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Improving the accuracy of forecast models for physical systems such as the atmosphere is a crucial
ongoing effort. The primary focus of recent research on these highly nonlinear systems has been
errors in state estimation, but as that error has been successfully diminished, the role of model error
in forecast uncertainty has duly increased. The present study is an investigation of an empirical
model correction procedure involving the comparison of short forecasts with a reference “truth”
system during a training period, in order to calculate systematic (1) state-independent model bias
and (2) state-dependent error patterns. An estimate of the likelihood of the latter error component
is computed from the current state at every timestep of model integration. The effectiveness of
this technique is explored in a realistic scenario, in which the model is structurally different (in
dynamics, dimension, and parameterization) from the target system. Results suggest that the
correction procedure is more effective for reducing error and prolonging forecast usefulness than
parameter tuning. However, the cost of this increase in average forecast accuracy is the creation of
substantial qualitative differences between the dynamics of the corrected model and the true system.
A method to mitigate dynamical ramifications and further increase forecast accuracy is presented.

I. INTRODUCTION

Advances in computational power and increasingly ac-
curate techniques for estimating the current state of the
Earth’s atmosphere have significantly improved numeri-
cal weather prediction (NWP) [1–3]. As state estimation
error is reduced due to improved methods of data as-
similation (DA), error in the model tendency plays an
increasing role in the uncertainty of predictions at every
temporal and physical scale [4–6].

In 1978, Leith introduced a statistical technique to cor-
rect model tendency error, in which short model fore-
casts are compared to a time series of reference “truth”
states to estimate both state-independent model bias,
and state-dependent error components which are ap-
proximated by a least-squares linear function of the
model state [7]. More recently, empirical correction
has been employed with success in atmospheric models
with relatively few degrees of freedom (e.g. N = O(102)
in [8]), and low-dimensional modifications of the tech-
nique involving, for example, singular value decompo-
sition (SVD) of the state-dependent correction operator
(the least-squares linear function proposed by Leith) have
proven successful in models with as many has O(105) de-
grees of freedom [9]. In this study, we apply the orig-
inal technique developed by Leith to a simple three-
dimensional Lorenz-like model [10], where in addition to
testing the effectiveness of empirical correction, we aim
to understand the dynamical ramifications of a statistical
approach to the correction of model tendency error.

The model tendency M(x) is defined as the change in
state variables over one timestep of numerical integra-
tion, which we denote as a time derivative:

M(x) ≡ ẋM (1)

where x is the atmospheric state-vector, typically with
O(1010) degrees of freedom for NWP. Note that xM rep-

resents the model state, whereas xT will represent the
true system state, in terms of the model variables.

Given the state x of a physical system, M consists of
all the known physics, forcings, and parameterizations of
sub grid-scale processes. To make a one-timestep model
forecast, we approximate the true change in state vari-
ables over that time by the model tendency, M(x) ≈ ẋT ,
and the error δM in that approximation is called the
tendency error:

δM = ẋT −M(x) (2)

Even with perfect estimates of the current state of the
atmosphere, the model tendency error would quickly sep-
arate forecasts from the truth, due to the atmosphere’s
chaotic dynamics [11]. As a result, techniques for reduc-
ing the model tendency error represent a current and ac-
tive research area, and those that are applicable indepen-
dent of the specific model are of special interest. Clearly,
one would like to improve the physics represented by M
from first principles. In what follows, we assume this im-
provement has met the limit of diminishing returns, and
move towards a statistical approach.

The general strategy of empirical correction is to com-
pare short forecasts generated by a model to observations
of the system being modeled over some training period.
If the state-space of the system is well represented by the
training period, and the model is a reasonable approx-
imation of the true system, the forecast error statistics
can be used to create an empirical correction that pushes
the model closer to the truth at each timestep of numer-
ical integration. Adjusting the model every timestep re-
duces the nonlinear growth of tendency error, providing
more effective error reduction than a posteriori statisti-
cal correction [12]. This strategy is similar to nudging or
Newtonian relaxation in a DA context, where one is as-
similating observations, except that here we are nudging
with predicted, rather than observed, forecast error.
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The present study is an investigation of a three-step
empirical correction procedure inspired by the work of
Leith [7], DelSole and Hou [8], and more recently Dan-
forth et. al. [9, 13]. A preliminary experiment testing its
effectiveness in synchronizing Lorenz systems [10] with
varied parameter-values is detailed in Appendix A. Here,
we apply the correction to an alternative model derived
by Ehrhard and Müller [14] tuned to approximate the
evolution of a toroidal thermosyphon, an experimental
analogue to the original Lorenz system. The true climate
is represented by a long-time, high-dimensional compu-
tational fluid dynamics (CFD) simulation of the ther-
mosyphon. An analysis, which is an approximation of
the true system state in terms of model variables, is then
created by three-dimensional variational (3DVar) DA and
used for training and verification of the empirical correc-
tion. This process mimics the application of empirical
correction in an operational NWP setting. We also verify
the corrected model by direct comparison with observa-
tions of the truth.

Results suggest that the correction procedure is effec-
tive for reducing error. However, there is an associated
cost of this short-term error reduction, which is evidenced
by substantial qualitative differences between the dynam-
ics of the corrected model and the true system, differences
that were not present in the uncorrected model. Intro-
duction of system-specific knowledge into the correction
procedure is shown to mitigate some of that cost, and
further improve error statistics.

The paper is structured as follows. In Sec. II we define
the procedure for a general model M , and in Sec. III we
present the thermosyphon model correction. Finally, we
discuss the results and conclude the paper in Sec. IV.

II. EMPIRICAL CORRECTION

The correction procedure employed in this experi-
ment consists of three steps: (A) training, (B) state-
independent correction and (C) state-dependent correc-
tion. The state-independent correction can be thought of
as aligning the time-average of the model state with that
of the true state. Likewise, the state-dependent correc-
tion can be considered an alignment of the model vari-
ance with that of the truth. To determine the correction
terms, we compare short model forecasts to observations
of the true system over a training period in a process
called direct insertion, pictured in Fig. 1.

