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We analyze the effects of transient stimulation on traveling waves in neural field equations. Neural
fields are modeled as integrodifferential equations whose convolution term represents the synaptic
connections of a spatially extended neuronal network. The adjoint of the linearized wave equation
can be used to identify how a particular input will shift the location of a traveling wave. This wave
response function is analogous to the phase response curve of limit cycle oscillators. For traveling
fronts in an excitatory network, the sign of the shift depends solely on the sign of the transient
input. A complementary estimate of the effective shift is derived using an equation for the time-
dependent speed of the perturbed front. Traveling pulses are analyzed in an asymmetric lateral
inhibitory network, and they can be advanced or delayed, depending on the position of spatially
localized transient inputs. We also develop bounds on the amplitude of transient input necessary to
terminate traveling pulses, based on the global bifurcation structure of the neural field.

PACS numbers: 87.19.lq,87.10.Ed,87.19.lj,87.19.lr

I. INTRODUCTION

Spatially structured activity in large neuronal popula-
tions subserves a number of functional and pathological
events in the brain [1]. In particular, traveling waves of
electrical activity have been observed in various sensory
and motor areas [2]. Sensory inputs have been shown to
initiate such events in olfactory [3] and visual [4] corti-
cal regions. However, it is not clear whether such waves
are a means of reloading the network for novel stimuli
or propagating the signal to other portions of cortex [5].
There is evidence to suggest that waves of cortical activ-
ity may serve as a “spotlight” searching for novel stimuli,
so the spatiotemporal location of an arriving stimulus can
be encoded by the phase of the wave [6]. The prepara-
tion of motor commands has also been shown to correlate
with the formation of propagating waves in primate mo-
tor cortex [7]. In particular, the latency and amplitude
of evoked waves appears to encode information regard-
ing the target of motion. The spatial organization of
neural populations can also be hijacked by pathological
events like propagated activity during epileptic seizures
[8]. One particular epilepsy hypothesis, presuming there
is some unhindered excitation in seizure-prone regions,
has been explored using in vitro studies of disinhibited
cortical slices [9]. Such paradigms have been very use-
ful for probing how external stimuli can initiate [10] and
modulate [11] traveling electrical waves.
Neural field models of large-scale cortical populations

have been quite successful at providing theory regard-
ing the formation of traveling waves of neural activity
[12, 13]. A seminal study by Wilson and Cowan, intro-
ducing a system describing average activity of a spatially
organized network, showed a combination of excitation
and inhibition can generate traveling pulses of activity
[14]. Amari was then able to analytically treat a version
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of this model under the assumption that the firing rate
nonlinearity in the system was a Heaviside function [15].
Analogous systems have been shown to support a num-
ber of spatiotemporal solutions like patterns reminiscent
of hallucinations [16, 17], traveling fronts [18–20], travel-
ing pulses [21], and stationary pulses [22]. One additional
detail to consider is the effects of finite axonal conduction
velocities by including delay terms in the evolution equa-
tions [21, 23, 24]. Also, negative feedback processes like
synaptic depression and spike frequency adaptation have
been introduced in some neural field models as auxil-
iary variables [12, 21, 25, 26]. These systems admit more
exotic behaviors like self-sustained oscillations [26, 27],
breathers emerging in the presence [28] or absence [29]
of stimuli, and spiral waves [30]. A wide variety of spa-
tiotemporal solutions arise in neural field equations in
the absence of external inputs.

Persistent inputs have been shown to generate be-
havior not present in the associated unstimulated neu-
ral field. For moving inputs, stimulus-locked traveling
waves can undergo a Hopf bifurcation beyond which trav-
eling breathers exist [31, 32]. Pulsating fronts can arise
when a spatially periodic stationary input is applied [33].
These results echo experimental findings that show exter-
nal electric fields can modulated the speed of traveling
waves in cortical slice experiments [11]. Recently, it was
shown that spatially homogeneous time-periodic inputs
give rise to hexagonal or rectangular patterns, depend-
ing on the period of the input [34], successfully describing
psychophysical experiments regarding flicker phosphenes
[35]. Few studies have spoken to the potential effects
of transient stimuli on spatiotemporal dynamics of neu-
ral fields [24]. In [23], it was shown numerically that
they can be used to remove topological defects from pat-
terned activity. Experimentally, transient stimuli have
been shown to functionally manipulate coherent neural
activity [3, 4] and may even serve to terminate patho-
logical waves present during epileptic seizures [36]. With
the advent of recent optogenetic techniques for abruptly
manipulating the activity of populations of neurons [37],
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it seems likely that the effect of transient stimuli on spa-
tiotemporal dynamics could be studied in a variety of in
vitro and in vivo contexts.
Thus, we propose to analyze the effects of transient

stimuli on coherent activity in neural field models. Our
analytical framework extends previous numerical studies
of transient stimuli in neural fields [23, 24] and makes
use of the zero-eigenmode of the adjoint as a response
function for spatially extended systems [20, 38, 39]. In
particular, we study how the speed and location of trav-
eling waves are affected, since such analyses could likely
be experimentally testable [11]. Some of our results even
speak to the critical stimuli necessary to terminate trav-
eling waves. The stimulus, in our models, represents a
short input of current from an electrode [10], rapid alter-
ation of an external electric field [11], or a brief activa-
tion of cells with light-sensitive ion channels [37]. Parts
of our theory apply to large amplitude stimuli, capable
of switching parts of the network on or off.
The paper is organized as follows. In section II, we in-

troduce a general neural field model that supports trav-
eling fronts and/or pulses. For transparency, we ana-
lyze some of the simplest systems that produce a par-
ticular dynamical behavior. However, our results can be
extended to more intricate models too. In section III, we
analyze an excitatory neural field equation that supports
traveling fronts. By deriving an effective response func-
tion, we can quantify the distance a front is advanced
or delayed as it depends on the amplitude and form of
a transient stimulus. In section IV, we analyze a spa-
tially periodic neural field with an asymmetric lateral
inhibitory weight kernel that supports traveling pulses.
Extending our analysis for fronts, we quantify the delays
or advances of the pulse to a spatially localized input and
derive the response function in the same way. Fronts in
the excitatory network can only be advanced by local
positive perturbations while pulses in a lateral inhibitory
network can be advanced or delayed, depending on the
spatial location of the perturbation. Considering the bi-
furcation structure of the system, we can also calculate
the critical inhibitory stimulus necessary to terminate the
pulse.

