aps CHCRUS

physics

This is the accepted manuscript made available via CHORUS. The article has been
published as:

Splash control of drop impacts with geometric targets
Gabriel Juarez, Thomai Gastopoulos, Yibin Zhang, Michael L. Siegel, and Paulo E. Arratia

Phys. Rev. E 85, 026319 — Published 28 February 2012
DOI: 10.1103/PhysRevE.85.026319


http://dx.doi.org/10.1103/PhysRevE.85.026319

Splash control of drop impacts with geometric targets

Gabriel Juarez,* Thomai Gastopoulos, Yibin Zhang, Michael L. Siegel, and Paulo E. Arratia
Department of Mechanical Engineering and Applied Mechanics,
University of Pennsylvania, Philadelphia, PA 19104, USA

Drop impacts on solid and liquid surfaces exhibit complex dynamics due to the competition of
inertial, viscous, and capillary forces. After impact, a liquid lamella develops and expands radially,
and under certain conditions, the outer rim breaks up into an irregular arrangement of filaments and
secondary droplets. We show experimentally that the lamella expansion and subsequent break up of
the outer rim can be controlled by length scales that are of comparable dimension to the impacting
drop diameter. Under identical impact parameters, ie. fluid properties and impact velocity, we
observe unique splashing dynamics by varying the target cross-sectional geometry. These behaviors
include: (i) geometrically-shaped lamellae and (ii) a transition in splashing stability, from regular to
irregular splashing. We propose that regular splashes are controlled by the azimuthal perturbations
imposed by the target cross-sectional geometry and that irregular splashes are governed by the

fastest-growing unstable Plateau-Rayleigh mode.

PACS numbers: 47.55.D-, 47.20.Ma, 47.55.nd

I. INTRODUCTION

The impact of liquid drops is a rich phenomenon that
continues to draw copious research attention since drop
impacts are ubiquitous to many processes in both nature
and industry [1-7]. Ink-jet printing, pesticide deposi-
tion, and fuel combustion are just a few examples where
the effective application of a fluid onto a surface relies
on the impact and subsequent splash of drops. Despite
the fascination with splashing patterns [8, 9], the domi-
nant mechanism that leads to the rim break up, filament
formation, and secondary droplets remains controversial
[10-12].

Recently, a better understanding of how to influence
splashing, ie. either enhance or suppress the occurrence
of a splash, has been obtained. Drop impacts under dif-
ferent carefully chosen experimental conditions, such as
on compliant surfaces [13], on moving surfaces [14], on
wetted patterned surfaces [15], in environments of vary-
ing pressure and gas composition [16], and with non-
Newtonian liquids [6] has provided techniques that can
precisely control splashing. The dominant mechanism,
however, still remains unclear. One reason for the ambi-
guity is that for all of the above cases, the length scale
of the target surface is much larger than the impacting
drop diameter. Under such conditions, the impact pro-
cess is defined by the competition of inertial, viscous, and
capillary forces [17, 18]. Unfortunately, it is difficult to
distinguish the role played by each force, and as a result,
it has been challenging to formulate reliable theoretical
and numerical methods.

In this manuscript we provide insight into the instabil-
ity governing the break up of liquid lamella sheets that
develop after drop impact. Liquid drops of diameter Dy
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fall onto a target post of equal diameter with impact-
ing speed Up. A finite amplitude azimuthal perturba-
tion is produced by varying the target cross-sectional ge-
ometry, which includes a cylinder and regular polygon
shapes. Figure 1 shows the side view of an example drop
impact with a cylindrical post with a time interval be-
tween frames in terms of the characteristic impact time,
7* = Dy /Uy. Despite the advantage of this simple setup,
only a limited number of investigations have focused on
drop impacts with obstacles of similar length scales as a
window to understanding the complexities of drop splash-
ing [19-25].

