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Periodic reversals in the direction of motion in systems of self-propelled rod shaped bacteria en-
able them to effectively resolve traffic jams formed during swarming and maximize the swarming
rate of the colony. In this paper, a connection is established between a microscopic one dimensional
cell-based stochastic model of reversing non-overlapping bacteria and a macroscopic non-linear dif-
fusion equation describing the dynamics of cellular density. Boltzmann-Matano analysis is used to
determine the nonlinear diffusion equation corresponding to the specific reversal frequency. Stochas-
tic dynamics averaged over an ensemble is shown to be in very good agreement with the numerical
solutions of this nonlinear diffusion equation. Critical density po is obtained such that nonlinear
diffusion is dominated by the collisions between cells for the densities p > po. An analytical ap-
proximation of the pairwise collision time and semi-analytical fit for the total jam time per reversal
period are also obtained. It is shown that cell populations with high reversal frequencies are able to
spread out effectively at high densities. If the cells rarely reverse then they are able to spread out
at lower densities but are less efficient at spreading out at higher densities.

PACS numbers: 87.18.Ed, 05.40.-a, 05.65.+b, 87.18.Hf, 87.10.Ed; 87.10.Rt

I. INTRODUCTION

Many bacteria including species found in diverse soil and water environments are able to spread rapidly over surfaces
by the process of swarming which is the collective motion of many thousands of cells. Bacteria capable of swarming
range from innocuous carbon-cycle organisms to harmful pathogens. Swarming involves directional movement due
to pulling with type IV pili or either propulsion due to rotating flagella or slime jets [1]. In certain cases, these
mechanisms work together and allow cells to swarm at a rate faster than each individual type of motility [2, 3].

For example, Myzococcus zanthus, ubiquitous bacteria found in soil, are very efficient swarmers. These bacteria
have elongated rod-type shapes (about 7um in length and 0.5um in width) and they move by gliding over a substrate
in the direction of their longer axis [1, 2, 4, 5]. They align and travel together in the same direction (see Figure 1a)
as well as reverse direction of their motion about every eight minutes [1, 5, 7]. Mutant species of M. zanthus that are
unable to reverse are also unable to swarm [5, 8].

After M. zanthus are inoculated in the center of agar plate, they start growing and moving, and the swarm expands.
90% of the expansion is caused by cell movement and only 10% by growth [3]. It has been shown that a reversal
period of 8.8min maximizes the expansion rate for a given average cell velocity of 4u m/min [5]. Such motion is
limited by new cells moving out from the center. Therefore, a cell in many cases can not move all 8 minutes in the
direction towards the center. When encountering a cell moving in opposite direction, the cell stops and waits until it
is time to start moving again away from the center. The swarm expands symmetrically in all directions (see Figure
1b). This symmetry dictates that there is a net movement only in radial directions. In a swarm M. zanthus bacteria
try to escape from the central region of high cell density to the low density region at the swarm edge and then to an
unoccupied area where nutrient and oxygen are abundant [5]. Here we study the role of reversals in this process in a
relatively high density domains close to the central region.

Reversals of M. zanthus cells require an inversion of cell polarity and coordination of A and S motility systems
(slime production and pili IV motility) achieved by a set of proteins encoded by the frz operon [9-11]. Reversals are
needed for cells to reorient themselves as part of a biased random walk resulting in movement of groups of cells during
aggregation and fruiting body formation under starvation (see [11] for a review). It was suggested in [5] that in the
presence of nutrient during swarming of M. zanthus the oscillatory cell motion is used for the net migration of cells
from the center of the swarm to the swarm edge where nutrient and oxygen are abundant and there is little contest
for either.

The two-dimensional (2D) off-lattice microscopic stochastic model (MSM) described in [2], has been able to predict
optimal reversal rates for specific choices of bacterial velocities and aspect ratios leading to the maximal swarming
rates of the colony, which were confirmed in experiments [5]. It has been also shown in [5] that such choice of the
optimal reversal rate allows cells to align better and resolve traffic jams resulting in the maximal order of alignment.
The model takes into account cell shape and direction of motion of each M. zanthus in the colony determined by the
two motility mechanisms: pili IV and slime production. Recently, subcellular elements model (SCE) was developed
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FIG. 1: (Color online) (a) M. zanthus cells aligned together into a cluster (raft) during swarming. (Image was
obtained in Dr. Shrout’s lab by Dr. Alber’s student Cameron Harvey.) (b) Swarm of M. zanthus, picture taken by
Lars Jelsbak. The edge of the swarm displays a single layer of cells that are spreading outwards away from the cell
center [1] (c) Distribution of cells at the swarm edge [5, 6]. The multicellular structures, slime trails, mounds, and

rafts are labeled. The swarm is expanding in the radial direction, which is to the right of the image.