II. SCALAR NEURAL FIELD MODELS

Perhaps the simplest neural field model that ad-
mits spatiotemporally patterned activity is the one-
dimensional scalar model [15]

ut = −u+

∫ l

−l

w(x − y)f(u(y, t))dy + I(x, t), (1)

where u(x, t) represents the sum of synaptic inputs to po-
sition x at time t [13]. For the purposes of a transparent
exposition, we ignore the effects of finite axonal conduc-
tion velocities [21, 23, 24] and local negative feedback
[12, 21, 25, 26]. Spatial domains are often taken to be
the real line, so that l → ∞ [18], but some studies have

also addressed periodic domains where l = π [25]. The
strength of synaptic weights from neurons at position y
to neurons at x is encoded by the kernel w(x− y). While
w(x) is often considered to be an even function, it does
not have to be. For our studies of traveling fronts (where
l = ∞), we consider the exponential weight function

w(x) =
1

2
e−|x|. (2)

However, in our analysis of the periodic asymmetric net-
work (where l = π), we consider the shifted cosine weight
function

w(x) = A cos(x− φ), (3)

with amplitude A, where φ introduces a shift to the even
cosine function. A similar weight kernel was considered
in a study of directionally selective networks of visual
cortex [40], and there are several experimental studies
supporting the existence of functionally specific asymme-
tries in the spatial organization of synaptic inputs [41–
43]. The nonlinearity f(u) represents the relationship
between synaptic input and output firing rate. Saturat-
ing sigmoid functions are often considered as appropriate
representations of this firing rate function

f(u) =
1

1 + e−γ(u−θ)
, (4)

where γ and θ are the gain and threshold of the firing
rate function. In order to derive analytical results for our
studies of traveling waves, it is often useful to consider
the high gain limit γ → ∞ of (4) and employ a Heaviside
firing rate function [12, 13]

f(u) = H(u− θ) =

{

1 : u > θ,
0 : u < θ.

(5)

This mathematical convenience will allows us to explic-
itly calculate quantities that relate behaviors of traveling
waves to model parameters. We now discuss some of
our choices for the function form of the transient input
I(x, t). We find that systems receiving spatially homoge-
neous, temporally pulsatile stimuli

I(x, t) = I0δ(t) (6)

admit mathematical analysis. The intrinsic dynamics of
the network (1) exponentially filters this signal, so that
its effects are spread over the (infinite) window of time
following the stimulus. However, spatially localized stim-
uli like the square pulse

I(x, t) = I0H(∆x − |x− xp|)δ(t), (7)

with width ∆x and spatial location xp, provide more in-
teresting results. In this case, one can consider the effects
of perturbing a particular location on a wave. We also
consider spatially homogeneous perturbations that last a
finite amount of time ∆t given by

I(x, t) = I0(H(t)−H(t−∆t)), (8)
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in the case of traveling fronts.
We now develop theory for how transient inputs affect

the propagation of traveling waves. In particular, per-
turbation theory is used to approximate the long time
location of the leading edge of a traveling wave.

III. TRAVELING FRONTS IN EXCITATORY

NEURAL FIELD

The existence and stability of traveling fronts in neu-
ral fields is well studied [18–21, 26, 31, 44]. However,
there have been very few studies regarding the effects
of transient stimuli on them [23, 24]. In [31], it was
shown that fronts may lock to moving step-shaped inputs
if their amplitude is large enough and the input speed is
close enough to the natural wave speed. Recently, effects
of external noise on the speed and variance of traveling
fronts has been studied [33, 45]. The detailed analysis
that we present in this section leads us to several conclu-
sions, which we state now. The long-term consequence
of transient inputs is that they effectively shift the lo-
cation of fronts. We study only progressing fronts, and
the direction of the shift depends on whether the input is
excitatory or inhibitory. Finally, there is a function that
relates the shift of the front to the amplitude and sign of
the input, which we approximate.

A. Wave response function : Adjoint

In the absence of inputs (I(x, t) = 0), equation (1)
has a unique traveling front solution u(x, t) = U(x− ct)
with speed c, provided [18]: (i) f ∈ C1 and f ′′ > 0;
(ii) the function −u + f(u) has only three fixed point
u0 < u1 < u2 with u0,2 stable; and (iii) w ∈ C is even and
positive function with

∫∞

−∞
w(x)dx < ∞. Conditions (i)

and (ii) are satisfied for the sigmoid (4) with finite gain.
Even though the Heaviside (5) does not satisfy these, the
wavefront can be calculated explicitly [12, 18, 20].
Since equation (1) possesses a traveling front solution

u(x, t) = U(ξ), where ξ = x − ct, when I(x, t) = 0, we
have

−cUξ = −U +

∫ ∞

−∞

w(ξ − y)f(U(y))dy. (9)

We can consider how transient inputs alter a front using
perturbation theory on (1). Assuming 0 < |I(x, t)| ≪ 1,
we rewrite I(x, t) = εJ(x, t), where 0 < ε≪ 1. Changing
variables in (1) from (x, t) to (ξ, t), we have an evolution
equation for u(ξ, t) given by

−cuξ + ut = −u+

∫ ∞

−∞

w(ξ − y)f(u(y, t))dy + εJ(ξ, t).

(10)

Now, by performing the perturbation expansion

u(ξ, t) = U(ξ − εν(t)) + εu1(ξ, t) + ε2u2(ξ, t) + · · · ,

(11)

where U(ξ−εν(t)) satisfies (9) and η(t) = εν(t) is a small
time-dependent shift function. Plugging the expansion
(11) into (10), we find the first-order term u1 satisfies
the inhomogeneous linear equation

−
∂u1(ξ, t)

∂t
+ Lu1(ξ, t) = −

dν

dt
Uξ − J(ξ, t), (12)

where L is the linear operator

Lu = c
du

dξ
− u+

∫ ∞

−∞

w(ξ − y)
df(U(y))

dU
u(y)dy.