II. EXPERIMENTAL METHODS

Droplets are created as liquid is injected into a cap-
illary tube using a low-noise syringe pump. The liquid
slowly drips out of the tube to form reproducible pen-
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FIG. 1. Side view of drop impact on a cylindrical post
recorded at 40 000 fps. (a) A drop of diameter 2.85 mm
with impact velocity of 1.56 m s~' makes contact with the
target. The drop deforms and (b) and spreads radially to
form (c) a liquid lamella sheet. (d) As the sheet expands,
undulations along the rim emerge followed by the formation
of filaments and secondary smaller droplets. The time in-
terval between frames is equal to the characteristic impact
time, 7° &~ 1.8 ms. See Supplemental Material at [URL
inserted by publisher] for movie [26].
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FIG. 2. Top view of drop impact on geometric target posts. (Top row) Geometrically-shaped lamella 27" after impact with
a cylindrical, triangular (n = 3), square (n = 4), pentagon (n = 5), and octagon (n = 8) post. For n < 8, the resulting
lamella shapes are identical to the target geometry but are rotated by 7/n due to the azimuthal variation of viscous dissipation.
(Bottom row) Filament formation 47" after impact shows that the splashing dynamics depend on the target cross-sectional
geometry. The lamella rims for n = 3, 4, and 5 break up in a controlled manner and form the exact number of filaments as
the number of target vertices. The lamella rims for the cylinder post and n > 8 targets, however, break up in a similar fashion
independent of target shape. See Supplemental Material at [URL inserted by publisher] for movies [26].

dant drops with an average diameter Dy of 2.85 mm.
The liquid is composed of de-ionized water and glycerol.
Food coloring is added to the solution for image enhance-
ment purposes. The liquid has a viscosity of 10 cP and a
surface tension with ambient air of 35.3 x 1073 N m~—!.
Drops fall from a height of 15 cm before striking the tar-
get, hitting the surface with a measured impact velocity
Up of 1.56 m s~!. All experiments are performed at am-
bient pressure (101 kPa). The dynamics are described
by two dimensionless parameters; the Reynolds number
(Re), defined as pDoUy/ 1, and the Weber number (We),
defined as pDoUZ /7. Here, p is the fluid density, Uy is
the impact velocity, Dg is the drop diameter, p is the
dynamic viscosity, and ~y is the surface tension. For the
given set of experimental parameters, this results in a Re
of 550, ie. inertial forces dominate viscous forces, and a
We of 250, ie. inertial forces dominate surface forces. The
capillary number, defined as uUp/7, is 0.45 meaning that
surface forces dominate over viscous forces. Top and side
view images are recorded using high-speed photography
ranging from 30 000 to 40 000 fps.

The target posts are machined out of polyoxymethy-
lene with no surface treatments. The target cross-
sectional geometry is varied and includes a cylinder and
regular polygon shapes that range from a triangle (n = 3)
to a decagon (n = 10), where n is the number of ver-
tices. The diameter of the cylindrical post is 2.85 mm,
equal to the impacting drop diameter, and the impact-
ing cross-sectional surface area is kept constant for all
shapes (cylinder and polygons) at 6.38 mm?2. This geo-
metric constraint allows the polygonal circumradius, the
radius of a circle that passes through all of the polygon

vertices, to be expressed in terms of the initial drop di-
ameter as a function of the number of vertices given by

R(n) = Do \ 2nsin7(r27r/n) ) M)

More importantly, the relevant azimuthal length scale,
which is the edge length between vertices, is given by

s(n) = 2R(n)sin(w/n) . (2)

From equation (2), we note that the edge length is largest
for n = 3 and decreases as the number of vertices in-
crease. This effectively decreases the amplitude of the
azimuthal perturbation.

III. RESULTS
A. Effect of target cross-section on drop impacts

Figure 2 shows snapshots from the top view of a drop
impacting target posts of different cross-sectional ge-
ometries. Under similar impacting conditions, ie. con-
stant Reynolds and Weber numbers, we observe that the
spreading and retraction of the liquid lamella is signif-
icantly affected by the target cross-sectional geometry.
For example, both regular (3 < n < 8) and irregular
(cylinder and n > 8) splashing is observed for impacts on
polygonal posts. We refer to regular splashing as when-
ever the number of filaments is equal to the number of
target vertices and their location is rotated azimuthally
by an angle of 7/n with respect to the target orientation.



