
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Optimizing controllability of complex networks by minimum
structural perturbations

Wen-Xu Wang, Xuan Ni, Ying-Cheng Lai, and Celso Grebogi
Phys. Rev. E 85, 026115 — Published 22 February 2012

DOI: 10.1103/PhysRevE.85.026115

http://dx.doi.org/10.1103/PhysRevE.85.026115


LH13403ER

REVIE
W

 C
OPY

NOT F
OR D

IS
TRIB

UTIO
N

Optimizing controllability of complex networks by minimum structural perturbations

Wen-Xu Wang,1, 2 Xuan Ni,2 Ying-Cheng Lai,2, 3 and Celso Grebogi3

1Department of Systems Science, School of Management and Center for
Complexity Research, Beijing Normal University, Beijing 100875, China

2School of Electrical, Computer, and Energy Engineering, Arizona State University, Tempe, AZ 85287, USA
3Institute for Complex Systems and Mathematical Biology,

King’s College, University of Aberdeen, Aberdeen AB24 3UE, UK
(Dated: January 19, 2012)

To drive a large, complex, networked dynamical system toward some desired state using as few external sig-
nals as possible is a fundamental issue in the emerging field of controlling complex networks. Optimal control
is referred to the situation where such a network can be fullycontrolled using only one driving signal. We
propose a general approach to optimizing the controllability of complex networks by judiciously perturbing the
network structure. The principle of our perturbation method is validated theoretically and demonstrated numer-
ically for homogeneous and heterogeneous random networks and for different types of real networks as well.
The applicability of our method is discussed in terms of the relative costs of establishing links and imposing
external controllers. Besides the practical usage of our approach, its implementation elucidates, interestingly,
the intricate relationship between certain structural properties of the network and its controllability.

PACS numbers: 05.45.-a,89.75.Hc,05.45.Xt,02.30.Yy

The ability to control complex networks is utter-mostly im-
portant to many critical problems in science, engineering and
medicine, and has the potential to generate great technologi-
cal breakthroughs as well. Indeed, because of the ubiquity of
complex networks in natural, technological, social, and eco-
nomical systems, it is highly desirable to be able to apply
proper control to guide the network dynamics toward states
with the best performance and, at the same time, to avoid un-
desired or deleterious states. While actual control of complex
networks has not been achieved at the present, a necessary
stepping stone is to understand thecontrollability of complex
networks, which has become a topic of active pursuit [1–8].
Specifically, given a complex-networked dynamical system,
one wishes to assess whether it would be possible to apply
certain number of control signals at an arbitrary set of nodes
so as to drive the system toward some desirable state. The
number of control signals,ND, is thus a key quantity of inter-
est [6–8] as, qualitatively, it characterizes the cost to bring the
system under control. IfND is the same asN (the total num-
ber of nodes in the network) so that each node receives one
control signal, the likelihood to achieve control will be high
but the associated cost will be high, too. To search for ways
to reduceND thus becomes an issue of significant practical
interest in network control, and one naturally asks whethera
networked system can be harnessed by using only one con-
trol signal. This can indeed be achieved for specific network
configurations [6–8].

In this paper, we ask the following question: given an ar-
bitrary network that requires a certain number of signals to
be controlled, can one slightly perturb the network so as to
achieve the optimal controllability characterized byND = 1?
The theoretical framework under which this question may be
addressed is the minimum-input theory developed recently [6]
to characterize the controllability of networks with linear dy-
namics, which is based on the classical control and graph the-
ories [9–11]. The basic goal of the minimum-input theory
is to determine the minimum number of nodes to be driven

externally to bring the whole network under control. Accord-
ing to this theory [6], only topological changes can alter the
network controllability. To be illustrative, we shall explore
structural perturbation via adding links to the network to en-
hance its controllability. It is practically important to develop
a paradigm which minimizes the number of added links to
achieveND = 1; for otherwise optimal controllability can be
achieved trivially by keeping adding links to the network until
it becomes fully connected, which according to the minimum-
input theory is fully controllable with a single input. Guided
by this general consideration, we shall articulate a strategy to
perturb the network by providing a minimum number of ad-
ditional links at suitable locations determined by certaincrite-
rion (to be discussed below). The performance of our pertur-
bation scheme will be compared with that in the case where
links are randomly added to the network. Our optimization
strategy bridges the network topology and controllabilityby
providing useful insights into the effect of the former on the
latter.