A bounded solution of equation (12) will exist if its right-
hand side is orthogonal to all the elements of the null-
space of the adjoint operator L∗ [18, 20]. It is straight-
forward to calculate the adjoint with respect to the L2

inner product as

L∗u = −c
du

dξ
− u+

df(U)

dU

∫ ∞

−∞

w(ξ − y)u(y)dy.(13)

It can be proved that L∗ also has a one-dimensional
null-space [18], which is spanned by some function V (ξ).
Therefore, equation (12) has a bounded solution if

∫ ∞

−∞

dU

dξ
V (ξ)dξ

dν

dt
= −

∫ ∞

−∞

J(ξ, t)V (ξ)dξ.

Thus, by isolating the dν
dt term and integrating in time,

we find the shift η = εν to the traveling front resulting
from some small transient input I = εJ will be

η(t) = −

∫ ∞

−∞

V (ξ)

∫ t

0

I(ξ, s)dsdξ

∫ ∞

−∞

dU

dξ
V (ξ)dξ

, (14)

where we have reabsorbed the ε. For temporally pulsatile
inputs, we can also calculate η explicitly. In particular,
we analyze the case where f(u) = H(u−θ), since a great
deal can be computed directly.

B. Fronts for Heaviside firing rate

The traveling front solution in the case of a Heaviside
firing rate (5) will be superthreshold (U(ξ) > θ) on the
infinite domain ξ ∈ (−∞, 0), crossing threshold at zero
so that U(0) = θ. We can choose the threshold crossing
point arbitrarily, due to the translation invariance of (1)
when I = 0. This yields [20]

−cUξ = −U +

∫ 0

−∞

w(ξ − y)dy,

which can be solved using an integrating factor [20]

U(ξ) = eξ/c

(

θ −
1

c

∫ ξ

0

e−y/c
∫ ∞

y

w(x)dxdy

)

. (15)
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FIG. 1. Profile of front U(ξ) in traveling wave coordinate ξ
for threshold θ = 0.2 in scalar neural field (1) with Heaviside
firing rate (5).

Restricting our study to progressing fronts (c > 0), we
can require boundedness as ξ → ∞ using the condition
on the threshold

θ =
1

c

∫ ∞

0

e−y/c
∫ ∞

y

w(x)dxdy, (16)

so that (15) becomes

U(ξ) =
1

c

∫ ∞

0

e−y/c
∫ ∞

y+ξ

w(x)dxdy. (17)

For the exponential weight function (2), the threshold
condition (16) becomes θ = 1/(2(c + 1)), which we can
solve explicitly for the front speed

c =
1

2θ
− 1, (18)

where θ ∈ (0, 1/2) so that c ∈ (0,∞). The explicit
expression for the traveling front (17), in terms of the
threshold θ, will be

U(ξ) =

{

θe−ξ, ξ > 0,

1−
(1− 2θ)2

1− 4θ
e2θξ/(1−2θ) + θ

1− 4θ
eξ, ξ < 0.

(19)

For illustrative purposes, we plot the front (19) in Fig. 1;
pictures for similar models can also be found in [20, 21,
27, 46]. In particular, the threshold θ of the firing rate
function f(u) = H(u− θ) is denoted in Fig. 1. For some
of our calculations regarding the response of traveling
fronts to transient stimuli, we pay close attention to the
interaction of the field u with the threshold θ.
We now proceed to examine the effects different classes

of perturbation have upon the location of the travel-
ing front in the coordinate ξ. There has been some re-
cent successful work concerning the effect of periodic and

random inhomogeneities on the speed of front in neu-
ral fields that focuses on the dynamics of front interface
[33, 47, 49]. Our work employs alternative strategies.

C. Spatially homogeneous inputs: Adjoint

To start, we consider the effect of spatially homoge-
nous perturbations on the location of the front in its wave
coordinate frame. This allows us to explore the relation-
ship between the amplitude of a transient stimulus and
the extent to which the front is shifted. It is straightfor-
ward to apply equation (14) to find the shift of the wave
as it depends upon the stimulus I(x, t), since using the
Heaviside firing rate (5) allows us to compute constituent
functions analytically. The spatial derivative of the front
profile is

dU

dξ
=

{

−θe−ξ, ξ > 0

−
2θ(1− 2θ)
1− 4θ

e2θξ/(1−2θ) + θ
1− 4θ

eξ, ξ < 0,

(20)

and the null space of the adjoint equation (13) is [20]

V (ξ) = −H(ξ)e−2θξ/(1−2θ). (21)

We now plug (20) and (21) into our formula (14) for η(t)
and find that our adjoint approach approximates the re-
sponse of the front to spatially homogeneous, temporally
pulsatile stimuli (6) (such as shown in Fig. 2) to be

η(t) = η∞ =

∫ ∞

0

e−2θξ/(1−2θ)I0dξ

∫ ∞

0

e−2θξ/(1−2θ)(θe−ξ)dξ

=
I0
2θ2

. (22)

Our adjoint approach predicts that the shift to the front
scales linearly with the amplitude of spatially homoge-
neous but temporally pulsatile inputs. We show this
prediction along with shifts calculated from numerical
simulations in Fig. 3.
In the case of inputs with finite temporal width (8),

our perturbative approach predicts

η(t) =
I0
2θ2

[∆t + (t−∆t)H(∆t − t)] . (23)

Therefore, the shift depends linearly upon perturbation
amplitude and time width. Our adjoint approach gen-
erates a linear response function for transient stimulus’
effect on the traveling front, capturing quantitative be-
havior for sufficiently small perturbations (see Fig. 4).
The appearance of the zero-eigenmode solution to the ad-
joint in our response function should not be surprising, as
previous studies of spatially extended systems have em-
ployed it to analyze effects of perturbative inputs [38, 48].
However, as we show, we can generate more accurate pre-
dictions by examining the interaction of the stimulus with
the time-dependent speed of the traveling front.