Irregular splashing occurs when the number of filaments
that form, and their location, are independent of the tar-
get geometry, or number of vertices.

For the cylindrical case, the drop deforms and spreads
radially upon impact (Figs. 1 and 2). A thick rim forms
at the edge of the lamella sheet due to the accumulation
of ejected fluid. As the rim decelerates due to surface
tension, it becomes susceptible to infinitesimal perturba-
tions that lead to the break up of the lamella sheet into
filaments and secondary droplets. As the cross-sectional
geometry of the post is changed, the dynamics of the re-
sulting lamella are significantly altered. Figure 2 (top
row) shows example snapshots of geometric lamella for
n = 3, 4, and 5 at a time 27* after impact, where 7*
is the characteristic impact time. Strikingly, the result-
ing splash resembles the shape of the polygonal target
with an azimuthal rotation of approximately 7/n with
respect to the target orientation, where n is the number
of vertices. For example, a drop that impacts a triangular
post results in a triangular-like splash that is shifted by
/3 with respect to the post (Fig. 2, n = 3). For n > 8,
the splashing dynamics are similar to the cylindrical post
case.

B. Dynamics of geometrically-shaped lamella

The dynamics of lamella sheets are characterized by
measuring the normalized splash diameter 3, which is
the ratio of the instantaneous splash diameter D(7) and
the initial drop diameter Dy, as a function of normalized
time 7 = t/7* (Fig. 3a). Here, 7 = 0 is taken to be the
instant that the drop makes contact with the surface of
the target. The first few instants, as the lamella spreads
along the target surface from the point of impact, are not
able to be resolved and represent the initial flat part of
B(7). Each plot of B(7) represents an average of at least
five impact events. The maximum normalized splash di-
ameter f3, for all target cross-sections is 3.744+0.33. The
average value of the maximum normalized splash diame-
ter agrees reasonably well with the scaling laws of 3, ~
Re!/® and with £, ~ We'/* [27]. This means that in-
ertia, viscous, and surface forces play important roles in
the splashing dynamics despite the minimal interaction
between the drop and the target surface. This is in ac-
cordance with an impact number P = We/Re/5 close to
unity [27]. Values of P < 1 describe impacts for inviscid
fluids and P > 1 describe impacts of viscous fluids. For
this study, the impact number is P =~ 1.6 and therefore
follows closely with both scaling laws.

The liquid lamella expansion rate, computed from the
splash diameter df/dr, shows two exponentially decay-
ing regimes (Fig. 3b). At early times (0.3 < 7 < 0.7),
the rim expansion follows a fast decay due to the iner-
tia dominated deformation of the drop as it comes into
contact with the target. The initial downward momen-
tum is transferred horizontally, producing radial expan-
sion parallel to the surface of the target. At later times

FIG. 3. (Color online) (a) The lamella splash diameter nor-
malized by the initial drop diameter plotted as a function of
normalized time 7. The average maximum splash diameter
for all targets is 3.74 which agrees well with both scaling laws
of By ~ Re'/? and Bm ~ Wel/4. (b) The velocity of the
expanding splash diameter exhibits two exponentially decay-
ing regimes. At early times (0.3 < 7 < 0.7), a fast decay is
due to the inertia dominated deformation of the drop as it
contacts the target. At later times (0.7 < 7 < 3), a second
slower decay is due to viscous dissipation and surface forces
impeding lamella expansion. (Inset) The average strain rate
on the expanding lamella sheet, € = ,8 /B, shows two exponen-
tial regimes.

(0.7 < 7 < 3), the rim expansion is described by a second
slower decay that than first regime. Viscous dissipation
is present due to shear flow at the target surface as well
as surface forces due to the increase in surface area, both
working to impede the lamella expansion. For 7 < 0.3,
the rapid increase in the expansion rate is due an artifact
as the initial transient of spreading along the target sur-
face is not captured until the lamellae expand beyond the
target circumradius. The corresponding lamella strain
rate €, computed here as the ratio of the expansion rate
dB/dr and the normalized splash diameter (1), shows
two exponential regimes in accordance with biaxial ex-
tensional flow. This would suggest that the splashing
dynamics could be very different for non-Newtonian flu-
ids where the extensional viscosity can vary by orders of
magnitude under strong extensional flows [6, 20].

