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To drive a large, complex, networked dynamical system tdwame desired state using as few external sig-
nals as possible is a fundamental issue in the emerging fieddntrolling complex networks. Optimal control
is referred to the situation where such a network can be fidiytrolled using only one driving signal. We
propose a general approach to optimizing the controltgtoli complex networks by judiciously perturbing the
network structure. The principle of our perturbation meti®validated theoretically and demonstrated numer-
ically for homogeneous and heterogeneous random netwaork$oa different types of real networks as well.
The applicability of our method is discussed in terms of thlative costs of establishing links and imposing
external controllers. Besides the practical usage of oprageh, its implementation elucidates, interestingly,
the intricate relationship between certain structurapprties of the network and its controllability.

PACS numbers: 05.45.-a,89.75.Hc,05.45.Xt,02.30.Yy

The ability to control complex networks is utter-mostly im- externally to bring the whole network under control. Accord
portant to many critical problems in science, engineerim) a ing to this theory [6], only topological changes can alter th
medicine, and has the potential to generate great techinologhetwork controllability. To be illustrative, we shall expé
cal breakthroughs as well. Indeed, because of the ubigfiity estructural perturbation via adding links to the network te e
complex networks in natural, technological, social, and-ec hance its controllability. It is practically important teaelop
nomical systems, it is highly desirable to be able to applya paradigm which minimizes the number of added links to
proper control to guide the network dynamics toward stateschieveNp = 1; for otherwise optimal controllability can be
with the best performance and, at the same time, to avoid urachieved trivially by keeping adding links to the networkilin
desired or deleterious states. While actual control of demp it becomes fully connected, which according to the minimum-
networks has not been achieved at the present, a necessamput theory is fully controllable with a single input. Geid
stepping stone is to understand tomtrollability of complex by this general consideration, we shall articulate a sysate
networks, which has become a topic of active pursuit [1-8]perturb the network by providing a minimum number of ad-
Specifically, given a complex-networked dynamical systemgitional links at suitable locations determined by certaite-
one wishes to assess whether it would be possible to appljon (to be discussed below). The performance of our pertur-
certain number of control signals at an arbitrary set of sodebation scheme will be compared with that in the case where
so as to drive the system toward some desirable state. THimks are randomly added to the network. Our optimization
number of control signalsyp, is thus a key quantity of inter- strategy bridges the network topology and controllabitity
est [6-8] as, qualitatively, it characterizes the cost indothe  providing useful insights into the effect of the former om th
system under control. INp is the same ad’ (the total num- latter.
ber of nodes in the network) so that each node receives one To motivate our structural perturbation strategy to oteni
control signal, the likelihood to achieve control will beghi  network controllability, we briefly describe the minimum-
but the associated cost will be high, too. To search for wayput theory. According to Kalman’s controllability rankie-
to reduceNp thus becomes an issue of significant practicaldition [9, 11], a canonical, linear, and time-invariant dym-
interest in network control, and one naturally asks whether cal systemx(¢) = Ax(¢) + Bu(¢) can be controlled from any
networked system can be harnessed by using only one coimnitial state to any desired state in finite time, if and offilhie
trol signal. This can indeed be achieved for specific networkV x N M controllability matrixC has full rank, i.e.,

configurations [6-8]. 3

rankC) = rank/B, AB,A’B,--- AN 'B] =N (1)

In this paper, we ask the following question: given an ar-

bitrary network that requires a certain number of signals tavherex € RV, Bis theN x M input matrix,M is the number
be controlled, can one slightly perturb the network so as t®f driver nodes, and(t) is the time-dependent input control
achieve the optimal controllability characterized§y, = 1?  vector. As pointed out in an earlier work [10], the full-rank
The theoretical framework under which this question may becondition (1) is appropriate for characterizing the colteiil-
addressed is the minimum-input theory developed recesitly [ ity of network systems if4 is the transpose of the adjacency
to characterize the controllability of networks with limety-  matrix andV is the number of nodes. Of particular impor-
namics, which is based on the classical control and graph théance to our perturbation strategy is the concept of strattu
ories [9-11]. The basic goal of the minimum-input theory controllability [6], which can be used to identify the mirim
is to determine the minimum number of nodes to be drivemumberNp, of driver nodes required for the system to satisfy