5

FIG. 2. (Color online) (a) Traveling front in network (1) with exponential weight (2), Heaviside firing rate (5), and threshold
θ = 0.2 (c = 1.5) receiving a spatially homogeneous, temporally pulsatile stimulus (6) of amplitude I0 = 0.15. Notice transient
change in the front’s shape, which eventually returns to the translationally invariant but advanced front. (b) Comparing the
perturbed front’s interface u(x, t) = θ to the unperturbed front’s. Equation (1) was numerically evolved using a fourth order
Runge Kutta method with dt = 0.001 and Simpson’s rule for the convolution with dx = 0.01 and free boundaries.

FIG. 3. (Color online) Wave response function η predicted for spatially homogeneous pulsatile input (6). Shift’s (a) long-time
behavior η∞ and (b) time dependence η(t) as predicted by adjoint (dot-dash) (22), time-dependent speed (solid) (36) theory
against numerical simulations (circles). Threshold θ = 0.2, so speed c = 1.5. Numerical method is described in Fig. 2.

D. Spatially homogeneous inputs: Speed

We now explore another interpretation of the resulting
shift to the front by considering a front, resulting from
the perturbation (6), with a time-dependent speed ψt(t).
We derive this speed using the full nonlinear equation for
the speed in terms of a time-dependent threshold ϑ(t).

To motivate the ansatz we employ to calculate the
time-dependent speed, we start by studying (1) receiv-
ing a perturbation (6) when u(x, t) = 0 for t < 0. When

the firing rate is Heaviside (5) and I0 < θ, we have

ut = −u+H(u− θ)

∫ ∞

−∞

w(x − y)dy + I0δ(t),

which reduces to

ut = −u+ I0δ(t), (24)

since H(I0 − θ) = 0 and u(x, t) ≤ I0. Notice, equation
(24) is equivalent to (1) linearized about u = 0 with the
initial condition u(x, t) = I0. The solution to (24) is
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FIG. 4. (Color online) Wave response function η(t) for
front (19) perturbed by spatially homogeneous, temporally
finite input (8) calculated using adjoint (23) (dot-dash), time-
dependent speed (38) (solid), and from numerical simulations
(circles). Threshold θ = 0.2 here, so speed c = 1.5. Numerical
method is described in Fig. 2.

u = I0H(t)eλt where λ = −1, the nonzero eigenvalue of
the linearization of (1).
With this in mind, we will assume that when a travel-

ing front solution to (1) is perturbed by (6), the resulting
dynamics evolves as

u(x, t) = U(ζ) + I0H(t)e−t, ζ = x− ψ(t), (25)

where ψ(t) may be nonlinear. We find the time derivative
of (25) is

∂u(x, t)

∂t
= −

dψ

dt
Uζ + I0(δ(t)−H(t)e−t). (26)

Thus, plugging the expression (25) into the evolution
equation (1) yields

−
dψ

dt
Uζ + I0(δ(t)−H(t)e−t) = −U − I0H(t)e−t (27)

+

∫ ∞

−∞

w(ζ − y)H(U(y) + I0H(t)e−t − θ)dy + I0δ(t),

for f(u) = H(u − θ). Thus, the ansatz (25) gives us an
equation for the modified front solution U(ζ), once we
simplify (27), to be

−
dψ

dt
Uζ = −U +

∫ ∞

−∞

w(ζ − y)H(U(y)− ϑ(t))dy,

(28)

where

ϑ(t) = θ − I0e
−t (29)

is a time-dependent threshold. We now break the transla-
tion invariance of (28) by fixing the location of the thresh-
old crossing point at ζ = 0 in the wave coordinate frame,

so that

−
dψ

dt
Uζ = −U +

∫ 0

−∞

w(ζ − y)dy. (30)

Our analysis now proceeds analogously to the case of
constant threshold and speed, carried out in section III B.
We solve equation (30) explicitly using an integrating
factor

U(ζ) = eζ/ψt

(

ϑ(t)−
1

ψt

∫ ζ

0

e−y/ψt

∫ ∞

y

w(x)dxdy

)

.

(31)

For progressing fronts (ψt > 0), boundedness can be en-
sured with the time-dependent threshold condition

ϑ(t) =
1

ψt

∫ ∞

0

e−y/ψt

∫ ∞

y

w(x)dxdy. (32)

For the exponential weight function (2), we can evalu-
ate the threshold condition (32) to find a nonlinear re-
lationship between the time-dependent speed ψt(t) and
the time-dependent threshold ϑ(t) given by

1

2(ψt(t) + 1)
= ϑ(t) = θ − I0e

−t. (33)

We can isolate the time-dependent wave speed in equa-
tion (33) to find

ψt(t) =
1

2(θ − I0e−t)
− 1, (34)

where we require θ ∈ (0, 1/2) and θ − I0 ∈ (0, 1/2), so
that ψt(t) ∈ (0,∞). Subtracting the unperturbed front’s
speed c, given by (18), from this expression gives us the
difference between the time-dependent perturbed wave’s
speed and the unperturbed wave’s

ψt(t)− c =
I0e

−t

2θ(θ − I0e−t)
. (35)

To compute the amount of shift a front will undergo fol-
lowing the spatially homogenous perturbation, we need
to integrate this difference (35) with respect to time

η(t) =

∫ t

0

(ψs(s)− c)ds =

∫ t

0

I0e
−s

2θ(θ − I0e−s)
ds

=
1

2θ
ln

[

θ − I0e
−t

θ − I0

]

. (36)

The nonlinear time-dependent speed calculation approx-
imates the shift of the front much better because it con-
siders higher order effects of the input than the adjoint
approximation does (Fig. 3). To more accurately cap-
ture effects of the input, one must perturb about the front
with speed ψ(t) given by (34).
Notice that, by taking the limit of (36) as t→ ∞, and

Taylor expanding in I0, we have

η∞ =
1

2θ
ln

θ

θ − I0
=
I0
2θ

+
I20
4θ3

+
I30
6θ4

+ · · · . (37)
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FIG. 5. (Color online) Traveling front’s wave response function η∞ for a spatially localized input (7) for (a) ∆x = 0.4 and (b)
∆x = 1, comparing adjoint theory (39) (line) to numerical simulations (circles). Associated front (19) is also plotted, when
θ = 0.2 (dashed). Numerical method is described in Fig. 2.