As noted earlier, the resulting splash resembles the tar-
get polygonal shape but with an azimuthal rotation with
respect to the target orientation (eg. Fig. 2, n = 3). The



rotation of the lamella by 7/n relative to the target can
result from two possible mechanisms: (i) the rapid de-
crease in kinetic energy as the drop deforms after impact
and (ii) the azimuthal dependence of viscous dissipation
in the boundary layer that is formed in the vicinity of
the target surface. Let us consider a geometric cross-
sectional target that is described by the smallest and the
largest radial distance from the origin, the apogee r and
the circumradius R, respectively. For a liquid drop that
expands radially in contact with the surface from the ori-
gin, the time it takes for the liquid lamella to reach the
apogee is less than the time it takes to reach the cir-
cumradius. The fluid at the apogee experiences less of
a decrease in kinetic energy and less viscous dissipation
than the fluid at the circumradius. Hence, the fluid ve-
locity is larger at the apogee than at the circumradius
resulting in a geometrical lamella that are shifted by 7/n
with respect to the target vertices, for n < 8.

C. Rim instability: regular and irregular splashing

Once the maximum splash diameter is reached, the
liquid lamella retracts inward. Finger formation and sec-
ondary droplets result as the outer rim breaks up in
order to minimize the increase in surface energy. We
observe that for polygonal targets, the ability to cre-
ate geometric lamellae that undergo controlled break up
into n filaments depends on the target cross-sectional ge-
ometry and holds for targets with n < 8 only (Fig. 2,
bottom row). Specifically, there is a transition in the
splashing stability from regular (3 < n < 8) to irregu-
lar (n > 8) break up of the liquid lamellae. We propose
that there is a competition between the finite amplitude
perturbation imposed from the target cross-sectional ge-
ometry and the most unstable mode determined by the
dominant instability, which in this case is similar to the
Plateau-Rayleigh (PR) instability [12, 19, 28]. Other
possible mechanisms that have been proposed include
the Richtmyer-Meshkov [29] and the Rayleigh-Taylor
[9, 10, 25, 30] instabilities.

In order to gain insight into the mechanism responsible
for the break up and retraction of the lamella, an analysis
of the corrugations around the expanding rim was per-
formed. The top row of figure 4 shows the evolution of
the azimuthal profile of lamella sheets after drop impact
on a cylinder (left), hexagon (center), and octagon (right)
target over the time interval of 7* to 37*. At early times
(7 = 7*), the amplitude of rim undulations is similar for
all three cases. At later times however (7% < 7 < 37%),
it is evident that the radial profile for the hexagon case
is different than the profiles for the cylinder and octagon
cases. Typical behavior of lamella sheets for impacts on
targets with 3 < m < 8 is that there are n equidistant
peaks apparent over the entire splash process, similar to
the six equidistant peaks for the hexagon case. For other
targets (n > 8) the peaks are unevenly distributed and
the number decreases as filaments merge during the sheet

expansion, similar to the profiles for the cylinder and oc-
tagon cases (Fig. 4, top row).

For all cases (3 < n < 10 and cylinder), the amplitude
of rim undulations increase with time. The fluctuations
of the corrugations, which are quantified by the ratio of
the standard deviation o about the average lamella sheet
radius (R), grow exponentially with time (Fig. 4, bot-
tom left). The rates of growth, evident by the slope of
the straight portion of the curves for 7 > 2, are similar
for all cases independent of the target cross-sectional ge-
ometry. This is not surprising because the mechanism
behind every lamellae break up, whether it undergoes
regular or irregular splashing, is driven by surface ten-
sion. The exponential growth rate, however, is indicative
of a PR instability. The dispersion relation associated
with the most unstable mode of the PR instability is
given by wpr = 0.34,/7/pa3, where ~ is the surface ten-
sion, p is the fluid density, and a is the radius of the fluid
jet [31]. For the current experimental parameters, the
time scale of the PR instability would be approximately
2.7 ms. The average characteristic time scale of growth
in fluctuations of expanding lamellae, extracted by fit-
ting an exponential function to the curve for 7 > 2, is
measured to be 2.1 £0.4 ms, in good agreement with the
PR time scale.