A. Training

In general, comparing model forecasts to a true phys-
ical system requires estimates of the true system state
in terms of the model state-variables. Consider a vec-
tor time-series xT (t) of such estimates, which we will call
the reference truth. The amount of time h, measured in

model timesteps, between estimates is called the analysis
window ; we assume it to be constant.

The process of direct insertion begins with the genera-
tion of a time-series xM (t) of duration-h model forecasts,
where each forecast in the time-series is initialized from
the previous state in the reference truth. The first vector
in the series, for example, will be xM (t0 +h), which is the
model state resulting from an h-timestep forecast started
with initial condition xT (t0). Subtracting each of the
model forecast states xM (t) from the corresponding ref-
erence true state xT (t) produces a third time-series ∆x(t)
which represents the forecast errors after h timesteps.
These errors result from differences between the model
rate of change and the true rate of change, and they are
commonly referred to as analysis corrections (or incre-
ments). See Fig. 1 for a schematic of the procedure.

xT(t0) xT(t0+h) xT(t0+2h) xT(t0+3h)

xM(t0+h) xM(t0+2h) xM(t0+3h)

∆x(t0+2h) ∆x(t0+3h)

-
=

model
forecast

analysis
correction ∆x(t0+h)

Direct Insertion
analysis window

 
FIG. 1. The direct insertion procedure for comparing short
model forecasts to the truth to obtain a time series of analysis
corrections. xT represents a time series of the reference truth,
and the analysis window represents the number of timesteps
between estimations of the true system state. xM represents
a time series of forecasts with duration equal to the analysis
window, each of which is initialized from the previous true
state. The time-average of the analysis corrections 〈∆x〉 di-
vided by the number of timesteps in the analysis window h
approximates the average (state-independent) model bias b.

Finally, we separate each of the time series into anoma-
lous and time-average components:

xT
′
(t) = xT (t)− 〈xT 〉

xM
′
(t) = xM (t)− 〈xM 〉 (3)

∆x′(t) = ∆x(t)− 〈∆x〉

where the expectation operator 〈·〉 denotes averaging over
the training period, and the primes denote anomalies,
which are differences from the mean. The time-average
components will be used for state-independent correction
as described in Sec. II B and the anomaly time-series will
be used for state-dependent correction as detailed in Sec.
II C.



3

B. State-independent correction

We turn our attention first to a state-independent cor-
rection of the form

ẋT ≈ M∗(x) ≡ M(x) + b (4)

where the constant vector b is the average model ten-
dency error (bias) to be determined.

Recall that our goal here is to empirically align the
time-averages of the state-variables in the model to those
of the true system. We call the time-averaged true system
state the climatology, and we approximate it by 〈xT 〉,
the average of the reference true state over the entire
training period. The average of the analysis corrections
〈∆x〉 over the training period provides an estimate for
the systematic, state-independent error generated by the
model during the analysis window, as explained in Fig.
1. Dividing by the number of timesteps in the analysis
window, then, we approximate the model bias by b =
〈∆x〉/h, and the bias-corrected model tendency is thus
given by

M∗(x) ≡ M(x) +
〈∆x〉
h

(5)

Note that at this point we are approximating the model
tendency error δM by the model bias b alone. We also
wish to estimate any component of error that may depend
on the system state, by approximating δM ≈ b + Lx′,
where L is a matrix operator to be described in the next
section.

C. State-dependent correction

To generate a linear state-dependent correction oper-
ator L, we follow Leith [7] and DelSole and Hou [8], by
first recomputing the forecast and correction time series
in Fig. 1 using the state-independent corrected model,
M∗, and then decomposing into mean and anomalous
components. We seek an improved model of the form

ẋT ≈ M+(x) ≡ M∗(x) + Lx′ (6)

where M+ includes both stages of correction. Letting
g = δM+ = ẋT − [M∗(x) + Lx′] be the tendency error
of the improved model, we minimize the expected square
tendency error 〈gtrg〉, (where gtr is the transpose of g),
with respect to L. The minimization results in the for-
mula

L = 〈∆x′xT
′tr〉〈xT

′
xT
′tr〉−1 ≡ C∆xxTC−1

xTxT (7)

as explained by Danforth et. al. [9]. C∆xxT is the aver-
age over the training sample of cross covariance matrices
obtained by taking the outer product [∆x′(t)] · [xT ′(t)]tr
for each time t. CxTxT is the average true-state covari-
ance matrix, and L is known as Leith’s state-dependent
correction operator.

When L operates on the current anomalous state x′,
we can think of it as doing two things: (1) C−1

xTxT op-
erates on x′, effectively relating the current state to the
reference truth in the dependent sample, i.e. giving the
best representation of the current state in terms of past
states; and then (2) C∆xxT operates on the result, deter-
mining what correction should be made. This allows the
model correction to adjust to different regions of state-
space, and explains why the state-dependent correction
can be thought of as attempting to align the model and
true-state variances.

In the next section, we describe the application of this
three-stage procedure to couple a low dimensional model
to a high dimensional toy climate simulation. We also
note here that the term corrected will imply the applica-
tion of both state-independent and state-dependent cor-
rection, unless explicitly stated otherwise.

III. TOY CLIMATE MODEL

We now investigate the effectiveness of the correc-
tion procedure in a realistic situation, where the forecast
model is structurally different (in dynamics, dimension,
parameterization, etc...) from the true system. Consider
a fluid-filled, vertically-oriented natural convection loop,
or thermosyphon, with circular geometry. The constant
temperature imposed on the wall of the lower half of the
loop is greater than the constant temperature imposed
on the wall of the upper half, resulting in a tempera-
ture inversion. For large enough temperature differences
convection dominates, and the flow undergoes chaotic re-
versals of direction referred to as flow regime changes,
while remaining laminar [14, 15]. These dynamics pro-
duce forecasting difficulties similar to those encountered
in weather and climate prediction, and thus the ther-
mosyphon provides a useful platform on which to test
potential improvements to forecasting methods.

