given by reference [27]. Moreover, setting α = 1, β = 0, our
rogue wave (29) reduces to the simplest form

q[11]roguewave = eibt

√

b
2 (−2bx2 − 4b2t2 + 8ibt+ 3)

4b2t2 + 2bx2 + 1
, (30)

which is an equivalent formula of the rogue wave [18] of NLSE (1) as expected
and plotted in Fig. 5. As a final remark of this paper, we would like to stress
that the higher order rogue wave of the Hirota equation can be calculated from the
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determinant representation (22) of the DT, which will be done in a separate paper
recently.

Fig. 4. (Color online)Rogue wave (29) of the Hirota equation with
α = 1, β = 1, b = 0.08 (left) and its density plot (right).

Fig. 5. (Color online)Rogue wave (30) of NLSE (1) with b = 0.2 (left)
and its density plot (right).
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