Thus, the linear term of the long-time behavior of the
shift predicted by our time-dependent speed approxima-
tion is exactly that given by the adjoint approximation
(22). Essentially, the time-dependent speed approxima-
tion (36) improves by taking into account higher order,
time-dependent effects of the spatially homogeneous per-
turbation, as shown in Fig. 3.

Analyzing effects of a spatially homogeneous stimulus
of finite time width (8), we can also use this approach.
As before, we derive a time-dependent wavespeed ψt(t)
as determined by the time-dependent threshold

ϑ(t) =

{

θ − I0(1− e−t) : t ∈ [0,∆t]
θ − I0(e

∆t − 1)e−t : t ∈ [∆t,∞).

We use the threshold (38) to calculate the difference be-
tween the modified time-dependent speed ψ(t) of the
front and the unperturbed wavespeed c as

ψt(t)− c =















I0(1− e−t)
2θ(θ − I0(1− e−t))

: t ∈ [0,∆t]

I0(e
∆t − 1)e−t

2θ(θ − I0(e
∆t − 1)e−t)

: t ∈ [∆t,∞).

Integrating (38), we can compute the time-dependent
shift

η(t) =

∫ t

0

(ψs(s)− c)ds

=

∫ min(t,∆t)

0

I0(1− e−s)

2θ(θ − I0(1− e−s))
ds

+

∫ max(t,∆t)

∆t

I0(e
∆t − 1)e−s

2θ(θ − I0(e∆t − 1)e−s
ds,

and evaluating the integrals yields

η(t) =
I0 min(t,∆t)

2θ(θ − I0)
(38)

−
1

2(θ − I0)
ln

[

θ

θ − I0(1− e−min(t,∆t))

]

+
1

2θ
ln

[

θ − I0(e
∆t − 1)e−max(t,∆t)

θ − I0(1− e−∆t)

]

.

Note in the limit t→ ∞, (38) becomes

η∞ =
I0

2θ(θ − I0)

(

∆t − ln

[

θ

θ − I0(1− e−∆t)

])

.

This approach captures the time-dependence and long-
time behavior of the shift slightly better than the adjoint
calculation (Fig. 4).

E. Spatially localized inputs: Adjoint

In the case of spatially localized inputs, we can exam-
ine the effect of different stimulus locations on the shift
of the traveling front. This reveals the true power of our
adjoint approach, providing approximations to the resul-
tant shift of the front’s location. In fact, this provides
us with a picture similar to the idea of a PRC, where
phase shift amplitudes depend on the locations of per-
turbations in the phase of a limit cycle [50]. The adjoint
associated with the traveling front solution, in this case
V (ξ) given by (21), acts as a linear filter through which
the transient stimulus is passed to determine its effect.
The time-dependent speed approximations would be te-
dious to develop for spatially localized inputs, especially
since such inputs would generate multiple interfaces.
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To study the front’s response to spatially localized in-
puts, we simply plug the adjoint (21) and the spatial
derivative of the front (20) into our wave response func-
tion (14). In the case of a spatially localized, pulsatile
stimulus (7), we find this approach approximates the shift
to the wave as

η∞ =
I0
θ2



























e
−

2θxp

1−2θ sinh 2θ∆x
1− 2θ

: xp > ∆x

1− e
−

2θ(xp+∆x)
1−2θ

2 : xp ∈ (−∆x,∆x)

0 : xp < −∆x,

(39)

so inputs applied solely to the superthreshold region of
the front do not shift it at all. We plot this theoretical
prediction along with the results of numerical simulations
in Fig. 5. By analogy with phase response curves, the
wave response function of the traveling front here is “type
I,” since it is non-negative. Only the sign of the perturba-
tion determines the sign of the shift; the spatial location
only affects the amplitude of the shift. This is consistent
with the non-negativity of the exponential weight func-
tion (2). Notice also that as the width of the stimulus is
increased, the peak of the wave response function shifts
rightward. In our study of traveling pulses, we will find
the sign of the wave response function can depend on the
spatial location of perturbations.

IV. TRAVELING PULSES IN LATERAL

INHIBITORY NEURAL FIELD

We now study the effects of transient inputs on travel-
ing pulses in (1) with an asymmetric weight kernel (3), for
l = π. Existence and stability of traveling pulse solutions
in neural fields are well studied [21, 27, 46] along with the
effects of periodic inhomogeneities on their speed [51].
However, there has yet to be a substantial study of tran-
sient inputs on their behavior. Recently, the effect of
spatial inhomogeneities in parameters was considered as
a model of epileptic tissue [52]. Conceivably, the travel-
ing pulses generated by regions of cortex prone to seizures
could be controlled by some transient input to reduce
pathological effects of such rogue activity [53].

Here, we find that the effect of stimuli on pulse solu-
tions can be more intricate than upon fronts. This comes
from lateral inhibition we introduce and the fact that
a pulse has both a front and back. The two interfaces
of the wave afford more opportunity for small perturba-
tions to have considerable effects. Neural field models
that generate traveling pulse solutions usually require a
recovery variable [21, 26, 29, 46]. Here we consider a cou-
pling asymmetry with lateral inhibition [40]. This leads
to more complicated dynamics than fields that only sup-
port fronts, even though the evolution equations are still
scalar.