A. Experimental design

The true system was represented by numerical simula-
tion using the 2-D laminar Navier-Stokes equations along
with the energy equation, and a finite-volume-based flow
modeling software package (FLUENT 6.3) was used to
perform the numerical integration, see [15] for details.
Almost 90 days of fluid behavior was generated, in which
O(104) flow reversals occurred. We also note that for the
Rayleigh number used in this experiment, Ra = 1.5×105,
the thermosyphon has two unstable convective equilib-
rium solutions corresponding to steady clockwise and
steady counter-clockwise flow [15, 16].

The low-dimensional model used to make forecasts of
the CFD simulation is the Ehrhard-Müller (EM) system:
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ẋ1 = α(x2 − x1)
ẋ2 = βx1 − x2(1 +KH(|x1|))− x1x3

ẋ3 = x1x2 − x3(1 +KH(|x1|))
(8)

where x1 is proportional to the mean fluid velocity, x2

is proportional to the horizontal temperature difference
in the loop, and x3 is proportional to the deviation of
the vertical temperature profile from that of conduc-
tion. This system was derived from physical principles
to model a natural convection loop [14, 15], and for this
study the parameters α = 7, β = 33,K = 0.07 were
tuned empirically to best match the flow reversal behav-
ior of the CFD simulated thermosyphon.

The primary difference between EM and Lorenz sys-
tems is H, a function that determines the velocity de-
pendence of the heat transfer between the fluid and the
wall. This characteristic of the flow is ignored by the
Lorenz equations (i.e. K = 0). H varies as the third root
of the magnitude of the mean fluid velocity for |x1| > 1,
and as a fourth degree polynomial in |x1| for |x1| ≤ 1 to
remain differentiable; the reader may see [15] for more
detail. We note that when K = 0 in the EM equations
(8), they are identical to the Lorenz system (A1) shown
in the appendix, with b = 1. Physically, the unitary ge-
ometric factor (i.e. b = 1) in EM results from the forced
single circular convection cell in a thermosyphon, as op-
posed to the unconstrained flow producing multiple cells
between two plates.

B. Training

Using a background forecast created with the EM
model, and observations of the CFD mean fluid velocity
ū with Gaussian noise added to simulate error, 3DVar
data assimilation was performed to generate an analysis,
or best guess of the true state of the system in terms of
the variables of the forecast model [15]. Approximately
3 days of 3DVar analysis, corresponding to 432 time-
units in the EM forecast model, were used as the training
period reference truth xT (t). The EM model was inte-
grated numerically with fourth-order Runge-Kutta and
a timestep of κ = 0.01 time-units. An analysis window
of h = 5 timesteps, corresponding to about 30 seconds
of simulated flow, was used to match the frequency of
observation in the data assimilation scheme. Thus, 8640
short forecasts were used to compute the model bias and
Leith operator for the model, as outlined in Sec. II.

C. Testing

Three forecast models were compared by verification
against both the 3DVar analysis and direct observation
of the mass flow-rate ū in the CFD simulated ther-
mosyphon: (1) the uncorrected EM model with param-
eters tuned to best represent observations of the CFD

simulated mass flow rate; (2) the tuned model with cor-
rection applied; and (3) an EM model whose parameters
differ from the tuned model by 10%, with correction ap-
plied. The purpose of the third test-model is to gauge
the relative capabilities of empirical correction and pa-
rameter tuning for error reduction and prolonging the
usefulness of forecasts.

A set of 1000 trial forecasts were performed, start-
ing from randomly chosen points in the analysis after
(and independent of) the training period. For each fore-
cast, anomaly correlation (AC) time-series were com-
puted with respect to the analysis and averaged over all
trials. Anomaly correlation is a metric frequently used
in weather and climate modeling to determine the length
of time for which a model forecast is useful. The AC is
given by

AC =
xM

′ · xT ′

||xM ′ ||2||xT ′ ||2
(9)

where xM
′

and xT
′

are the anomalous model state and
anomalous true state, respectively, at a particular time.
AC is essentially the dot product of the anomalous model
state with the anomalous true state, normalized such that
AC = 1 for a perfect model. A forecast is typically con-
sidered useful for as long as its AC remains above 0.6 [6].
See the top panel of Fig. 2 for plots of average AC for
each of the three tested models.

We also verify the model forecasts against observed
scalar mass flow-rate ū, for which time-series of rela-
tive error were averaged over the 1000 trials, pictured
in the bottom panel of Fig. 2. Two details are impor-
tant in the computation of the relative error. First, to
compare model output to observations, it is necessary to
convert the model state-variables to “observation-space”
variables. In other words, an observation operator de-
termined by data assimilation was used to convert the
model state-vector (x1, x2, x3)tr to an observation-space
value x̃1, which is the predicted mass flow-rate of the sys-
tem. Second, the error is taken relative to the saturation
point, which we define as the average absolute difference
between the mass flow-rates of the system at randomly
chosen points in time. Thus, an average relative error
near 1 means that the forecast model is no better than a
random guess.

The results presented in Fig. 2 indicate that corrected
models, tuned or not, produce smaller short-term fore-
cast error on average than the uncorrected, optimally
tuned model. Corrected model forecasts are thus typi-
cally useful for longer. Though this is an important ben-
efit, average short-term error statistics may conceal con-
siderable qualitative differences between model dynamics
and those underlying the true system. Stability of equi-
librium solutions, and changes of flow regime character-
ized by aperiodic switching between otherwise confined
regions of state-space are examples of qualitative char-
acteristics for which it may be crucial that the model
dynamics match those of the truth.
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FIG. 2. (Color online) Plots showing verification of the
corrected model with respect to (top) 3DVar analysis and
(bottom) direct observation of the CFD simulated mass flow-
rate ū. (top) Empirical correction produces forecasts that are
useful approximately 25% longer than forecasts of the uncor-
rected model. Also, correction of an untuned model (10%
difference from optimal value in every parameter) produces
forecasts that are useful far longer than the uncorrected but
optimally tuned model. (bottom) Corrected models, tuned or
not, show reduced error when verified against direct observa-
tions of the mean fluid velocity in the simulation as well.