the full-rank condition (1). However, it is practically &if

cult to check this condition for large complex networks,fees t
number of input combinations grows exponentially with the
number of nodes~ 2%). To overcome this difficulty, Liu

et al. [6] proposed the concept ofaximum-matching set to
assess and quantify structural controllability. A partsaecly
useful result isNp = 1 if the network is perfectly matched;
otherwiseNp = N — N, where N, is the size of the
maximum-matching set, i.e., the maximum set of links that
do not share starting or ending nodes (Details of maximum
matching can be seen in Supplemental Materials). As demon-
strated [6], many real-world networks are far from being per
fectly matched. Consequently, in order to fully controllsac
network, a large number of input signals applied to an eguall FIG. 1: (Color online.) (a) A network of 30 nodes with hetegeg
large number of nodes are necessary, which motivates us ftgous degree distribution, generated according to thereegal at-
ask whether optimal contraV, = 1 is achievable by mak- tachment mechanism [14]. (b) All matching paths in ordeartstg

ing deliberate, small structural perturbations to the nekw Ig’;{;"cﬂem;o.gq“t;idneqaat‘gg.nengr(? tlilfa rrf:tihze% irr:s:jd:é aI:iwlinllg dog
In the following, we shall detail our strategy and demortstra ximu g it

that ai twork - b  link . green (gray). Structural perturbations are representetidoydded
al, givenany network, a minimum numper ot finks can in- ;. connecting the tail of a matching path in higher ordethe
deed be added so that all nodes except one are matched. TRghq (hlack color) of matching path in lower order, whichrageked

is, under only one input control signal the perturbed nekwor py red (dark gray). Other links are marked by light gray. Tha-c

will meet the full-rank condition. figuration of added links is not unique, but their minimum rem
To be concrete, we shall formulate our strategy to optimizes.

network controllability by adding minimum number of addi-

tional links for both directional and bidirectional netwsr

To explain our strategy, we introduce the concept of “match-

ing path,” a subset of links in the set of maximum matchingdition with a single input (see Supplemental Material [12])

(or “isolated” nodes), which can be (i) starting from an un-The value ofV, can always be reduced to 1 by adding a min-

matched node and ending at a matched node without outgoirighum number of links.

link belonging to the set of maximum matching, (ii) starting 14 nymerically demonstrate our perturbation strategy, we
from an arbitrary node in a directed loop and ending at thg,qe the Erdés-Réenyi (ER) random [13] and scale-free (SF)
“superior” node that points at the starting node, or (iiif®0-  heyorks [14] and calculate, the density of unmatched
lated” node without any link b_elongl‘r)g to the set of MaxiMuM g des for the two cases: (1) adding optimal links determined
matching. Here, case (ii) defines a “close matching path.” 1,y 5r optimization strategy and (2) adding random links. As
If one controller can control multiple drivers simultane- ¢pown in Fig. 2, our method leads to a much faster reduc-
ously, our optimization process involves three steps: (@Hi {5 in 1, , toward the minimal valug /N than merely adding
ing the minimum number of independent matching paths,snqom links for any average node degrees of the network.
except close matching paths (details of finding 'ndepe”der}\tfloreover, our strategy requires only a minimum number of

matching paths based on the maximum matching algorithmygisional links to make the network fully controllable wmd
can be found in Supplemental Material [12]); (2) randomly or only one external controller.

dering all found matching paths; (3) linking the ending pg®in
of each matching path to the starting nodes of the matchinﬁu
paths next to it in order, as illustrated in Fig. 1. The minimu
number of independent matching paths, except close matchi
paths, is equal to one less than the numgrof unmatched
nodes. Applying such structural perturbations, the maximu
fractionm,,, ., of added links {n is the ratio of the number of
added links to the numbéy; of links in the original network)
to achieveNp = 1is

