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Spike-timing-dependent plasticity (STDP) is an important driving force of self-organization in
neural systems. With properly chosen input signals, STDP can yield a synaptic pruning process,
whose functional role needs to be further investigated. We explore this issue from an information
theoretic standpoint. Temporally correlated stimuli are introduced to neurons of an input layer.
Then synapses on the dendrite, and thus the receptive field, of an output neuron are refined by
STDP. The mutual information between input and output spike trains is calculated with the context
tree method. The results show that synapse removal can enhance information transfer, i.e. that
“less can be more” under certain constraints, which stress the balance between potentiation and
depression dictated by the parameters of the STDP rule, as well as the temporal scale of the input
correlation.
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Self-organization is an important characteristic of cortical neural networks that determines the connectivity struc-
ture, in addition to genetic factors [1, 2]. Neural network structure co-evolves neural dynamics under the stimulation
of sensory inputs via various synaptic learning mechanisms, among which a ubiquitous and important mode is spike-
timing-dependent plasticity (STDP) [3, 4]. STDP determines the evolution of synaptic weights according to the
coincidence of pre- and post-synaptic action potentials, and in doing so also modulates neural activity. It is intriguing
to know how this synaptic evolution, which is based on the relative timing between pre- and post-synaptic spikes,
influences information transfer in neural networks. It has been shown that several STDP-like synaptic plasticity laws
can be obtained from abstract information optimization principles [5–7]. Hennequin et al. have also shown that STDP
based on triplets of spikes can give close-to-optimal information transmission in adaptive neurons [8]. Nonetheless,
the link between information transfer and the co-evolution of structure and dynamics caused by STDP remains loose,
as does the relation between information transmission and the temporal scale of the input correlation.
A basic effect of the co-evolution of structure and dynamics caused by STDP is synaptic pruning. It is well known

that the brain has a very dense population of synaptic connections just after birth and most of these connections are
subsequently pruned over time [9]. This is reflected by the deletion of synapses whose strength falls below a certain
threshold. STDP has been postulated as a mechanism for synaptic pruning, as it can yield a bimodal distribution of
synaptic weights, where the majority of synapses are driven toward the minimum weight [4]. Based on this effect, fully
connected STDP-driven networks can be refined, to provide non-trivial topological characteristics, such as scale-free
degree distribution [10, 11], feed-forward structure [12], and the significance profile coinciding with realistic neural
networks [2]. Besides topological benefits, a further question concerns the functional role of an STDP-driven pruning
process: what is it good for? For example, it is recently reported that the removal of synaptic connections can be used
to systematically improve and optimize synchronization properties in networks [13], i.e. the conclusion, “less can be
more”, is already established for network synchronization. A natural question, then, is whether the same conclusion
applies to information transmission.
To address this question, we focus on the basic components of a feed-forward neural network: synaptic inputs on

the dendrite of a single neuron, and the receptive field of that neuron. Temporally correlated stimuli are utilized
for neurons of the input layer, mimicking sensory receptors, and STDP synapses are introduced to the dendrite of
the output layer. The mutual information between input and output spike trains is calculated with the context
tree method [14, 15], which exhibits comparatively low bias on finite data sets and outperforms common alternative
procedures. The process of synaptic pruning is studied under different parameter configurations. The results show
that synapse removal can enhance information transfer under certain constraints, which stress the balance between
potentiation and depression dictated by the parameters of the STDP rule, as well as the temporal scale of the input
correlation.
The studied network is composed of an input layer with N neurons and a single output neuron. The neurons are

modeled by Leaky Integrate-and-Fire (LIF) dynamics. The membrane potential Vj of the conductance based LIF
neuron with index j is governed by

Cm

dVj

dt
= gL(Vrest − Vj) + gj(t)(Eex − Vj) . (1)