FIG. 2: Sequence of images of a moving raft in a swarm of M. zanthus consisting of approximately 100 cells. Cells
are aligned with each other. (Images were obtained in Dr. Shrout’s lab by by Dr. Alber’s student Cameron Harvey.)

and calibrated to study the role of bending and slime capsule adhesion of cells swarming in rafts [12].

M. zanthus behaves differently in the presence of nutrient and under starvation. Under starvation, M. zanthus is
observed to aggregate and form standing waves of cell density (ripples) close to the edge of the colony. Individual cells
are aligned parallel to each other in ripples and move back and forth in one direction regularly reversing the direction
of their movement. Continuous models [13-15] and a lattice gas cellular automation model [16] were developed based
on the assumption that reversal periods of individual cells depend on C-signaling between cells which are close to each
other, and on the existence of a refractory period (period of time after reversal when cells do not react to C-signaling).
These models have been used for studying the formation of ripples and the aggregation process. A lattice based models
was also used [17, 18] for studying cell streaming during the aggregation of M. zanthus under starvation. Cells in
streams also move mostly in one dimension.

The biological justification for the one-dimensional (1D) discrete and continuous models described in this paper
is based on observation of the movement of cells in rafts during the swarming phase [19] (see Figures la and 2).
Individual cells also reverse regularly in rafts but they do not exchange C-signal with each other. In this paper, we
focus on studying the self-propelled motion of rod shaped bacteria without specifying motility engines. We do not
incorporate cell division, the directional effects of slime, or the social motility governed by pili into the model. Instead
we use a basic model for studying bacterial swarming caused by the cell-cell collisions (jams) and regular cell reversals,
in rafts propagating near the edge of the swarm (see Figure 1¢). We assume that cells cannot climb onto each other
and that no more than one cell could be positioned at any moment in time at specific location in space (by using
excluded volume constraint). Cells are modeled as self-propelled rods which glide on slime on the substrate with the
same constant velocity. They reverse the direction of their motion periodically in time which serves as a mechanism
for diffusion of spatial positions of cells.

The main result of the paper is an establishment of a connection between one-dimensional (1D) microscopic and
macroscopic models describing the swarming of bacteria reversing at different frequencies. The microscopic 1D discrete



stochastic model, which is a 1D simplified version of the full 2D model [2], describes the motion of cells in a raft at the
edge of a swarm (see Figures 1c and 2). The 1D excluded volume constraint generally prevents cells from forming rafts.
That effect might facilitate transport in the full 2D model [2] but we neglect it in our 1D model. The 1D macroscopic
model is a nonlinear diffusion equation describing the cellular density dynamics for self-propelled non-overlapping
rods moving with regular reversals. The combination of a stochastic discrete model and its continuous limit, in the
form of a nonlinear diffusion equation, constitutes a multi-scale modeling environment. This environment allows one
to zoom in and study individual bacteria, and then zoom out and investigate the emerging behavior of a large number
of bacteria in a swarming colony.

Although, only a few continuous models based on biological cell behavior exist which take the volume of cells into
account and prevent cells from overlapping, such models are more biologically relevant and can provide novel insights.
Recently, continuous limit models describing the dynamics of cellular density were derived from the microscopic
motion of randomly moving cells exhibiting volume exclusion in the presence of chemotaxis [20-24]. In particular,
[24] introduces a nonlinear diffusion equation model with a chemotactic term for describing amoeba aggregation and
without finite time blow up (collapse) of the solution [25]. This is in contrast with the standard but biologically less
realistic Keller-Segel equation (sometimes also called Patlak-Keller-Segel equation) with constant diffusion coefficient
[26, 27] which neglects the size of bacteria resulting in the solution (bacterial density) having a blow up (collapse) in
finite time [28-30].

Another 1D continuous limit equation was recently derived from a model of cells that interact using Hooke’s Law
[31]. This equation also displays nonlinear fast diffusion, and looks similar to the porous medium equation but with
a negative exponent. This model agrees well with the discrete system from which it is derived and it is capable of
effectively making biological predictions for cells that can be modeled as stiff springs.