The minimality of the number of additional links can be
stified in terms of the minimum input theory and the def-
r{'nition of maximum matching. According to the minimum
input theory, a node can be fully controlled either it has an
independent ‘superior’ node pointing at it or it is conteall
by an external controller. In the maximum matching set, all
nodes have their own superior (no two nodes share the same
superior) so that they can be fully controlled. Each of the
other Np unmatched nodes (drivers) has to be controlled by
Np—1 an external controller. The minimality of the set of unmaitth
Mmaz = N, (2)  nodesis guaranteed by the maximum matching algorithm. A
way to reduce the number of required external controllers is
The network is fully controllable with a single controlleni  to make unmatched nodes to be matched. This can be im-
posed at the starting node of the first matching path and anglemented by linking unmatched nodes to unused superiors.
one node in each of other close matching pathes simultan®ased on the definition of matching, each additional link can
ously. We can prove, according to Lin's structural control-at most reduce one unmatched node, since a link can only
lability theory [10], that the optimal network resulted fino  point at one unmatched node. In this sense, at I&ast- 1
the above structural perturbations satisfies the full-reovk  additional links are required to redu@é, to 1. If Np — 1
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FIG. 2: (Color online.) Density. p of unmatched nodes as a function 0.00 005 010 0.15 020 025 0.30 0.35
of the fractionm of added links using our optimization and random m

strategies for (a) ER random networks and (b) SF networks ait
ferent average node degree. The network size is 5000 analile s
and dashed straight lines are theoretical pr_edictionsirtﬂﬂaf_rom_ resulted from application of our optimization strategy @ real-
Egs. (3), (4), and (6). The shadowed regions are contrétigbi  \yorid networks, which include transcriptional regulatargtwork
enhanced regions. In then, n.p) plot, any strategy to enhance net- o 5 cerevisiae (TRN-Yeast-1) [18], who-vote-whom netwof
work controllability must fall into these regions. Wikipedia users (WikiVote) [19], food web in Little Rock laKFood
Web Little Rock) [20], electronic circuit (Circuit s838) I2 neural
network of C. elegans (Neruonal C. elegans) [16], citatietwork in

HEP-TH of ArXiv (Citation ArXiv-HepTh) [22], hyperlinks beveen

unmatched nodes are .aSS'gne.d to unused superior nodes, %'blogs on US politics (Political blogs) [23], Gnutella p¢e-peer
gle external controller is sufficient to accomplish full an.  fiie sharing network (Internet P2P-3) [24], online messagvark

Our method indeed achieves the optimal controllabilityhwit of students at UC, Irvine (UClonline) [25] and Social nethémom
this minimum number of additional links. Figure 2 also in- a consulting company (Consulting) [26]. The inset zoomsnre-
dicates that a region can be identified (the shadowed regiongion of small values ofn. The lines are the theoretical predictions
into which any method designed to enhance the network corfrom Eq. (3).
trollability via structural changes must fall. In this senthe
optimal (steeper) lines in Fig. 2 represent the best styateg
We now provide a theory to establish the optimality of our
perturbation strategy. As has been confirmed, adding oke linFor ER random networksP(k) follows the Poisson distri-
can at most decrease the numbas of driver nodes by one. bution e~ (k)*/k!. Since randomly adding links into the
The optimal lines (the steeper lines in Fig. 2) as the redult onetwork will not affect the degree distributidh(k), we have
applying our perturbation algorithm can be obtained thtoug G(2) = H () = exp[—(k)°(1 +m)(1 — z)], and
the relationnp(m) - N = n% - N —m - N, which gives
mN?
nD(m) = n% - Tlv (3)
wherenY, is the original density value in the absence of ad-
ditional links andN} is the number of links in the original
network. For the case of adding random links, one can us
the cavity method to obtainp [6, 15]. In particular, for
directed network with similar in- and out-degree distribot
P(k), wherek is the corresponding incoming or outgoing de-
gree, the density of driver nodes is

np = G(w2) + G(1 —wi) — 1+ (F)wi(1 —w2), (4)