For further comparison, we compute the periodograms
of the radial profiles for the three cases (cylinder, n = 6,
and n = 8) at 27* (Fig. 4, bottom middle). The pe-
riodogram of the radial profile for the hexagon case is
a single narrow peak centered about 7/3. It is typical
for the periodograms to contain a single peak centered
about 7/n for targets with 3 < n < 8 vertices. The pe-
riodograms for other targets (cylinder and n > 8), how-
ever, are broad and contain multiple peaks, represented
in the periodograms for the cylinder and octagon cases.
This supports the idea that the perturbation imposed
from the target cross-sectional geometry for 3 < n < 8
overwhelms the most unstable mode and is therefore a
determining factor in the evolution of the lamella. The
cylinder and octagon cases, however, contain a distribu-
tion of values as the imposed target perturbation is small
compared to the most unstable mode, making the rims
unstable and susceptible to infinitesimal perturbations.

It seems reasonable to conclude that a regular splash
will occur when the azimuthal perturbation imposed by
the target cross-sectional geometry is larger than the
most unstable mode of the expanding toroidal jet, ex-
perimentally equivalent to the thick outer rim. The thin
liquid lamella sheet that connects the outer rim to the
target post is neglected since we believe that it does not
contribute to the rim instability. This simplification is
supported by our observations that, for moderate Re,
there are no ripples in the lamella sheet (Fig. 2) as seen
for high Re impacts of O(10%) [19]. Furthermore, the
lamellae are seen to break from the outer most points of
the rim rather than from within the sheet connecting the
target to the rim.

Utilizing the observations that the fluctuations in the
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FIG. 4. (Color online) (Top row) Evolution of the radial profile for expanding lamella sheets for the time interval 7° < 7 < 37~
after drop impact on a cylinder, hexagon (n = 6), and octagon (n = 8) target. Six equidistant peaks are evident over the entire
interval for the hexagon case. The peaks for the cylinder and octagon case are not evenly spaced and the number decreases
due to merging. Scale bar represents 1.75 mm. (Bottom row) Left: The deviations in the undulation amplitude o normalized
by the average lamella radius (R) increases exponentially with time. Middle: The periodograms of the radial profiles of the
lamella sheets for the three cases at 27" after impact. There is a single narrow peak at 7/3 for the n = 6 case and a broad
distribution of values with multiple peaks for the cylinder and n = 8 cases. Right: A comparison of the target perturbation
amplitude ¢,, and the most unstable azimuthal mode ¢max of a toroid jet determined by the PR instability. Regular splashing
occurs when ¢n/dmax > 1 for targets with 3 < n < 8 and irregular splashing occurs when ¢ /¢max < 1 for targets with n > 8.

measured value for € of 0.65 [19, 21], equation (4) predicts
the minor radius a to be 0.27 mm. This value agrees
well with observations of the rim thickness for geometric
lamella, measured to be a = 0.3 mm.

Analogous to the most unstable wavelength of a cylin-
drical jet [32], the most unstable azimuthal mode for a
toroid jet determined by the PR instability [33, 34] is

rim corrugations increase exponentially with a charac-
teristic time similar to that associated with the PR dis-
persion relation wpgr, we approximate the most unstable
mode of a toroidal jet as determined by the PR instabil-
ity and compare it to the azimuthal perturbation imposed
due to the target geometry. The rim volume can be ex-
pressed as a fraction of the initial drop volume V,. = eV},

with 0 < € < 1. Denoting a as the minor radius of the  given by

toroid, R,, as the major radius of the toroid, and R, as

the initial radius of the impacting drop, the rim volume Amax 9.02 @ 2-

is given by Gmax = i 9.02 3 (5)

4
2124’ R,, = §7TERS .