To measure the accuracy of models with regard to
matching the flow reversal behavior of the true system,
forecasts were generated with both the corrected and
uncorrected EM models for 5000 initial states through-
out the attractor, from the testing portion of the 90-
day 3DVar analysis. The time of the first predicted flow
reversal was recorded for each one. We investigate the
difference between the predicted times and the actual
times (from the analysis) of first flow reversal, taken
tmodel − tactual, so that positive values indicate late pre-
dictions while negative values indicate early predictions.
See Fig. 3 for plots of the results.

 

uncorrected model

 

 

corrected

 

−40 −20 0 20 40

FIG. 3. (Color online) Difference (in minutes) between pre-
dicted and actual time of first flow reversal, plotted by ini-
tial state, for the uncorrected (top) and corrected (bottom)
models. The difference was taken tmodel− tactual, so that pos-
itive values (towards red, e.g. left lobe, and very center of
right lobe, bottom panel) indicate late predictions while neg-
ative values (towards blue, e.g. both lobes, top panel, and
ring around center of right lobe, bottom panel) indicate early
predictions. First, note that for initial states near the edge
of the attractor, in either lobe, each model performs well in
predicting the coming flow reversal. For these initial states
the change of flow regimes is imminent, and thus easily pre-
dicted. Next, observe that when the uncorrected model errs,
it almost always makes an early prediction. Model trajecto-
ries close to the unstable convecting equilibria oscillate with
larger amplitude than in the true system. One might expect
that empirical correction would counteract the effect, and in
fact that is apparent (bottom). However, rather than improv-
ing flow reversal prediction, the results here indicate extreme
overcorrection. The dark red dots are not 40-minute late pre-
dictions; the limit of the color axis was chosen to better il-
lustrate the spread in the remaining data. In actuality, the
corrected model predicts that a flow reversal will never hap-
pen for those initial states. Finally, observe that the empirical
correction has manufactured a lobe asymmetry, characterized
by the much smaller region of dark red in the right lobe.
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Three unforeseen dynamical ramifications of empirical
correction for this system that are apparent in Fig. 3 can
be summarized as follows:

(1) Stabilization of convective equilibrium solutions

(2) Elimination of flow reversal behavior for states in
a neighborhood of either convective equilibrium

(3) Spurious dynamical asymmetry between lobes

The origins of these effects are derived mathematically
in Appendix B, and a single model trajectory demon-
strating equilibrium stabilization appears in Fig. 4. We
emphasize that the qualitative behavior of the corrected
model is substantively different from that of the uncor-
rected model, which matches the behavior of the CFD
simulated truth. This is true despite the fact that the
corrected model shows improved average error statistics.
However, it is possible to adjust the correction procedure
to mitigate this effect by directly incorporating dynami-
cal knowledge of the true system, which is the subject of
the next section. Note that in doing so, we sacrifice the
general applicability of the technique.

 

 

corrected
uncorrected

FIG. 4. (Color online) The first 20 minutes of a forecast for
an initial state attracted to the left-lobe convective equilib-
rium stabalized by the empirical correction (i.e., one of the
dark red dots near the center of the left lobe in the bottom
of Fig. 3). The uncorrected EM model trajectory (blue dash)
behaves as it should, winding away from the equilibrium at
the center of the lobe, whereas the trajectory of the corrected
model (solid red) collapses toward the equilibrium solution,
indicating false stability produced by correction. The source
of the false stability is the overcorrective nudging visible as
jumps (every 30 seconds, the length of the analysis window)
on the red curve. The correction is attempting to lengthen
flow regimes, a consequence of the blue regions near the equi-
libria in the top of Fig. 3.

D. Incorporating dynamical knowledge

To encode dynamical knowledge of the system in the
empirical correction procedure, the state-space is parti-
tioned into regions based on qualitative behavior, and
then a separate bias term b and state-dependent cor-
rection operator L are computed for each region. For
example, in the context of weather forecasting, the state-
space of the atmosphere could be divided by stage in
the El Niño oscillation, or by day and night, or local
season for regional models. Fig. 3 suggests two ways
to partition the state-space in the present context: (1)
by flow regime direction (lobe); or (2) by distance from
the nearest convective equilibrium solution. In each case,
the state-space is decomposed into two regions, left/right
lobe, or near/far from equilibrium, respectively. In ad-
dition to testing the correction procedure using each of
these strategies individually, a procedure applying them
simultaneously, which results in a partition of the state-
space into four regions, is also tested.

1. Lobe dependence

To generate lobe-dependent bias correction terms and
state-dependent correction operators, two regions L1,2,
corresponding to flow regimes of opposite direction, are
defined by

L1 = {x : x1 < 0}, L2 = {x : x1 ≥ 0} (10)

noting that their union is the entire state-space. Physi-
cally, L1 (L2) represents all states undergoing clockwise
(counter-clockwise) convection. Next, the direct inser-
tion procedure illustrated in Fig. 1 is modified to produce
two subsequences of the analysis correction time series,
∆xL1

and ∆xL2
, that correspond to two subsequences of

the analysis time series, xTL1
and xTL2

, respectively, where

xTL1
=
{
xT (t) : xT (t) ∈ L1

}
(11)

and xTL2
is defined similarly. These subsequences are sep-

arated into mean and anomalous components, as in Eqs.
(3), using means over each individual subsequence. Fi-
nally, the separate correction terms and operators are
computed by:

bLk
=
〈∆xLk

〉
h

, LLk
= C∆xLk

xT
Lk

C−1
xT
Lk

xT
Lk

(12)

for k = 1, 2. To apply the lobe-dependent correction,
at every timestep of numerical integration the current
state is determined to be in either L1 or L2, and the
appropriate bias correction term and state-dependent
operator are applied to advance the model.
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2. Dependence on distance from equilibrium

A procedure analogous to that for lobe-dependent cor-
rection is applied here. Two regions E1,2, corresponding
to near and far from equilibrium, respectively, are defined
by

E1 = {x : min(||x− x1||2, ||x− x2||2) < rc},
E2 = {x : x /∈ E1}

(13)

where x1 and x2 are the convective equilibria (estimated
from the parameters of uncorrected model, [15]), and the
critical radius rc is a parameter for the procedure. We are
effectively approximating the neighborhoods attracted to
the convective equilibria by spheres of radius rc. For all
results shown in the paper, the critical radius rc = 8.5
was used, though error statistics and dynamical match-
ing capability were virtually unaffected by changing this
parameter by 25% in either direction. This range of crit-
ical values was tested as estimates to the average radius
of the dark red region in the left lobe of Fig. 3 (bottom).
Continuing with the correction scheme, direct insertion
is modified as in the lobe-dependent correction, and the
region-specific bias terms and state-dependent operators
are calculated as in Eqs. (12), substituting Ek for Lk.
Application of the correction to a forecast model also
proceeds in the same fashion.