The values of parameters we used are the same as in [4], where Cm = 200pF is the membrane capacitance, gL = 10nS
is the leak conductance, Vrest = −70mV is the resting potential (leak reversal potential), and Eex = 0mV is the
excitatory reversal potential. When the membrane potential reaches the threshold value Vth = −54mV, the neuron
emits an action potential, and then the depolarization is reset to the reset potential Vreset = −60mV after a refractory
period τref = 1ms during which the potential is insensitive to stimulation.
The synaptic conductance gj(t) is determined by

gj(t) = gm

n
∑

i=1

wij(t)
∑

k

f(t− tki ) , (2)

where n is the number of stimulus sources (for neurons of the input layer), or the number of input neurons (for the
output neuron), gm is the maximum value of synaptic conductance, wij is the weight of the synaptic connection from
the ith neuron (or stimulus source) to the jth neuron, and tkj is the timing of the kth spike of the jth neuron. Here,
we use an α-function [16] f(x) with latency (transmission delay) τd and synaptic time constant τex = 2ms:

f(t) =

{

t−τd
τ2
ex

exp(− t−τd
τex

) if t > τd

0 otherwise.
(3)

In our study, the weights of the synaptic connections between neurons of the input layer and the output neuron
are modified by the STDP rule. STDP is a form of experimentally observed long-term synaptic plasticity, where
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FIG. 1. The pruning process on the dendrite of an output neuron in simulations with: fs = 30Hz, fn = 10Hz, α = 0.55, and
Tmax = 125ms. (a) Evolution of the peak conductances of all the STDP synapses. (b) The mutual information (MI) rate and
the average firing rate at different stages of the pruning process. Inset: The final distribution of peak synaptic conductances in
three different stages of the dendrite evolution: 0.5s, 5s, and 20s.

synapses are modified by repeated pairings of pre- and postsynaptic action potentials, and the sign and the degree of
the modification depend on their relative timing. A synapse is strengthened when the presynaptic neuron fires shortly
before the postsynaptic one, and weakened when this temporal order is reversed. The weight modification ∆wij is
described by the following equations:

∆wij(∆t) =

{

λ exp(−|∆t|/τ+) if ∆t ≥ τd
−λα exp(−|∆t|/τ−) if ∆t < τd.

(4)

wij is constrained within the range [0, 1], which ensures that the peak synaptic conductance gmwij is always positive
and can not exceed the maximum value gm = 2.0nS. ∆t is the temporal difference between the occurrence of the
postsynaptic action potential and the arrival of the presynaptic action potential, i.e. ∆t = tj−(ti+τd), where tj is the
spike time of the postsynaptic neuron j, τd is the delay time of the spike transmission from neuron i to neuron j, and
ti is the spike time of the presynaptic neuron i. λ is the learning rate. The time constants τ+ and τ− control the width
of the time window(s). Here, an asymmetric time window ( τ+ = 16.8ms and τ− = 33.7ms) is used for STDP, which
provides a reasonable approximation of the synaptic modification observed in experiment [3]. α, together with τ+ and
τ−, introduces a possible asymmetry between the scale of potentiation and depression. Note that the definition of α
here is slightly different from the standard definition of the α term in [4], where it was defined as the ratio of integrated
depression and potentiation in the learning window. As argued in [4], in order to obtain a stable competitive synaptic
modification, which means that uncorrelated pre- and postsynaptic spikes produce an overall weakening of synapses,
the integral of ∆ωij in STDP expression should be negative. A negative integral requires (ατ−/τ+) > 1.0.
It has been repeatedly reported that STDP can drive a globally connected network to a steady bimodal distribution

of synaptic weights if the neurons are stimulated by partially correlated spike trains [4, 10]. Here, we utilize a similar
strategy to simulate the synaptic pruning process. Neurons of the input layer are stimulated by temporally correlated
spike trains and independent stochastic spike trains, representing input signal and noise respectively. A simple method
is utilized to generate temporally correlated inputs, which makes it easier to manipulate the temporal scale of the
input correlation: We take a single Poisson spike process of mean rate fs, and then offset the specific timing of each
spike within this process by a single, independent value Td for each of the one hundred input neurons, where Td is
drawn randomly from a uniform distribution in the range [1ms, Tmax]. In this way, the temporal correlation scale is
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determined by the parameter Tmax. In addition, 100 stochastic Poisson spike processes with equal mean firing rate
of fn are also introduced as noise to the input neurons. This stimulation scheme combined with the aforementioned
negative integral of the STDP rule induces net weakening of synapses, while the additive nature of the STDP rule
generates a bimodal distribution of synaptic weights [17] (see fig. 1a,b).