The paper is organized as follows. In Section IT a Microscopic Stochastic Model (MSM) of cellular dynamics
is introduced which describes the 1D motion of self-propelled rods with periodic reversals in the direction of their
motion. In Section III general settings for MSM simulations are presented and results of multiple 1D dynamics MSM
simulations with initially localized distributions of bacterial colonies are described. In Section IV elementary laws
of collisions (jams) between cells are derived and equilibrium motion of cells is determined in the limit of zero noise
of the reversal period. Without interactions (in a vanishing cell density limit), each cell experiences almost periodic
motion in space and time. Without noise in the reversal time that motion would be strictly periodic. However,
the experimentally observed [32] small noise in the reversal time results in the random walk of the average position
(averaged over time period 27") of the center of mass of each cell at time scales above 2T. Here T is the average reversal
time for each cell. For finite cellular densities we introduce different types of collisions (jams) between cells including
a pairwise jam and a cluster jam. We also find the critical density py below which cellular diffusion is dominated by
diffusion (random walk) of individual cells while above po diffusion is dominated by the collisions between cells. In
Section VI multiple collisions and cell clustering for large cellular densities are studied. In Section VII a nonlinear
diffusion equation of the general form

Oup = 0. D(p)0,p) (1)

is introduced, where p(x) is a local cell density (measured in units of volume fraction, i.e. the ratio of volume occupied
by cells to the total volume of space), x is the spatial coordinate and D(p) is the nonlinear diffusion coefficient
determined by using Boltzmann-Matano (BM) analysis [33] of ensemble averaged MSM simulations of cells moving
with different reversal frequencies. The equation (1) gives microscopically averaged dynamics of cellular density vs.
microscopic description of MSM model. We compare the dynamics of cellular density from MSM simulations with
the numerical solutions of the equation (1) for different reversal frequencies and find a very good agreement between
these two types of simulations for p > pg. This confirms that the dynamics of cellular density is indeed of a nonlinear
diffusion type described by the equation (1). In Section VIII an analytical approximation for pairwise collision time
and semi-analytical fit for the total jam time per reversal period are described. In Section IX, the main results of the
paper and future directions are discussed. In Appendix A, BM analysis is reviewed. Appendix B provides additional
testing of the accuracy of BM approach for the cellular distributions of finite size.

II. MICROSCOPIC STOCHASTIC MODEL OF BACTERIAL MOTION

In this section we introduce a computational discrete microscopic stochastic model (MSM) of cellular dynamics
describing the motion of self-propelled rods on a 1D lattice with periodic reversals of the direction of their motion.

We simulate a fixed number of cells of length L that move back (left) and forth (right) with velocity v in a domain
on the x axis with periodic boundary conditions. We assume that each cell reverses the direction of its motion on
average every T' minutes. The reversal period fluctuates with the variance ATZ and is sharply peaked near T, i.e.



ATy /T <« 1 in accordance with the experimental data [32]. The positive integer n denotes the nth reversal of the
given cell. The Poisson probability distribution is used to define stochastic realizations of the reversal time T}, for the
nth reversal

k,—X\
f(k):)\:' k=012, ... (2)
as follows
T, = kAT, (3)

where A\ = T?/ATZ and ATy = AT§/T. Because the statistical averages for (2) are (f(k)) = X and ((f(k)—{(f(k)))?) =
A we obtain that (T,,) = T and ((T,, — (T,,))?) = AT§. With that definition the stochastic realizations of T}, can take
only discrete values 0, ATy, 2ATh, ... Since ATy/T < 1 we conclude that this provides a good approximation of the
M. zanthus reversals with a continuous set of values for the reversal time.

To quantify the difference between reversal times of neighboring bacteria, a fluctuating reversal phase is assigned
to each bacteria as follows. Inside of the time intervals (0,27, (27,4T), (4T,6T),... each bacteria has an assigned
reversal phase, ¢, between 0 and 27" determined by the time when cell reverses from moving to the right to moving to
the left (i.e. cell reverses from right-directed motion to the left-directed motion at times t = ¢, 2T + ¢, 4T + ¢, . . .).
The phase ¢ of each cell fluctuates at every reversal period because of the fluctuations of T;,. I.e. while the period T
is fixed, the value of ¢ constantly fluctuates. These fluctuations follow the Poisson distribution (2),(3). Cells reverse
from the left-directed motion to the right-directed motion near average times t = ¢, T + ¢, 3T + ¢, ... (with the
reversal time fluctuating around these average times according to (2) and (3)). The initial phase of each cell is chosen
randomly. The condition ATy/T < 1 ensures that the change of ¢ over T is small. At much larger time scales, t > T,
the phase ¢ undergoes random walk. These random walks of N cells are independent from each other.