A. Wave response function: Adjoint

For a model of a neuronal network with traveling
pulses, we employ a neural field with asymmetric cou-
pling (w(x) 6= w(−x)). Asymmetric coupling has been
studied before as a model of direction selectivity [40]
and a unidirectional circuit for the spread of synchrony
[52]. Studying (1) in the absence of inputs (I(x, t) = 0),
we now consider traveling pulse solutions. There are no
general results for the existence of traveling pulses with
smooth nonlinearities, but pulses can be explicitly cal-
culated with the Heaviside nonlinearity [54]. Supposing
the network supports a traveling pulse with speed c, then
u(x, t) = U(ξ) where ξ = x − ct, the traveling wave co-
ordinate, and U(π) = U(−π). Plugging this into (1), we
have

−cUξ = −U +

∫ π

−π

w(ξ − y)f(U(y))dy. (40)

Notice, this is the same as equation (9) up to assumptions
regarding the form of U(ξ), w(ξ), and the domain. In
fact, if we consider the alterations that transient inputs
to (1) will have upon the corresponding traveling pulse
solution, the form of the shift η to the wave is derived in
the same way it was in the case of fronts. Therefore, to
first order, the shifted pulse evolves in time as U(ξ−η(t)),
where the shift η(t) is given by

η(t) = −

∫ π

−π

V (ξ)

∫ t

0

I(ξ, s)dsdξ

∫ π

−π

dU(ξ)

dξ
V (ξ)dξ

, (41)

where V (ξ) is the null space of the adjoint operator

L∗u = −c
du

dξ
− u+

df(U)

dU

∫ π

−π

w(y − ξ)u(y)dy. (42)

The adjoint operator L∗ has a similar form to the trav-
eling front case except for the assumptions made upon
the functions involved. The traveling wave U(ξ) is now
a pulse, and the weight function w(ξ) is now asymmetric
and includes lateral inhibition.

B. Pulses for Heaviside firing rate

For simplicity, we now consider traveling pulses in an
asymmetric ring model with a Heaviside firing rate (5).
In the case of a symmetric kernel, the model has been
used to describe orientation tuning in visual cortex [25].
Note, a similar model was studied previously in [40], as a
representation of a directionally selective network. Trav-
eling pulse solutions u(x, t) = U(ξ) to (1) with weight
(3) and l = π will have superthreshold region of width
∆, which we choose to lie at the rightmost edge of the
domain ξ ∈ (π −∆, π), such that

−cUξ = −U +A

∫ π

π−∆

cos(ξ − y − φ)dy. (43)
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FIG. 6. Stable traveling pulse solution of neural field (1) with asymmetric weight (3) is separated from the rest state u = 0 by
the unstable traveling pulse solution (separatrix) for φ = π/4. (b) Widths ∆ of stable (solid) and unstable (dashed) traveling
pulse solutions corresponding to a given level of weight asymmetry φ. Other parameters are θ = 0.3 and A = 0.5.

Solving (43) with an integrating factor, we find

U(ξ) =
2 sin

(

∆
2

) [

c sin
(

ξ + ∆
2 − φ

)

− cos
(

ξ + ∆
2 − φ

)]

c2 + 1
.

(44)

Applying the threshold conditions U(π−∆) = U(π) = θ,
we can use (44) to generate a solvable set of equations
for the wave speed c and pulse width ∆ given by

2A sin
(

∆
2

) [

cos
(

∆
2 − φ

)

− c sin
(

∆
2 − φ

)]

c2 + 1
= θ, (45)

2A sin
(

∆
2

) [

cos
(

∆
2 + φ

)

+ c sin
(

∆
2 + φ

)]

c2 + 1
= θ. (46)

Upon subtracting the (45) from (46), we find

2A(cos∆− 1)

c2 + 1
[sinφ− c cosφ] = 0.

Excluding the solution cos∆ = 1, by noting this will not
solve the two constituent equations, we find c = tanφ
will be the wave speed. Now, adding (45) and (46),

2A sin∆(cosφ+ c sinφ)

c2 + 1
= 2θ,

we have an equation for the pulse width ∆ in terms of
parameters

sin∆ =
θ(c2 + 1)

A(cosφ+ c sinφ)
=

θ

A cosφ
,

so there are two pulse widths given on a restricted domain

∆ = ∆u = sin−1 [(θ/A) secφ] (narrow)

∆ = ∆s = π − sin−1 [(θ/A) secφ] (wide)

for φ ∈ [0, | cos−1 θ/A|]. Upon plugging in the expression
for c and simplifying using trigonometric identities

U(ξ) = A cosφ(sin ξ − sin(ξ +∆)). (47)

We plot both existing pulses in Fig. 6(a). Linear stability
of the traveling pulses could be computed using Evans
functions [44, 55]. For brevity, we note that in numerical
simulations we observe the wider pulse is stable (∆s), and
the narrow pulse is unstable (∆u), forming a separatrix
between the rest state and the stable pulse. We depict
the dependence of the pulse width upon the asymmetry
φ of the weight kernel in Fig. 6(b), showing the two
pulse branches terminate at a saddle-node bifurcation for
a critical value of φ.

C. Spatially localized inputs

We now consider the effect of a spatially localized, pul-
satile stimulus

I(x, t) = H(∆x − |x− xp|)δ(t), x ∈ (−π, π), (48)

on the traveling pulse solution (47). Interestingly, since
the spatial domain is periodic, we arrive at a picture more
similar to the PRC of a limit cycle oscillator than in the
front case. In contrast to excitatory neural fields, where
the shift is always the same sign as the stimulus, waves
in networks with excitation and inhibition can be shifted
positively or negatively with a positive stimulus. To em-
ploy our wave response function (41), we first compute
the spatial derivative of the pulse solution

dU

dξ
= A cosφ(cos ξ − cos(ξ +∆)).
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FIG. 7. (Color online) Wave response function η∞ for traveling pulse in asymmetric neural field computed using adjoint theory
(50) (solid) and numerical simulations (circles). Input is (48) with parameters (a) I0 = 0.1, ∆x = 0.2 and (b) I0 = 0.02, ∆x = 1.
Scaled profile of associated pulse (47) (dashed) is plotted for the parameters θ = 0.3, A = 0.5, and φ = π

4
. Equation (1) is

numerically evolved using fourth order Runge Kutta with dt = 0.01 and Simpson’s rule for the convolution with dx = 0.01 and
periodic boundaries.

Plugging the Heaviside firing rate (5), asymmetric cosine
weight (3), and traveling pulse (47) functions into the
null equation of the adjoint (42), we have the system

cVξ + V = C(−π)δ(ξ + π) + C(π −∆)δ(ξ − π +∆)

C(ξ) =
A

|U ′(π)|

∫ π

−π

cos(y − ξ − φ)V (y)dy,

which allows us to compute the null space V (ξ) of the
adjoint operator (42). The homogeneous version of the
left hand side has solutions of the form Be−ξ/c. Along
with the delta functions on the right hand side and the
2π-periodicity, this suggests a solution of the form

V (ξ) =
(

H(ξ + π) + e−
2π
c + e−

4π
c + · · ·

)

e−
π+ξ
c

+ α
(

H(ξ − π +∆) + e−
2π
c + e−

4π
c + · · ·

)

e
π−∆−ξ

c .