To study the influence of the pruning process on information transfer, we calculate the mutual information between
input and output corresponding to the state of synaptic weights at different temporal ‘snapshots’ during their STDP-
driven evolution. In this paper, we only focus on the general performance of the refined dendrite on information
transfer, and try to eliminate the impact of other specific factors. Thus when we calculate the mutual information,
the synaptic weights of the dendrite are fixed to the weight distribution at that time, and uncorrelated stimuli are
adopted. We focus on the rates of information that the refined network can transfer, more specifically, the statistical
significance of how the responses of the output neuron vary with different stimulations of the input layer. Based on
this standpoint, we utilize a classical method [18–20] to calculate the mutual information.

One hundred 1.5s long spike trains with mean firing rate fs are generated by independently truncating from a
single Poisson spike train. These spatio-temporal spike patterns are then repeated one thousand times at regular
intervals, interleaved among one hundred 1500s long stochastic Poisson stimuli, whose mean firing rates are also
fs. Thus, the input signal at each synapse is composed of alternating repeated spike segments and stochastic spike
segments, each lasting 1.5s. In addition, noise is provided to each synaptic input as a stochastic Poisson spike process
with a mean firing rate of fn. In response to the segments of time varying stochastic stimuli, the spike train of the
output neuron varies, and this variability can be quantified by the entropy per unit time of the spike train Htotal.
As for the repeated spike pattern, a similar, but not identical, sequence of spikes can be obtained. The trial-to-
trial variability in the responses to the repeated stimulus is given by the conditional or noise entropy Hnoise. Then
the mutual information that the output spike train provides about the input signal is the difference between these
entropies, Iinfo = Htotal − Hnoise. In this paper, all estimates of entropy (H) and information (I) are reported as
entropy or information rates in units of bits per sec. To achieve a direct estimator of the entropy rate, we adopt
a well-known algorithm proposed in [14, 15], which combines context tree weighting algorithm with local Bayesian
entropy estimators. It makes few assumptions about the underlying neural dynamics and has been shown to exhibit
comparatively low bias on finite data sets.

Based on the measure of mutual information, we can compare the information transmission of different phases
during the pruning process. An example is shown in fig. 1. At the beginning of simulations, peak conductances of all
STDP synapses between the input layer and the output neuron are initialized to the maximum value gm = 2.0nS.
Then synapses afferent on the dendrite of the output evolve to a steady state. A large proportion of STDP synapses
decrease rapidly to the minimum synaptic conductance, while most of the rest approach the maximum value. This
can be regarded as a pruning process. Toward the end of simulations the distribution of peak synaptic conductances
becomes bimodal and remains almost constant except for tiny fluctuations. We take snapshots at certain intervals,
that reflect momentary states of the afferent synaptic weights. Then the information rates that different snapshots
can transfer are calculated using the aforementioned method. The results in fig. 1b show that the mutual information
rate increases as the firing rate decreases during the pruning process. In particular, the upslope of the information
curve has a significant inverse relationship with the depression of synaptic weights and the down slope of the firing
rate curve. The distributions of the peak synaptic conductances corresponding to three stages (the low point, the
rising step and the plateau) of the information curve are also shown in fig. 1, which indicates that synapse removal
contributes to improving information transfer in neural network.

The effect of “less can be more” in neural information transfer is not hard to predict in extreme cases. It is shown
that the choice of maximum synaptic conductance can have a significant effect on weight distributions [17], and may
subsequently affect information transfer. When the peak conductances of all synapses are so large that the spike
interval of the output neuron reaches the refractory period, one could obtain no information about the input stimuli.
On the other hand, if the dendrite becomes so sparse that the output neuron spikes rarely, its response is also trivial.
Therefore, there exists a tradeoff, which corresponds to the maximum rate of information transmission. Furthermore,
it is interesting to examine which properties of STDP modify the information transfer performance by modulating
the level of synaptic pruning. The information transfer rate corresponding to the final steady state of the dendrite is
examined in different configurations. We investigate two key parameters related to the performance of STDP: One is
the ratio between potentiation and depression, and the other is the maximum delay Tmax used in the generation of
temporally correlated stimuli. Moreover, to study the generality of these results with respect to the input firing rate,
various input firing rates and signal to noise ratio (SNR) values are also examined.