Notice that in dimensionless units L = 1 and v = 1. Unless otherwise specified, we choose T' = 8. That choice
is consistent with the typical experimental value of T in dimensionless units L = v = 1. Each cell is represented
by a cluster of finite number of lattice sites on a 1D grid. In a typical simulation, each cell includes 10 lattice sites,
i.e. distance between neighboring lattice sites is Az = 0.1 (see Figure 3a). We assume time step to be 1/Az in
dimensionless units to keep the velocity v = 1. However, we also ran multiple simulations with smaller values of Az
to make sure that increasing number of lattice sites per cell (but keeping L = 1 and decreasing time step to keep
v = 1) does not significantly change our results. In other words, we choose Az small enough to be in agreement with
the continuous limit Az — 0.

Three dimensionless parameters completely determine the continuous limit Ax — 0 description of cell dynamics.
The first parameter is vT'/L, which is the ratio of the average distance traveled by cells between reversals and the cell
length. (The value of this parameter is vT'/L = 8 for the typical value of time period T' = 8.) The second dimensionless
parameter is the local cellular density p(z) measured in units of volume fraction p, i.e. the ratio of volume occupied
by cells and the total volume of available space (in 1D, volume is simply length). The third parameter is ATy /T, i.e.
relative size of the reversal time fluctuations.

For example, we can choose the velocity, the reversal period, the fluctuation of the reversal period and the cellular
length as vgim = 10pm/min, Taim = 8min, AT gim = 0.9min and Lg;, = 10pm, respectively, in dimensional units.
This yields vgimTaim/Laim = 8 corresponding to the dimensionless values described above. This choice is consistent
with the cell length and reversal period used in previous computational models [2, 5] and observed in experiments [8].
Unless otherwise specified, we choose below AT} = 0.1. For T' = 8 this results in ATy ~ 0.9. Experiments with M.
zanthus typically show only small fluctuations of the reversal period T so that the probability distribution function is
sharply peaked near the average reversal period T' [32]. Our typical choice ATy ~ 0.9 reflects these small fluctuations.
We also show in Section VIIB that MSM simulations fail to match solutions of the nonlinear diffusion equation (1)
for any form of D(p) in the absence of noise in the reversal period (i.e. for ATy = 0). In contrast, for a small but
finite value of noise (ATy # 0) we observe a very good agreement between MSM simulations and the solutions of (1)
with D(p) determined by BM analysis. This suggests that noise (although small) in the reversal period of bacteria
contributes critically to their macroscopic behavior by allowing them to diffuse.

The MSM is a stochastic model. During each time step, a sequence of randomly chosen N cells attempt to move
one at a time. MSM determines the movement of each cell based on the occupancy of the next lattice site in the
direction of cell motion determined by ¢ at the given time ¢. If this location is free, the cell is moved one lattice site
in that direction (keeping constant length L = 1). If the location is not free, the cell does not move, i.e. it is jammed
(see Figure 3b for a typical example of jamming). It is possible that the same cell may move more than once during
a time step, and as a result some other cells may not move at all. Also, note that the random selection of cells may
create small gaps between cells which are following each other side by side.

The creation of such gaps results in extra diffusion that each cell experiences in addition to the directed motion
with the speed v. This diffusion is a pure artefact of the finite width Ax of each lattice site and it vanishes as Az — 0.
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FIG. 3: (a) A single cell is represented in MSM as a cluster of lattice sites (pixels). (b) A sketch of a typical
formation of a cluster shown as a sequence at three moments in time (time progress from top to bottom). First two
neighboring cells moving in opposite directions are jammed (upper line). Then third cell approached to join a
cluster (center line) and subsequently fourth cell joins the cluster (bottom line).

We checked in simulations that the reduction of Az from 0.1 to 0.001 results in only small changes in the cellular
density dynamics (see Section VIIB for more discussion on this topic). However, the collision time between cells is
more sensitive to the value of Axz. Therefore, we used a reduced grid Ax = 0.001 for the simulations in Section
VIII. Generally, for all quantities plotted in all Figures in the paper we used Az = 0.1 unless we explicitly specify a
different value.