The two infinite series arise from the fact that exponen-
tial functions originating at ξ = π − ∆ and ξ = −π, in
effect, wrap around the domain indefinitely due to peri-
odicity. Plugging this into our adjoint equation, we can
self-consistently determine the constant α. We make use
of the geometric sum

∞
∑

n=1

e−
2nπ
c =

1

2

(

coth
(π

c

)

− 1
)

.

After a straightforward calculation, we find

(c− C(−π))δ(ξ + π) + (αc− C(π −∆))δ(ξ + π −∆) = 0

where

C(−π) =
c

1− cos∆
[1 + α cos∆]

and

C(π −∆) =
c

1− cos∆
[cos∆ + α] .

Requiring self-consistency, we find α = −1, so that

V (ξ) =

(

H(ξ + π) +
coth(π/c)− 1

2

)

e−
π+ξ
c

−

(

H(ξ +∆− π) +
coth(π/c)− 1

2

)

e
π−∆−ξ

c .

Now, we have a periodic, albeit discontinuous, response
function that takes on both positive and negative values.
Notice, for homogeneous inputs I(x, t) = I0δ(t),

η∞ = −

I0

∫ π

−π

V (ξ)dξ

∫ π

−π

dU(ξ)

dξ
V (ξ)dξ

= 0, (49)

so there is no predicted shift. However, when we consider
spatially localized pulsatile stimuli (48), our adjoint ap-
proach approximates the response function (41) of the
pulse as

η∞ = −I0
P+(xp)− P−(xp)

2A cos3 φ(cos∆− 1)
(50)

for the piecewise-defined functions

P+(xp) =

{

H+e
−(π+xp)/c : xp > ∆x − π

H−e
−(π+xp)/c + E(−π) : xp < ∆x − π

and

P−(xp) =







H+e
(π−∆−xp)/c : xp > p+

H−e
(π−∆−xp)/c + E(π −∆) : xp ∈ (p−, p+)
H−e

(π−∆−xp)/c : xp < p−
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FIG. 8. (Color online) Traveling pulse (47) terminated by a spatially homogeneous pulsatile stimulus I(x, t) = −I0δ(t− tp). (a)
Numerical simulation of asymmetric ring neural field u(x, t) stimulated at tp = 10 with amplitude large enough to terminate
pulse I0 > I∗0 . Other parameters are θ = 0.3, A = 0.5, and φ = π/4. (b) Illustration of instantaneous effect of pulsatile stimulus
on the profile of the stable traveling pulse Us(ξ), where its new width is less than the unstable traveling pulse’s width ∆u.
Numerical method is described in Fig. 7.

where we denote the domain points p± = π − ∆ ± ∆x

and define the functions

H± =
(

coth
(π

c

)

± 1
)

sinh

(

∆x

c

)

,

E(ξ) = 1− e(ξ−xp−∆x)/c.

Note, we also exclude the case of wide stimuli, so that
2∆x < ∆ and 2∆x < π−∆. A scaled version of the wave
response function (50) is plotted in Fig. 7 along with the
stable traveling pulse solution. Stimuli that arrive at
the front (back) of the pulse first will advance (delay)
the pulse. Notice this matches results from numerical
simulations very well.

As opposed to the case of the traveling front in an
excitatory network, the wave response function of the
traveling pulse in the asymmetric ring network changes
sign. Thus, excitatory inputs may advance or delay the
input depending on their spatial location. Here we point
out an analogy between our wave response function and
the phase response curve (PRC) of limit cycle oscillators
derived from spiking neuron models [50, 56]. Catego-
rization of PRCs identifies them as either type I, where
positive stimuli only advance the phase, or type II, where
an advance or delay of phase can occur. By analogy, our
wave response functions seem to be type II for pulses
in networks with inhibition and type I otherwise, as in
the case of fronts. In a related context, using a nonlin-
ear Fokker-Planck equation, [39] recently found that the
bifurcation structure of a coupled oscillator population
determined whether its sensitivity function was type I or
type II.

D. Terminating pulses

To this point, we have considered how transient stimuli
elicit perturbative changes to the structure of traveling
waves. We now study how transient stimuli may serve to
terminate traveling pulses, so that the structure of the
pulse is permanently altered and the system settles into
a rest state (see Fig. 8(a)). For a spatially homogeneous,
pulsatile stimulus, I(x, t) = −I0δ(t) (note negativity),
we consider the fact that the unstable traveling pulse
is a separatrix of the underlying dynamical system (1).
Recall, equation (49) shows small perturbations by such
a stimulus do not shift the location of the wave. However,
transiently forcing the stable propagating pulse strongly
enough, so that it has width less that the separatrix’s
width, may cause the structure to collapse to the rest
state.

This motivates us to look for solutions to the equation
Us(ξI) = Us(ξI + ∆u), where Us is the stable traveling
pulse and ∆u is the unstable traveling pulse width (see
Fig. 8(b)). To solve for ξI , we first express the stable
traveling pulse in terms of free parameters by plugging
in the width ∆s = π − sin−1((θ/A) sec φ) to yield

Us(ξ) = A cosφ(sin ξ + sin(ξ − sin−1[(θ/A) secφ])).

Then, simplifying the equation U(ξI) = U(ξI+∆u) yields

sin
(

ξI − sin−1[(θ/A) secφ]
)

= sin
(

ξI + sin−1[(θ/A) secφ]
)

π − ξI + sin−1[(θ/A) secφ] = ξI + sin−1[(θ/A) secφ]

ξI =
π

2
.
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FIG. 9. (Color online) (a) Critical terminating stimulus amplitude I∗0 predicted based on separatrix theory (51) (line) and
computed with numerical simulations (circles) for various threshold θ values. (b) Critical terminating stimulus width ∆∗

I

predicted by (53) (line) and computed using numerical simulations (circles) for various threshold θ values. We assume here
that the amplitude of the stimulus satisifies the inequality (52). Weight amplitude A = 0.5. Numerical method is described in
Fig. 7.