Fig 2 shows the results of multiple simulations, among which we vary α while keeping other parameters fixed.
Every data point denotes the information transfer rate corresponding to the final steady state of the dendrite in
each simulation. These results show similar phenomena and arrive at the same conclusion as in the study of pruning
process in our initial simulation experiment. Remarkably, the upslope of the information curve falls in the interval
0.47 < α < 0.5, where the ratio between potentiation and depression (τ+/ατ−) is decreasing from a dominance of
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FIG. 2. The mutual information at final steady states in simulations with different α and fixed Tmax(= 125ms). (a) The case
of fs = 30Hz and fn = 10Hz. Inset: The final distribution of peak synaptic conductances in three different stages of the curve.
(b) The results of different fs/fn with fixed SNR.

potentiation to balance. If the balance is maintained to a certain extent (0.5 < α < 0.6), the information transfer rate
is preserved in a plateau. The balance between the integral over potentiation and depression windows of the learning
rule can result in the bimodal weight distribution generated by additive STDP. When depression is significantly more
prevalent than potentiation, the information transfer rate decreases to a low level, because of the lack of effective
synapses.
Next, we study this case with stimuli of different firing rate but fixed SNR (see fig 2b). It is shown that the

maximum mutual information value achieved at each firing rate is similar, but there are significant differences in the
range of alpha values that provide this maximum information transmission rate - a wider range being achieved at
lower firing rates.
Besides alpha, Tmax can also influence the equilibrium distribution of synaptic weights dictated by the STDP rule.

If Tmax is very small, there will be a high correlation among different inputs and also between input and output, which
drives most synapses to approach the maximum weight. Conversely, a large Tmax can make the time delay between
different paths much larger than the time window of STDP, such that the stimuli can be regarded as uncorrelated spike
trains, which drives most synapses to approach the minimum weight. The results in fig. 3 show that the Tmax values
(hundreds of ms) which give the greatest information transfer performance are an order of magnitude higher than the
optimal STDP time constants (tens of ms). In this range of Tmax, the number of the synapses with non-trivial weight
is within the range [20,30]. As a consequence, the minimum time delay between different paths is within the range
[7ms, 20ms], which matches the time window of STDP. Moreover, the influence of Tmax on information transfer rate
also coincides with the aforementioned results (see fig 3a). Next, if we adopt a fixed firing rate fn for input noise while
incrementally increasing the firing rate of input signal fs, a higher SNR will lead to a larger information transfer rate
(see fig 3b).
In this paper, the effect of STDP-driven pruning on information transfer has been studied. We have focused on the

basic component of a feed-forward network, where neurons of the input layer are stimulated by temporally correlated
stimuli and synapses afferent on the dendrite of the output neuron are refined by STDP. For snapshots of the pruning
process, we calculated the mutual information between input and output spike trains with the context tree method.
It is shown that STDP-driven synaptic pruning can enhance information transfer, i.e. that, in terms of synaptic
connections, “less can be more”. Moreover, we have studied the influence of various STDP parameters on these
results, and found that there are two key factors: the balance between potentiation and depression dictated by the
learning rule, and the temporal scale of input correlation matching the time window of STDP. The significance of these
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FIG. 3. The mutual information at final steady states in simulations with different Tmax and fixed α(= 0.55). (a) The case of
fs = 30Hz and fn = 10Hz. Inset: The final distribution of peak synaptic conductances in 3 different stages of the curve. (b)
The results of different fs and fixed fn = 10Hz.

two factors and the function role of synapse removal are both fundamental problems relating to the computational
function of neural networks, and this paper has begun to answer them from an information theoretic perspective.
In this study, we have only considered additive STDP, as it has been demonstrated that multiplicative rules generate

no pruning [21]. Current experimental data is insufficient to fully support either an additive or multiplicative rule,
although some evidence does indicate that synaptic modifications are dependent on the initial weight [22]. This
limits the applicability of our results, and further work is required to explore the influence of multiplicative STDP on
information transmission. Furthermore, output firing rates in our simulations are generally higher than those observed
in vivo, as the scale of input firing rates, number of synaptic inputs, and relative scale of synaptic conductances adopted
here differ from those in real cortical neurons. Further simulations with a more realistic neuron model and parameter
choices are required to determine how well the results presented apply to real neuronal networks.
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