3. Simultaneous lobe and equilibrium dependence

Defining the lobe regions L1,2 as in the lobe-dependent
section, and the equilibrium regions E1,2 as in the previ-
ous section, we define the four regions for simultaneous
lobe and equilibrium-dependent correction by

R1 = L1 ∩ E1, R2 = L1 ∩ E2

R3 = L2 ∩ E1, R4 = L2 ∩ E2
(14)

so that we modify direct insertion to produce four subse-
quences of analysis increments, each paired with the ap-
propriate subsequence of the analysis time series. Note
that the critical radius rc used in defining the regions
E1,2 does not depend on the lobe in this scheme. Allow-
ing a different rc for each lobe is a possible modification
that was not tested. We compute the bias terms and
Leith operators as in Eqs. (12), substituting Rk for Lk,
where now k = 1, 2, 3, 4. Again, application of the correc-
tion proceeds as in the individual dynamically informed
schemes, where the current state is determined to be in
one of the four defined regions, and the appropriate bias
term and Leith operator are used to advance the model.

E. Results of dynamically informed correction

Fig. 5 shows average AC and mass flow-rate relative
error over 5000 trials for the three dynamically informed
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FIG. 5. (Color online) Average AC (top) and mass flow-rate
relative error (bottom) over 5000 trials for models that were:
uncorrected (thick solid blue), corrected (green dash-dot),
equilibrium-dependent (ED) corrected (cyan dash), lobe and
equilibrium-dependent (LD-ED) corrected (black dot), and
lobe-dependent (LD) corrected (solid red). Lobe-dependent
correction produces forecasts that are useful for almost twice
as long as those made by the uncorrected model, on aver-
age. When compared to the dynamically uninformed correc-
tion scheme (green dash-dot), lobe-dependent correction more
than doubles the improvement over the uncorrected model.

and corrected models, as compared to the original bi-
ased model and the dynamically uninformed, corrected
model. Encoding the current flow regime into the correc-
tion procedure results in a forecast model that is useful
for almost twice as long as the original biased model, and
doubles the improvement that was gained by dynamically
uninformed emprical correction. Encoding distance from
equilibrium, on the other hand, does not greatly prolong
usefulness, and in fact reduces it slightly when applied
simultaneously with lobe-dependent correction.

In Fig. 6, we see how the three forecast models result-
ing from dynamically informed empirical correction com-
pare with the dynamically uninformed, corrected model,
with regard to matching the qualitative behavior of the
true system. We see a trend of improvement, charac-
terized by smaller regions of states whose dynamics are
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TABLE I. Median absolute differences between predicted and
actual times of first flow reversal, and percentage of trials for
which the first flow reversal was predicted within 1 and 2 min-
utes, for the uncorrected model (M), dynamically uninformed
corrected model (CM), lobe-dependent (LD), equilibrium-
dependent (ED), and simultaneously lobe and equilibrium-
dependent (LD-ED) corrected models.

M CM LD ED LD-ED

median 4 10 1.5 10.5 1.5

% within 1min. 38.26 38.54 49.12 38.68 48.64

% within 2min. 47.04 43.40 54.38 43.58 57.08

different in the models than in the CFD simulated ther-
mosyphon (dark red regions), as we apply first lobe-
dependent, then equilibrium-dependent, and finally si-
multaneously lobe and equilibrium-dependent correction.

Results shown in Figures 5 and 6 suggest that en-
coding flow regime direction into the correction proce-
dure primarily enhances forecast statistics, while encod-
ing distance from equilibrium primarily enhances dynam-
ical matching. Simultaneous inclusion of the two types of
dynamical cues results in the best dynamical matching,
with only a slight cost in average forecast accuracy (with
respect to solely lobe-dependent correction). For further
evidence of this summary conclusion, consider Table I.

The median absolute differences between predicted
and actual times of first flow reversal over the 5000 tri-
als are listed for the uncorrected model (M), dynami-
cally uninformed corrected model (CM), lobe-dependent
(LD), equilibrium-dependent (ED) and simultaneously
lobe and equilibrium-dependent (LD-ED) corrected mod-
els. The LD and LD-ED models predict the first flow re-
versal more accurately than the uncorrected model. The
bottom two rows show the percentage of the 5000 trials
for which the first flow reversal was predicted within 1
and 2 minutes, respectively, for each of the models. Again
the LD and LD-ED models perform best. Note that the
LD-ED model boosts both the 1 and 2-minute success
rates by approximately 10% over the uncorrected model.

We note, however, that even the LD-ED model ex-
hibits a spuriously stable convective equilibria in each
lobe, Fig. 6. Incorporating dynamical knowledge of the
true system in the correction procedure, at least through
the partitioning of state-space as we have done here, is
not enough to avoid the stabilizing effect of empirical cor-
rection on the equilibria of the EM model. It is plausible
that models of other systems with weakly repelling (at-
tracting) equilibria might be subject to similar stabilizing
(destabilizing) effects under empirical correction. Such
effects might be mitigated by the strategy employed in
the present work, but probably not avoided.

IV. CONCLUDING DISCUSSION

It is apparent from the results of this work that em-
pirical correction is successful in reducing forecast error
in the low-dimensional setting. Improved error statistics
and prolonged usefulness of forecasts were demonstrated
by all corrected models. Furthermore, the empirical cor-
rection procedure was shown to provide greater improve-
ment in average forecast accuracy than fine-tuning of pa-
rameters, in both the preliminary experiment detailed in
Appendix A and the toy climate model.