Therefore, the associated value of Us is

Us

(π

2

)

= A cosφ
(

cos
(

sin−1((θ/A) sec φ)
)

+ 1
)

= A cosφ

[

√

1−
θ2

A cos2 φ
+ 1

]

.

This indicates that the minimal spatially homogeneous
stimulus amplitude I∗0 required to shut off a traveling
pulse is given by the equation θ = Us(π/2)− I∗0 , so

I∗0 = A cosφ

[

√

1−
θ2

A2 cos2 φ
+ 1

]

− θ. (51)

We plot this along with numerically determined critical
stimulus amplitudes in Fig. 9(a). As the parameter φ is
increased to the saddle-node bifurcation point, the crit-
ical stimulus amplitude needed to terminate the pulse
decreases toward zero.
An alternative paradigm for transient stimuli consid-

ers a long but finite forcing of the network. Presuming
the stimulus lasts longer than the relaxation time of the
neural field, we can think of shutting off the stable trav-
eling pulse by, in effect, sliding it off of the stable branch
of pulses, past the saddle-node bifurcation in parameter
space. Therefore, the effective threshold of the network
simply has to be higher than the threshold value of the
saddle-node bifurcation θSN = A cosφ. Therefore, a long
but transient stimulus could kill a pulse if its amplitude
I0 + θ > θSN , equivalently I0 > A cosφ− θ, as long as it
lasts a sufficient amount of time.
For pulsatile stimuli of finite width

I(x, t) = −I0δ(t)H(ξ − π +∆I),

at the right edge of the domain, it is only necessary to
narrow the pulse below the unstable pulse’s width. In
particular, if we consider a rectangular region of negative
stimulus, its amplitude must exceed the maximal value
of Us, and it must be wider than ∆s−∆u. Thus, as long
as the stimulus amplitude satisfies the inequality

I0 > 2A cos

[

sin−1 [(θ/A) secφ]

2

]

cosφ, (52)

then we predict the critical width of the stimulus to shut
off the pulse is

∆∗
I = ∆s −∆u = π − 2 sin−1 [(θ/A) secφ] . (53)

We compare this critical stimulus width prediction with
the results of numerical simulations in Fig. 9(b). It is
assumed we apply the stimulus in the rightmost region
of the domain, but we could make corrections for stimuli
applied in front of the pulse or in its interior.

V. DISCUSSION

We have studied the effects of transient inputs on the
position of traveling waves in neural fields. Inputs can
cause waves to shift in the wave coordinate frame. In
particular, we found that using perturbation theory to
derive a response function involving the adjoint of the
linearized wave equation provides a reasonable approxi-
mation for the shift in position. There is a clear analogy
between the response function we have derived for waves
and the phase response curve of limit cycle oscillators
[50]. The strictly nonnegative response function we de-
rive for traveling fronts in an excitatory network can be
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thought of as type I, since the sign of the perturbation
determines the sign of the wave shift. On the other hand,
the response function we derive for traveling pulses in a
lateral inhibitory network indicates that the spatial posi-
tion of perturbations can determine the sign of the wave’s
shift, a type II property. Since the process of obtaining
the wave response function can be generalized, it could
be applied to a number of other neural field models. In
particular, it would be interesting to see how a nega-
tive feedback variable like a separate inhibitory popula-
tion [14], spike frequency adaptation [21, 29], or synaptic
depression [26] would affect the shape of the response
function. Adjoints for models with linear recovery have
been calculated previously in [32, 51]. Type II response
functions in lateral inhibitory networks may be separable
into positive and negative parts in analogous two popu-
lation networks, depending on whether the excitatory or
inhibitory population is stimulated. In addition, spatially
structured solutions arising in two-dimensional models
like spiral waves [30] or traveling spots [57] could also be
analyzed in this framework. Such an approach may even
predict the angle of deflection of moving spots resulting
from a transient input [58].
In addition to the derivation using the adjoint, in the

case of traveling fronts, a complementary approach was
used to calculate the wave response function for spatially
homogeneous inputs. By tracking the time-dependent
speed of the front, we were able to approximate the
long-time behavior of the shift even better. The adjoint
method is an exact method that comes from a perturba-
tion expansion of the response of the fronts and pulses to
small stimuli. The time-dependent speed method em-
ploys an approximation (not a systematic expansion)
which contains a mixture of nonlinear and linear esti-
mates. It would be interesting to see if some higher order
approximation of the wave response function could cap-
ture the nonlinear dependence of the shift upon perturba-
tion amplitude that the time-dependent speed approach
does.
Predictions based on our analysis of the termination

of traveling pulses could be linked to experimental stud-
ies of epileptiform activity in vitro [2, 9–11] and in vivo

[36, 59]. Our results provide theory for the previous ex-
perimental finding that large-scale response properties of
neural tissue are activity state dependent. In [10], the
initiation of traveling pulses was studied in cortical slices
using a stimulating electrode. At a critical amplitude of
current stimulation, the probability of an initiation event
drastically increased. This suggests it may be necessary
for a critical volume of cells to be spiking to initiate a
traveling pulse. Thus, once a traveling pulse begins to
propagate in a cortical slice, it may be possible to termi-
nate the pulse by ceasing spiking in enough cells so that
the population of active cells falls below the critical vol-
ume. Negative feedback processes like spike frequency
adaptation or inhibition will likely switch on once the
pulse begins to propagate, so this critical volume may
be even higher for an already active slice. Termination
events were studied in [10], but they occurred sponta-
neously, rather than through external electrode stimula-
tion. In [60], traveling neural activity waves in a culture
of neurons were shown to cease when the concentration of
an excitatory receptor antagonist was increased beyond a
threshold level. This suggests there may also be a critical
level of tissue excitability for wave genesis. For the con-
trol of epileptiform activity in the brain, a model-based
predictive controller will most likely be necessary [53].
Thus, it would be useful to study the problem of termi-
nating traveling pulses in neuronal network models with
more details that address the complications of the in vivo

problem. For example, our analysis could be adapted to
noisy neural fields or spiking neuron networks.
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