(3)

At maximum expansion, the torus minor radius can be
written in terms of the maximum splash radius R, and
the normalized splash radius (3, and is given by

2e
=Ry —= -
“ \/ 3753,

Using the scaling relations for f3,, [27] and an average

The amplitude of the azimuthal perturbation imposed for
regular polygon targets is taken to be

bn =1/ . (6)
The ratio of the target perturbation ¢, and the most un-
stable azimuthal mode of a toroid jet ¢max is plotted as

a function of target vertices n (Figure 4, bottom right).
Interestingly, we see that for targets with 3 < n < 8

(4)



vertices, the azimuthal perturbation imposed by the tar-
get geometry is larger than the most unstable azimuthal
PR mode, or that ¢,/¢dmax > 1. These conditions will
produce a regular splash, in agreement with observations
(Fig. 2). For targets with n > 8, however, the azimuthal
perturbation is smaller than the most unstable PR mode,
On/dmax < 1, suggesting that the lamella rim is suscepti-
ble to infinitesimal perturbations and will produce an ir-
regular splash, independent of target geometry. We note
that R, does not explicitly appear in equation (5) as we
assume that the maximum radius for the toroid jet is sim-
ilar to circumradius of a geometrically-shaped lamella, a
reasonable assumption from Fig. 3(a). Finally, to show
that these results are independent of scaling arguments,
both B, ~ We'/* and f3,, ~ Re'/® are used in place
of the normalized splash radius in equation (5), and the
upper and lower bounds are shown with error bars.

IV. CONCLUSIONS

We have shown that the expansion and subsequent
break up of the outer rim of liquid lamellae can be
controlled by length scales on the order of the impact-
ing drop diameter. Under identical impact conditions
of constant Reynolds and Weber numbers, we observe
unique splashing dynamics by simply varying the target
cross-sectional geometry to include a cylinder and regu-
lar polygon shapes. For polygon targets with 3 <n < 8
vertices, the expanding lamellae resemble the geometric
cross-section of the target, but are rotated by an angle
of m/n with respect to the target orientation. We find
that the break up of the outer rim and liquid lamellae
are well controlled and reproducible. The number of fila-
ments that form during splashing is equal to the number
of vertices n of the target. For other targets (cylinder and
n > 8), the expansion and break up of the outer rim and
liquid lamellae are independent of the target geometry.

We find that there are two distinct splashing regimes
depending on the number of target vertices, regular

splashing (3 < n < 8) and irregular splashing (cylinder
and n > 8). We propose that the transition in splash-
ing stability is a result of the competition between the
amplitude of the azimuthal perturbation imposed by the
target cross-sectional geometry and the most unstable
azimuthal mode, determined by the Plateau-Rayleigh in-
stability, of the expanding outer rim. For 3 < n < 8
polygon targets, regular splashing occurs since the im-
posed target perturbation is large enough to overwhelm
the most unstable mode and effectively control the dy-
namics of the splash. For the cylinder and n > 8 targets,
irregular splashing occurs since the imposed target per-
turbation is smaller than the most unstable mode and the
resulting splash dynamics are independent of the target
geometry. The rim dynamics are instead governed by the
most unstable azimuthal Plateau-Rayleigh mode.

In summary, we show that drop splashing can be po-
tentially controlled by the target geometric features. The
experiments presented here provide a new method that
systematically probes the effect of azimuthal perturba-
tions to expanding lamellae after drop impact. While
our experimental observations indicate that the splashing
phenomenon is dominated by the Plateau-Rayleigh insta-
bility, questions still remain. One important parameter
to investigate further is the dependence of the ratio of the
maximum splash radius to the minor radius of the outer
rim, expressed in equation (4), on varying impact condi-
tions, ie. changing both the Re and the We. This would
provide a better understanding on the limiting case for
irregular splashing of liquid lamellae.
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