These results suggest that empirical correction could
be a viable complement to the tuning of model parame-
ters. Particularly as degrees of freedom become large, e.g.
N ≈ 1010 in some operational numerical weather mod-
els, the computational cost of parameter tuning is large in
comparison to that of empirical correction, when appro-
priately modified for such models (see [9, 13]). An exam-
ple of such a modification is to compute the first m� N
principal components (PCs) of L by singular value de-
composition (SVD), where m is determined so that a
certain percentage of the state covariance is explained
by these first m PCs. A combined tuning/correction ap-
proach could reduce the number of model integrations
necessary in the parameter tuning process without sacri-
ficing model accuracy. However, the dynamical ramifica-
tions of this strategy must be considered.

The reduction in average forecast error provided by
empirical correction belies fundamental dynamical dis-
turbances born out of the correction procedure. Though
these costs can be mitigated somewhat by hard-wiring
system-specific dynamical cues into the correction pro-
cedure, they can not be eradicated without more funda-
mental alterations of the technique, e.g., forcing the bias
term b and Leith operator L to preserve system sym-
metry. In operational practice, empirical correction is
known to introduce imbalances, e.g. violating geostro-
phy, necessitating some mechanism for smoothing the
flow into a physically viable region of state space.

In fact, it may be impossible to avoid all dynamical
inaccuracies resulting from empirical correction, and even
if theoretically possible, it would likely be impractical
to do so in any operational setting. In considering the
application of the technique in operational settings, then,
it must be determined if the effects of misrepresented
dynamics can be reduced to a tolerable level on a case-by-
case basis. In the ideal situation, misrepresented regions
of state-space could be reduced by minor modifications to
the correction procedure, to encompass only unrealistic
or unlikely physical states. In any case, the technique
presented in this study should not be applied without
such considerations.
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FIG. 6. (Color online) Difference in minutes between predicted and actual time of first flow reversal, plotted by initial state, for
the (A) corrected, (B) lobe-dependent corrected, (C) equilibrium-dependent, and (D) lobe and equilibrium-dependent models.
Inset partial histograms show the number of forecasts (out of 5000) predicting the first flow reversal within 3 minutes of the
truth (light, green) and predicting that a flow reversal will never happen (dark, red); bar colors correspond to dot colors. (B)
Applying lobe-dependent correction (compared with (A) dynamically uninformed correction) increases the number of initial
states for which the first flow reversal is predicted accurately, (bigger light green bar). Also, although the region of dark red
(initial states attracted to convective equilibrium) in the left lobe has decreased in size, the one in the right lobe has inflated (all
dark dots in right lobe are now red). (C) Equilibrium-dependent correction shrinks the left-lobe red region without inflating
the one in the right lobe. However, it maintains the region of initial states for which flow reversal predictions are slightly early
(light ring around center of right lobe), which was reduced by the lobe-dependent correction. (D) Applying the simultaneously
lobe and equilibrium dependent correction results in a forecast model that demonstrates the smallest region of initial states
whose qualitative dynamics are different from the CFD simulated thermosyphon.
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Appendix A: Perfect model scenario

As a first step in the investigation of empirical cor-
rection, we consider its application to a model origi-
nally studied by Lorenz [10]. The system of equations
(A1) represents fluid flow between two plates, Rayleigh-
Bénard convection, in which convection cells form for
certain parameter ranges. However, with only slight
modification (the details of which appear in Sec. III A),
they also describe the flow in a natural convection loop
[14, 15]. Lorenz systems are covered exhaustively in pub-
lication [17, 18], and thus provide a familiar platform on
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which to perform preliminary tests of strategies for pre-
dicting the future state of chaotic systems.

1. Experimental design

In this perfect model scenario, the true system and
the models share the structure of (A1) and only differ in
parameter values. Specifically, a true or nature run was
created by integrating the Lorenz system

ẋ1 = σ(x2 − x1)
ẋ2 = rx1 − x2 − x1x3

ẋ3 = x1x2 − bx3

(A1)

with the standard parameter set: σ = 10, b = 8/3, r =
28. Models with the same σ and b, but with r-values
varying from 25 to 31 in increments of 0.5 (except for
r = 28) were the subjects for correction. For each of
these 12 models, the correction algorithm was performed
using the 4 different analysis windows h = 1, 2, 4, and 8
timesteps, resulting in 48 distinct model-correction pairs
in an exponential design. The training and testing of
the corrected models is detailed in the following sections,
and a picture showing one particularly positive outcome
appears in Fig. 7.

 

 

truth
uncorrected
corrected

FIG. 7. (Color online) Trajectories of the truth (r = 28),
a model with r-perturbation -2 (r = 26), and the corrected
model using an analysis window of h = 8 timesteps. All
start from the same initial condition (circle), and represent
2 time-units (200 timesteps) of integration (concluding with
squares). Note that the corrected model trajectory is well
aligned with the true trajectory for much longer than the un-
corrected model trajectory. Even after it deviates noticeably,
the corrected model trajectory changes flow regimes (switches
lobes) with the true trajectory. In contrast, the uncorrected
model trajectory deviates from the true trajectory almost im-
mediately, and remains in the initial lobe.

2. Training

A 100 time-unit nature run was generated by inte-
grating system (A1) from the initial condition x0 =
[1.508870, −1.531271, 25.46091]tr (see [19]) for 10000
timesteps of κ = 0.01 time units each, using fourth order
Runge-Kutta. For each of the 12 models and 4 analysis
windows, a time-series of short forecasts was generated
by direct insertion (see Fig. 1). As an illustrative exam-
ple, consider training with an analysis window of h = 4.
The first forecast, xM (t0 +4), is a 4-timestep model fore-
cast started with the true initial condition xT (t0) = x0.
The second forecast, xM (t0 + 8), is a 4-timestep model
forecast started with the true state xT (t0 + 4), and so
on, resulting in 10000/4 = 2500 total short forecasts. The
state-independent correction 〈∆x〉/h and static Leith op-
erator L were then computed as described in Sec. II.

Note that the training design imparts a statistical
disadvantage upon the use of wider analysis windows.
Specifically, doubling the analysis window halves the
number of samples in the training period. The design was
chosen, despite this prejudice, to more accurately reflect
an operational implementation in which the training data
is likely to be drawn from a fixed period of time. How-
ever, to further support the validity of comparisons be-
tween models corrected with different analysis windows,
we note that letting the training period be 10000h, en-
suring that the number of samples is held constant at
10000, yields results that are qualitatively indistinguish-
able from those presented here.