To motivate our structural perturbation strategy to optimize
network controllability, we briefly describe the minimum-
input theory. According to Kalman’s controllability rank con-
dition [9, 11], a canonical, linear, and time-invariant dynami-
cal systemẋ(t) = Ax(t)+Bu(t) can be controlled from any
initial state to any desired state in finite time, if and only if the
N ×NM controllability matrixC has full rank, i.e.,

rank(C) ≡ rank
[

B,AB,A2
B, · · · ,AN−1

B
]

= N (1)

wherex ∈ RN ,B is theN×M input matrix,M is the number
of driver nodes, andu(t) is the time-dependent input control
vector. As pointed out in an earlier work [10], the full-rank
condition (1) is appropriate for characterizing the controllabil-
ity of network systems ifA is the transpose of the adjacency
matrix andN is the number of nodes. Of particular impor-
tance to our perturbation strategy is the concept of structural
controllability [6], which can be used to identify the minimum
numberND of driver nodes required for the system to satisfy
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the full-rank condition (1). However, it is practically diffi-
cult to check this condition for large complex networks, as the
number of input combinations grows exponentially with the
number of nodes (∼ 2N ). To overcome this difficulty, Liu
et al. [6] proposed the concept ofmaximum-matching set to
assess and quantify structural controllability. A particularly
useful result isND = 1 if the network is perfectly matched;
otherwiseND = N − NM , whereNM is the size of the
maximum-matching set, i.e., the maximum set of links that
do not share starting or ending nodes (Details of maximum
matching can be seen in Supplemental Materials). As demon-
strated [6], many real-world networks are far from being per-
fectly matched. Consequently, in order to fully control such a
network, a large number of input signals applied to an equally
large number of nodes are necessary, which motivates us to
ask whether optimal controlND = 1 is achievable by mak-
ing deliberate, small structural perturbations to the network.
In the following, we shall detail our strategy and demonstrate
that, givenany network, a minimum number of links can in-
deed be added so that all nodes except one are matched. That
is, under only one input control signal the perturbed network
will meet the full-rank condition.

To be concrete, we shall formulate our strategy to optimize
network controllability by adding minimum number of addi-
tional links for both directional and bidirectional networks.
To explain our strategy, we introduce the concept of “match-
ing path,” a subset of links in the set of maximum matching
(or “isolated” nodes), which can be (i) starting from an un-
matched node and ending at a matched node without outgoing
link belonging to the set of maximum matching, (ii) starting
from an arbitrary node in a directed loop and ending at the
“superior” node that points at the starting node, or (iii) an“iso-
lated” node without any link belonging to the set of maximum
matching. Here, case (ii) defines a “close matching path.”

If one controller can control multiple drivers simultane-
ously, our optimization process involves three steps: (1) find-
ing the minimum number of independent matching paths,
except close matching paths (details of finding independent
matching paths based on the maximum matching algorithm
can be found in Supplemental Material [12]); (2) randomly or-
dering all found matching paths; (3) linking the ending points
of each matching path to the starting nodes of the matching
paths next to it in order, as illustrated in Fig. 1. The minimum
number of independent matching paths, except close matching
paths, is equal to one less than the numberND of unmatched
nodes. Applying such structural perturbations, the maximum
fractionmmax of added links (m is the ratio of the number of
added links to the numberNl of links in the original network)
to achieveND = 1 is

mmax =
ND − 1

Nl

. (2)

The network is fully controllable with a single controller im-
posed at the starting node of the first matching path and any
one node in each of other close matching pathes simultane-
ously. We can prove, according to Lin’s structural control-
lability theory [10], that the optimal network resulted from
the above structural perturbations satisfies the full-rankcon-
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FIG. 1: (Color online.) (a) A network of 30 nodes with heteroge-
neous degree distribution, generated according to the preferential at-
tachment mechanism [14]. (b) All matching paths in order, starting
from node 10 outside and ending at node 29 inside. The links of
the set of maximum matching and the matched nodes are marked by
green (gray). Structural perturbations are represented bythe added
links connecting the tail of a matching path in higher order to the
head (black color) of matching path in lower order, which aremarked
by red (dark gray). Other links are marked by light gray. The con-
figuration of added links is not unique, but their minimum number
is.

dition with a single input (see Supplemental Material [12]).
The value ofND can always be reduced to 1 by adding a min-
imum number of links.