1
where G(z) is the generating function given bg(z) = np ~ exp {— (k) (1 +m) (1 ~ i 1)} (8)
Yoo P(k)z*. The quantitiess; andw, in Eq. (4) can be
obtained by the following self-consistent equations:

FIG. 3: (Color online) Density:p as a function of the fractiom

np = w; —wz + (k) (1 +m)w; (1 — wy), (6)

where(k)? is the average in- or out-degree in the original net-
work, w; = H(wp) = exp[—(k)°(1 + m)(1 — ws)] and
we = 1—H( —wy) = 1— exp[—(k)°(1 + m)w]. For

5 > 1, we have

np ~ exp[—(k)°(1 +m)]. @

For SF networks, since: is small, we can assume th&tk)
is fixed, which leads to

where for the original SF networle (k) ~ k. These analyt-
wy = H[1 — H(1 —w)], ic_al results agree W_e!l with numerical s_imulations,. as show
we = 1 — H[1 — H(w)] ) Fig. 2. We have verified that, after adding all key links aceor
’ ing to our optimization method, there exist directed patbmf
where H(z) = > ;°Q(k + 1)z is a generating function the single driver node (the starting node of the first maighin
and Q(k) = kP(k)/(k). Equation (5) is valid for gen- path) to all other nodes, so that the network satisfies the ful
eral networks in the absence of degree-degree correlationsank condition.



We have also applied our structural perturbation strategy t . _
a number of real networks from nature and society, as show}{ \BLE |- Four regions of the_m easurgof network structural prop-
erties as determined By andsxg.

in Fig. 3. For every case examined, the perturbed network can
be fully controlled by a single controller via adding a mini-

mum number of links as determined by our method. For most S 515 >0  515r <0
real networks, aboui% of the additional links are sufficient s[> [sr[  (0,1) (1,00)
to optimize their controllability (inset of Fig. 3), demadrat- |51] <|sr|  (-1,0) (0, -1)
ing that our structural perturbations are quite effectivthw
low cost while maintaining the topology of the original net-
works. However, there are three networks (TRN-Yeast-1, Cir 06
cuit 838 and Internet P2P-3) for which many more additional 10} ¢ o e o e o | | =
links are needed to achieve full control. This differentéeh Db v 7
ior is mainly caused by the low average degrees of these net- °8[ v N R Hly v 1
works (see Supplemental Material [12]), which induces many | vy 1o v 7
unmatched nodes with large ratio of the number of added links~» 04l _
to the original number of links. 04 PR = CC 1

In general, our method is applicable to networks for which 1AD N
establishing a link costs less than imposing a time-vadant e e I e B ML
troller at a node, such as many technological and social net- .

works. However, there are networks in the real world for ~ 000 0.01 002 0.03 0.04 005 000 005 010 0.5 020

which the opposite is true, such as gene regulatory networks (2) m (b) m

where to establish a new regulatory connection betweersgene

may be more difficult than exogenously altering the expresFIG. 4: (Color online.) Four measures of network structyaraip-

sion of a gene. For such networks, our optimization metho@'ties as a function af. for (a) ER and (b) SF networks, which are

is not meaningful and alternative ways to enhance the nefC: PDC. IAD, and H (see text for definitions). The networkesis

work controllability must be explored. In addition, theuss 5000 and the average node degree_s o_f the ER and SF netvyorks are
. .5 and 4, respectively. Each data point is obtained by avegagier

of trade-off between network robustngss in response te fa|l500 independent network realizations.

ures/attacks and lower control cost with less controlleay m

be interesting.