3. Testing

A new nature run, 10000 time-units (one million
timesteps) in length, was generated starting from the last
true state in the training period. The purpose of begin-
ning at the end of the training period was to obtain an
independent truth with which to test the effectiveness of
the corrected models. For each of the 48 corrected mod-
els, 1000 randomly selected states from this new nature
run were used as the initial state, and both the uncor-
rected and corrected models were integrated for 20 time
units.

The metric used to measure forecast accuracy was
anomaly correlation (AC), which is frequently used in
weather and climate modeling to determine the length
of time for which a model forecast is useful. The AC is
given by Eq. 9 in the main text. AC = 1 for a perfect
model, and a forecast is typically considered useful for
as long as its AC remains above 0.6 [6]. The AC scores
for each model, corrected and uncorrected, were averaged
over 1000 trials to provide a good representation of model
performance. See Fig. 8 for AC plots demonstrating the
effects of changing analysis window length and parame-
ter perturbation in the original model on the duration of
useful forecasts.

Results suggest that empirical correction has the po-
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FIG. 8. (Color online) (top) Plots of average AC over 1000
trials for the uncorrected (thick solid blue) and corrected mod-
els (all with r = 26) using analysis windows of h = 8, 4, 2
and 1, black dot, red dash-dot, green dash, solid magenta re-
spectively. Performance drops as the analysis window widens.
Note, however, that even with h = 4 timesteps the corrected
model provides a useful forecast for twice as long as the un-
corrected model. (bottom) Plots of average AC for models
corrected with an analysis window of 1 timestep, and r = 25,
26 and 27, black dot, blue dash, and solid red, respectively.
The greater the magnitude of r-perturbation, the more diffi-
cult it is to correct successfully. Similar results are observed
for r-values greater than 28.

tential to provide forecasts that are useful for much
longer. Training with an analysis window of 1 timestep,
the corrected model forecasts are useful for nearly 4 times
longer than the uncorrected model forecasts. In light of
the sensitivity of AC to analysis window length, the bot-
tom panel of Fig. 8 suggests that the accuracy of pa-
rameter values matters less for the effectiveness of the
corrected model, as measured by error statistics, than
does the frequency of observations in training.
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FIG. 9. (Color online) Plots of the duration of useful fore-
casts (first time AC=0.6) vs. analysis window (top) and r-
perturbation (bottom). (top) The drop in duration of useful
skill with analysis window suggests an asymptotic decrease
in the value of correction towards no improvement from the
uncorrected r = 26 model. (bottom) Using an analysis win-
dow of 1 timestep, we plot the duration as a function of r-
perturbation. The black diamond is the average duration of
a useful forecast for an exact model (true system with initial
state perturbed on the order of 10−3), representing the limit of
predictability imposed by initial condition uncertainty. Note:
the corrected models with greatest r-perturbation outperform
the uncorrected models with least r-perturbation.

A summary representation of the data in Fig. 8 is
shown in Fig. 9, where the duration of forecast useful-
ness is plotted vs. analysis window in the top panel,
and vs. r-perturbation in the bottom panel. The cor-
rected models with greatest r-perturbation (parameter
error > 10%) outperform the uncorrected models with
least r-perturbation (parameter error < 2%). Surpris-
ingly, this remains true even when correcting with an
analysis window of 2 timesteps (not shown). For systems
with reasonably small model errors, this indicates that
empirical correction may improve forecasts more readily
than parameter tuning.
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Appendix B: Dynamical ramifications of correction

1. Stabilization of equilibrium solutions

Jacobian analysis of the EM equations (8) provides an-
alytical confirmation of the instability of the convective
equilibria in the uncorrected model. Specifically, the Ja-
cobian evaluated at each equilibrium has one negative
real eigenvalue, whose eigenvectors are in the local direc-
tion of (tangent to) the stable manifold of the equilib-
rium, and a conjugate pair of complex eigenvalues with
positive real part, whose 2-D eigenspace is locally tan-
gent to the unstable manifold of the equilibrium. In fact,
for both convective equilibria the positive real parts of
these unstable eigenvalues are quite small, on the order
of 10−2, indicating weakly repelling instability. In the fol-
lowing we explain analytically the mechanism by which
empirical correction overcomes this weak repulsion, pro-
ducing a forecast model with attracting, and thus stable,
convective equilibria, see Fig. 4.

Empirical correction of the EM model effectively alters
the right-hand side of the differential equations (8) by
first adding a constant related to the bias term b, and
then adding a term that depends linearly on the model
state, i.e., something related to Lx′. Letting fM be the

vector-valued EM differential equation, and fM
+

be the
corrected equation, we write

fM
+

= fM + b0 + L0x
′ (B1)

where

b0 = lim
κ→0

b and L0 = lim
κ→0

L (B2)

can be thought of as the computed bias term and Leith
operator, respectively, for an infinitesimal timestep κ.
Because of the nonlinearity of the system, we cannot de-
termine the exact relationship between the infinitesimal
correctors b0 and L0, and the bias term b and Leith op-
erator L, respectively, that we compute using a timestep
of κ = 0.01 and analysis window of h = 5 timesteps.

However, since we discretize fM
+

in numerical integra-
tion, we can determine the b0 and L0 that we actually
apply. We effectively approximate the correction terms

b0 ≈
b

κ
= 100b and L0 ≈

L

κ
= 100L (B3)

within the fourth order Runge-Kutta scheme.
Now, armed with an analytical representation of the

differential equations fM
+

, we note the following rela-

tionship between the corrected model Jacobian DfM
+

,
and that of the uncorrected EM model DfM :

DfM
+

= DfM + L0 ≈ DfM + 100L (B4)

since the constant bias term b0 disappears and L0 op-
erates on a translation of the model state. We evaluate
the Jacobian of the corrected model at each convective

equilibrium, and determine its eigenvalues. Indeed, the
real part of the complex conjugate eigenvalues, for each
convective equilibria, is negative for the corrected model

fM
+

, and thus the convective equilibria have stabilized.
The equilibria attract all states inside neighborhoods

around them, which thereby separate state-space near
the attractor into regions whose trajectories will either
change flow regime at least once, or not at all. See Fig.
4 for an example of this effect. Furthermore, any trajec-
tories that land in one of these neighborhoods after only
one or two flow reversals, which might occur within the
expected 17-minute duration of useful forecasts for the
corrected model reported in Fig. 2, will then approach
steady convection. This behavior is in qualitative oppo-
sition to that of the true system, and that of the original
uncorrected EM model, for which steady convection in a
single direction is an unstable equilibrium.