To numerically demonstrate our perturbation strategy, we
use the Erdős-Rényi (ER) random [13] and scale-free (SF)
networks [14] and calculatenD, the density of unmatched
nodes for the two cases: (1) adding optimal links determined
by our optimization strategy and (2) adding random links. As
shown in Fig. 2, our method leads to a much faster reduc-
tion in nD toward the minimal value1/N than merely adding
random links for any average node degrees of the network.
Moreover, our strategy requires only a minimum number of
additional links to make the network fully controllable under
only one external controller.

The minimality of the number of additional links can be
justified in terms of the minimum input theory and the def-
inition of maximum matching. According to the minimum
input theory, a node can be fully controlled either it has an
independent ‘superior’ node pointing at it or it is controlled
by an external controller. In the maximum matching set, all
nodes have their own superior (no two nodes share the same
superior) so that they can be fully controlled. Each of the
otherND unmatched nodes (drivers) has to be controlled by
an external controller. The minimality of the set of unmatched
nodes is guaranteed by the maximum matching algorithm. A
way to reduce the number of required external controllers is
to make unmatched nodes to be matched. This can be im-
plemented by linking unmatched nodes to unused superiors.
Based on the definition of matching, each additional link can
at most reduce one unmatched node, since a link can only
point at one unmatched node. In this sense, at leastND − 1
additional links are required to reduceND to 1. If ND − 1
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FIG. 2: (Color online.) DensitynD of unmatched nodes as a function
of the fractionm of added links using our optimization and random
strategies for (a) ER random networks and (b) SF networks with dif-
ferent average node degree. The network size is 5000 and the solid
and dashed straight lines are theoretical predictions obtained from
Eqs. (3), (4), and (6). The shadowed regions are controllability-
enhanced regions. In the(m,nD) plot, any strategy to enhance net-
work controllability must fall into these regions.

unmatched nodes are assigned to unused superior nodes, sin-
gle external controller is sufficient to accomplish full control.
Our method indeed achieves the optimal controllability with
this minimum number of additional links. Figure 2 also in-
dicates that a region can be identified (the shadowed region),
into which any method designed to enhance the network con-
trollability via structural changes must fall. In this sense, the
optimal (steeper) lines in Fig. 2 represent the best strategy.

We now provide a theory to establish the optimality of our
perturbation strategy. As has been confirmed, adding one link
can at most decrease the numberND of driver nodes by one.
The optimal lines (the steeper lines in Fig. 2) as the result of
applying our perturbation algorithm can be obtained through
the relationnD(m) ·N = n0

D ·N −m ·N0

l , which gives

nD(m) = n0

D −
mN0

l

N
, (3)

wheren0

D is the original density value in the absence of ad-
ditional links andN0

l is the number of links in the original
network. For the case of adding random links, one can use
the cavity method to obtainnD [6, 15]. In particular, for
directed network with similar in- and out-degree distribution
P (k), wherek is the corresponding incoming or outgoing de-
gree, the density of driver nodes is

nD = G(w2) +G(1− w1)− 1 + 〈k〉w1(1− w2), (4)

whereG(x) is the generating function given byG(x) =
∑∞

k=0
P (k)xk. The quantitiesw1 andw2 in Eq. (4) can be

obtained by the following self-consistent equations:

w1 = H [1−H(1− w1)],

w2 = 1−H [1−H(w2)], (5)