Our optimization strategy, besides its practical usageo e
hance network controllability, can surprisingly reveas ih-
tricate relationship betv_veen certain §f[ructural_ propertf 8 ihe variations irs (m) andsg(m). Figure 4 showsS(m) for
complex network and its controllability. To |IIu_s'Frate s both ER and SF networks, where we observe that all values of
we §tudy h.OW a number of fundgmental quantities characS fall in the interval(0, 1), indicating thats; (m) andsg(m)
terizing various struct_ural properties of the networl.< dape have the same variational trend Bat(m)| > |sx(m)|. For
on the number of optimally added links, as follows: (1) the{he ER random network [Fig. 4(a)], we hase po ~ 1, fol-

clustering coefficient (CC) [16]_defined as the average of .4 bySy, S p, andScc, which indicates that the DDC
tzhéin{J [r?t()]:r gf izga%\é?gsltlhg?%%sdgélr;ggtggoailr(];kw?sei (Ijse measure is the most pertinent quantity to the network cbntro
q & (2) the d d lati DbC def dIab|I|ty. In contrast, for the SF network [Fig. 4(b)], thetbmo-
egree o; (2) the degree-degree correlation ( ) define geneity measure H is the most relevant in shaping the network
as [17] controllability, followed in order by the IAD, DDC, and CC
lel S Liki — [lel S %(li + k) measures. For both ER and_ SF networks, the CC measure has
NS L2+ i) NS L+ BE (9)  little effect on the controllability.

! v2i ‘ ! EER We can provide a heuristic explanation for the structural ef
wherel; andk; are the degrees of the two nodes at the ends offects in terms of the node degree. According to the prin@ple
theth link; (3) the inverse of average distance (IAD), where maximum matching, nodes with larger degrees usually have
the distance between nodes is the length of the directed shorelatively higher probability to find their own ‘superiorhd
est path connecting them; and (4) heterogeneity (H) defised dinferior’ nodes. In contrast, smaller-degree nodes areemo
(2222, |ki = kj| P (ki) P(k;)]/ (k) [6]. The values of all four likely to be unmatched node (without superior) or/and the-en
guantities resulting from our optimization method are com-ing node of a matching path (without inferior). Therefore,
pared with those from the process of simply adding randonmore links are needed to be added to such nodes. This phe-
links. For each quantity, it is convenient to define the fol- nomenon can be used to understand the strong correlation be-
lowing relative valueS(m) = [s7(m) — sr(m)]/[S1(m) +  tween controllability and the quantities DDC and H in random
5r(m)], wheres stands for the value of either CC, DDC, IAD, and scale-free networks, respectively. In particularaimiom
or H, s;(m) andsg(m) are the corresponding values from networks, since node degrees are homogeneous, intefyional
our optimization procedure and from adding random links, re connecting smaller-degree nodes may not affect the valde of
spectivelys;(m) = sy(m) — so, Sr(m) = sg(m) — sgp, and  much as compared with adding random links, but the same act
sp is the value of for the unperturbed network. Computations can cause DDC to become more positive. As a result, DDC

reveal four regions of, as shown in Table I, depending on




is the most pertinent structural characteristic for rancdhan

5

teed so that the perturbed network can be fully controlled us

works. However, for scale-free networks, H is considerablying a single input signal. The control regions in the paramet

affected by intentional connections among small-degreeso
due to their heterogeneous nature, so its correlation with ¢
trollability is much stronger than those associated witheot
structural parameters. A complete understanding of tleetff
of structural properties on network controllability in cphax
networks is still challenging at the present, partly duehie t
fact that the effects of different structural propertiesroat be
separated from each other in a straightforward manner.

In conclusion, we have presented a perturbation approacnonymous referee for insightful suggestions.

to optimizing the controllability of complex networks. By

adding a minimum number of links at judiciously chosen lo-

cations in the network, the full-rank condition can be guara

space have been predicted analytically. An additionalfeat

of our optimization framework is that it identifies, quaatit
tively, certain structural properties of the network thag key

to its controllability. The field of controlling complex net
works has gained momentum recently, and the principle pre-
sented here can be useful to guide the control of large comple
networks at low cost.
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