2. Broken symmetry

The size discrepancy between left and right-lobe re-
gions attracted to the convective equlibria of the cor-
rected model revealed in Fig. 3 demonstrates that empir-
ical correction breaks the symmetry of the EM system.
As in the conventional Lorenz system (A1), the EM sys-
tem (8) is symmetric under the mapping (x1, x2, x3) 7→
(−x1,−x2, x3). Again letting fM be the vector-valued
EM differential equation, this symmetry implies that fM

commutes with a certain matrix A, i.e.

AfM (x) = fM (Ax), A =

 −1 0 0
0 −1 0
0 0 1

 (B5)

Empirical correction breaks this symmetry in two
ways. First, recall that after bias correction alone we
have changed the EM system by adding a constant vector
to the right-hand side of the differential equation. Let-
ting fM

∗
represent the bias-corrected differential equa-

tion, fM
∗

does not commute with A unless there is zero
bias in x1 and x2, i.e.

AfM
∗
(x) 6= fM

∗
(Ax) ∀b0 6=

 0
0
b3

 (B6)

where b3 can be any constant, and we recall that b0 =
limκ→0 b can be thought of as the computed bias term
for an infinitesimal timestep κ. Note that even if no bias
in x1 or x2 existed, the probability of statistically com-
puting a bias term b that would preserve the symmetry
of the EM system is zero.

In the unlikely case that a bias term is computed that
preserves symmetry, or such a bias term is forced, state-
dependent correction will break it. Assuming that fM

∗

does commute with A, and letting fM
+

be the fully cor-
rected differential equation, then

AfM
+

(x) = fM
+

(Ax) ⇐⇒ AL0 = L0A (B7)
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In other words, fM
+

commutes with A if and only if L0 =
limκ→0 L commutes with A. This forces the computed L
to be of the form

L =

 `11 `12 0
`21 `22 0
0 0 `33

 (B8)

where the `ij can be any constants. Of course the
probability of computing such an L statistically is also
zero. Therefore, both bias and state-dependent correc-
tion break the symmetry of the EM model.

Appendix C: Bias correction vs. Leith operator

State-independent error correction by itself produces
almost no improvement in any of the forecast models in
this study. This is in contrast to what has been observed
in operational weather and climate model studies, where
state-independent bias correction typically outperforms
state-dependent correction in reduction of forecast errors
[20]. The inaccuracies of ad-hoc forcings included in such
models to compensate for external and/or irresolvable
phenomena (e.g. solar and cloud forcings, respectively)
are likely responsible for a large component of the bias.
In light of the lack, or minimal nature of such external
and sub-gridscale influences in the toy models considered
here, the ineffectiveness of bias correction is logically con-
sistent with this explanation.

The state-dependent Leith operator is entirely respon-
sible for the success of the corrected models in this
study. In the perfect model scenario this makes sense
because the difference between the forecast models and
the “truth” model are inherently multiplicative, i.e. the
parameters are coefficients weighting the interaction be-
tween state-variable values and thus resulting errors must
depend on state. For the EM model of the CFD system,
it seems that errors resulting from the low dimensional-
ity of the forecast model may also be multiplicative in
nature. If this is the case, state-dependent correction
may reduce error patterns in operational models that re-
sult from reduced dimensionality, e.g. coarse resolution.
The correction will not likely compensate for processes
that are irresolvable due to coarse resolution, but rather
may reduce the propagation of error resulting from the
omission of such phenomena. This hypothesis is consis-
tent with demonstrated improvement of local behavior
in state-dependent corrected atmospheric models with
N ≈ 105 degrees of freedom [9].

In previous studies of state-dependent correction in
models that are much more realistic than those consid-
ered here, resulting error reduction has been minuscule in
comparison to what is achieved by bias correction. How-
ever, this is not cause to reject the usefulness of parame-
terizing state-dependent error. Though globally averaged
error reduction may not be significant, improvement in
the local behavior of models can have a large impact on
forecast uncertainty, particularly in an ensemble strategy

where state-dependent correction can increase the spread
in previously unsampled state-space directions.



14

[1] J. Anderson, Monthly Weather Review 129, 2884 (2001).
[2] J. Whitaker and T. Hamill, Monthly Weather Review

130, 1913 (2002).
[3] E. Ott, B. R. Hunt, I. Szunyogh, A. V. Zimin, E. J.

Kostelich, M. Corazza, E. Kalnay, D. J. Patil, and J. A.
Yorke, Tellus 56, 415 (2004).

[4] T. Hamill and C. Snyder, Monthly Weather Review 128,
2905 (2000).

[5] P. Houtekamer and H. Mitchell, Monthly Weather Re-
view 129, 796 (2001).

[6] E. Kalnay, Atmospheric Modeling, Data Assimilation and
Predictability (Cambridge University Press, 2003).

[7] C. E. Leith, Annual Review of Fluid Mechanics 10, 107
(1978).

[8] T. DelSole and A. Y. Hou, Monthly Weather Review 127,
2533 (1999).

[9] C. M. Danforth, E. Kalnay, and T. Miyoshi, Monthly
Weather Review 135, 281 (2007).

[10] E. N. Lorenz, Journal of the Atmospheric Sciences 20,
130 (1963).

[11] E. N. Lorenz, Tellus 17, 321 (1965).
[12] C. M. Danforth and E. Kalnay, Geophysical Research

Letters 35, L24805 (2008).
[13] C. M. Danforth and E. Kalnay, Journal of the Atmo-

spheric Sciences 65, 1467 (2008).
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