whereH(x) =
∑∞

0
Q(k + 1)xk is a generating function

and Q(k) = kP (k)/〈k〉. Equation (5) is valid for gen-
eral networks in the absence of degree-degree correlations.
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FIG. 3: (Color online) DensitynD as a function of the fractionm
resulted from application of our optimization strategy to 10 real-
world networks, which include transcriptional regulatorynetwork
of S. cerevisiae (TRN-Yeast-1) [18], who-vote-whom network of
Wikipedia users (WikiVote) [19], food web in Little Rock lake (Food
Web Little Rock) [20], electronic circuit (Circuit s838) [21], neural
network of C. elegans (Neruonal C. elegans) [16], citation network in
HEP-TH of ArXiv (Citation ArXiv-HepTh) [22], hyperlinks between
weblogs on US politics (Political blogs) [23], Gnutella peer-to-peer
file sharing network (Internet P2P-3) [24], online message network
of students at UC, Irvine (UCIonline) [25] and Social network from
a consulting company (Consulting) [26]. The inset zooms in the re-
gion of small values ofm. The lines are the theoretical predictions
from Eq. (3).

For ER random networks,P (k) follows the Poisson distri-
bution e−〈k〉〈k〉k/k!. Since randomly adding links into the
network will not affect the degree distributionP (k), we have
G(x) = H(x) = exp[−〈k〉0(1 +m)(1− x)], and

nD = w1 − w2 + 〈k〉0(1 +m)w1(1− w2), (6)

where〈k〉0 is the average in- or out-degree in the original net-
work, w1 = H(w2) = exp[−〈k〉0(1 + m)(1 − w2)] and
w2 = 1 − H(1 − w1) = 1 − exp[−〈k〉0(1 + m)w1]. For
k ≫ 1, we have

nD ∼ exp[−〈k〉0(1 +m)]. (7)

For SF networks, sincem is small, we can assume thatP (k)
is fixed, which leads to

nD ∼ exp

[

− 〈k〉0(1 +m)

(

1−
1

γ0 − 1

)]

, (8)

where for the original SF network,P (k) ∼ kγ
0

. These analyt-
ical results agree well with numerical simulations, as shown in
Fig. 2. We have verified that, after adding all key links accord-
ing to our optimization method, there exist directed paths from
the single driver node (the starting node of the first matching
path) to all other nodes, so that the network satisfies the full-
rank condition.
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We have also applied our structural perturbation strategy to
a number of real networks from nature and society, as shown
in Fig. 3. For every case examined, the perturbed network can
be fully controlled by a single controller via adding a mini-
mum number of links as determined by our method. For most
real networks, about5% of the additional links are sufficient
to optimize their controllability (inset of Fig. 3), demonstrat-
ing that our structural perturbations are quite effective with
low cost while maintaining the topology of the original net-
works. However, there are three networks (TRN-Yeast-1, Cir-
cuit 838 and Internet P2P-3) for which many more additional
links are needed to achieve full control. This different behav-
ior is mainly caused by the low average degrees of these net-
works (see Supplemental Material [12]), which induces many
unmatched nodes with large ratio of the number of added links
to the original number of links.

In general, our method is applicable to networks for which
establishing a link costs less than imposing a time-variantcon-
troller at a node, such as many technological and social net-
works. However, there are networks in the real world for
which the opposite is true, such as gene regulatory networks,
where to establish a new regulatory connection between genes
may be more difficult than exogenously altering the expres-
sion of a gene. For such networks, our optimization method
is not meaningful and alternative ways to enhance the net-
work controllability must be explored. In addition, the issue
of trade-off between network robustness in response to fail-
ures/attacks and lower control cost with less controllers may
be interesting.

Our optimization strategy, besides its practical usage to en-
hance network controllability, can surprisingly reveal the in-
tricate relationship between certain structural properties of a
complex network and its controllability. To illustrate this,
we study how a number of fundamental quantities charac-
terizing various structural properties of the network depend
on the number of optimally added links, as follows: (1) the
clustering coefficient (CC) [16] defined as the average of
2 △i /[ki(ki − 1)] over all nodes in the network, where△i is
the number of triangles that nodei belongs to andki is node
degree ofi; (2) the degree-degree correlation (DDC) defined
as [17]

N−1

l

∑

i liki − [N−1

l

∑

i
1

2
(li + ki)]

2

N−1

l

∑

i
1

2
(l2i + k2i )− [N−1

l

∑

i
1

2
(li + ki)]2

, (9)

whereli andki are the degrees of the two nodes at the ends of
the ith link; (3) the inverse of average distance (IAD), where
the distance between nodes is the length of the directed short-
est path connecting them; and (4) heterogeneity (H) defined as
[
∑

i

∑

j |ki − kj |P (ki)P (kj)]/〈k〉 [6]. The values of all four
quantities resulting from our optimization method are com-
pared with those from the process of simply adding random
links. For each quantitys, it is convenient to define the fol-
lowing relative valueS(m) = [s̄I(m) − s̄R(m)]/[s̄I(m) +
s̄R(m)], wheres stands for the value of either CC, DDC, IAD,
or H, sI(m) and sR(m) are the corresponding values from
our optimization procedure and from adding random links, re-
spectively,̄sI(m) = sI(m)− s0, s̄R(m) = sR(m)− s0, and
s0 is the value ofs for the unperturbed network. Computations

TABLE I: Four regions of the measureS of network structural prop-
erties as determined bȳsI ands̄R.

S s̄I s̄R > 0 s̄I s̄R < 0

|s̄I | > |s̄R| (0, 1) (1,∞)

|s̄I | < |s̄R| (-1, 0) (-∞, -1)
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FIG. 4: (Color online.) Four measures of network structuralprop-
erties as a function ofm for (a) ER and (b) SF networks, which are
CC, DDC, IAD, and H (see text for definitions). The network size is
5000 and the average node degrees of the ER and SF networks are
5 and 4, respectively. Each data point is obtained by averaging over
500 independent network realizations.

reveal four regions ofS, as shown in Table I, depending on
the variations in̄sI(m) ands̄R(m). Figure 4 showsS(m) for
both ER and SF networks, where we observe that all values of
S fall in the interval(0, 1), indicating that̄sI(m) ands̄R(m)
have the same variational trend but|s̄I(m)| > |s̄R(m)|. For
the ER random network [Fig. 4(a)], we haveSDDC ≈ 1, fol-
lowed bySH , SIAD, andSCC , which indicates that the DDC
measure is the most pertinent quantity to the network control-
lability. In contrast, for the SF network [Fig. 4(b)], the hetero-
geneity measure H is the most relevant in shaping the network
controllability, followed in order by the IAD, DDC, and CC
measures. For both ER and SF networks, the CC measure has
little effect on the controllability.

We can provide a heuristic explanation for the structural ef-
fects in terms of the node degree. According to the principleof
maximum matching, nodes with larger degrees usually have
relatively higher probability to find their own ‘superior’ and
‘inferior’ nodes. In contrast, smaller-degree nodes are more
likely to be unmatched node (without superior) or/and the end-
ing node of a matching path (without inferior). Therefore,
more links are needed to be added to such nodes. This phe-
nomenon can be used to understand the strong correlation be-
tween controllability and the quantities DDC and H in random
and scale-free networks, respectively. In particular, in random
networks, since node degrees are homogeneous, intentionally
connecting smaller-degree nodes may not affect the value ofH
much as compared with adding random links, but the same act
can cause DDC to become more positive. As a result, DDC
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is the most pertinent structural characteristic for randomnet-
works. However, for scale-free networks, H is considerably
affected by intentional connections among small-degree nodes
due to their heterogeneous nature, so its correlation with con-
trollability is much stronger than those associated with other
structural parameters. A complete understanding of the effects
of structural properties on network controllability in complex
networks is still challenging at the present, partly due to the
fact that the effects of different structural properties cannot be
separated from each other in a straightforward manner.

In conclusion, we have presented a perturbation approach
to optimizing the controllability of complex networks. By
adding a minimum number of links at judiciously chosen lo-
cations in the network, the full-rank condition can be guaran-

teed so that the perturbed network can be fully controlled us-
ing a single input signal. The control regions in the parameter
space have been predicted analytically. An additional feature
of our optimization framework is that it identifies, quantita-
tively, certain structural properties of the network that are key
to its controllability. The field of controlling complex net-
works has gained momentum recently, and the principle pre-
sented here can be useful to guide the control of large complex
networks at low cost.
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