Unless otherwise specified, the simulations were run in a one-dimensional lattice domain of length 4,000 centered
at x = 0. Initial distribution of cells of width 1,000 centered at = 0 of top-hat shape was used (i.e. the density
of cells is approximately constant p = ppqa, for —500 < z < 500 and zero everywhere else). (See curve at ¢ = 0 in
Figure 4a for an example of a top-hat boundary condition.) Because the domain is symmetric between z and —=,
it replicates a no-flux boundary condition at x = 0 after averaging over the statistical ensemble of simulations. In
general, we choose lattice domain of a large enough length to avoid influence of the periodic boundary conditions (i.e.
to maintain zero cellular densities at both right and left boundaries).

IIT. MSM SIMULATIONS

Cells near the edge of a bacterial swarm similar to the ones shown in Figure la, move mostly in radial directions.
Therefore, their collective motion can be analyzed by averaging over angles determining their radial motion. In what
follows we also assume in our model that motion along the radius is dominant while rotation is only a correction
which we neglect.

Multiple MSM simulations of 1D dynamics of initially localized distributions of bacterial density have been per-
formed followed by ensemble averaging over initial conditions chosen to represent each desired spatial distribution of
the average initial density of cells p(z,t)|t=o. The result of such ensemble averaging is the time and spatial-dependent
density p(x,t). (The ensemble serves to approximate averaging over angles of the full 2D problem.) We typically used
the ”top-hat” initial distribution (constant density around the center of the domain and zero density to the left and
to the right of the center) provided by a dense initial packing of bacteria in the domain of width 1000 around x = 0.



A typical number of stochastic realizations in the statistical ensemble was chosen to be 20,000. The cellular density
(measured in units of volume fraction) was determined by calculating the average number of times a given location
was occupied (see Figure 4a). Qualitatively, the cell densities spread out symmetrically away from the center of the
top-hat. The cells’ movements frequently cause them to collide with each other. When two cells are trying to move
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FIG. 4: (Color online) Results of MSM simulations of rods reversing every T=8 performed 20,000 times. (a)-(c)
correspond to simulations with the top-hat initial conditions and (d) corresponds to simulations with initial constant
average density. (a) Average cell density at different times. (b) Expected cluster frequencies for different times
(dashed line), i.e. the average number of clusters of a given size obtained in MSM simulations. Also the fit to C's®
law is shown, where C' is the fitting parameter and s is the cluster size. (c) Average cluster size over time on a
log-log scale (dashed line). Solid line is the fit to Ct~1/2 law, where C' is the fitting parameter. These two curves are
almost indistinguishable. (d) Expected cluster frequencies at the time ¢ = 50,000 as a function of cluster size s for
simulations with constant initial density and the statistical ensemble size 2,000. Vertical bars represent the average
cluster size for each corresponding curve.

into each other’s space, they stall (jam) until at least one reverses. This stalling, on average, shifts the mean location
of their oscillatory movement away from the location at which they stall. If no other cells are nearby, the cells may
collide again or separate further away due to fluctuations in the mean location of their oscillatory movement. If other
cells are nearby, these outer cells have their mean location shifted outwards while the original cells’” mean locations
are shifted closer together. As a result of these shifts cells steadily spread away from each other.

Cells cluster together in highly packed domains. Two cells can jam together forming a two-cell cluster. If another
cell is moving in a direction of a two-cell cluster, then it may join the cluster forming three-cell cluster and so on (see
Figure 3b for a qualitative picture of such clustering). To measure the level of clustering, we calculated the frequencies
of cluster sizes at different moments of time which is shown in log-log plots in Figure (4b) of MSM simulations with the
top-hat initial conditions. The frequency of cluster sizes follows —2 power law and the average cluster size decreases
over time as initially densely packed cells expand. Figure (4c) shows that this decrease follows a power law decay over
time with calculated exponent —0.4965 which is close to —1/2 power law expected from diffusion.



This suggests that early in time many cells are found in large clusters where they cannot move. At later times, the
large clusters rapidly break up into smaller ones allowing cells to move. Also, individual cells near the boundaries
spend a significantly greater percentage of their time moving.

Figure 4a shows a temporal sequence of the cellular density profiles of the ensemble-averaged MSM simulations
demonstrating decrease of the spatial gradients as time progresses. This decrease is slow in comparison with the
velocity v = 1 of individual cellular motion because during each period 27 an average shift of a position of a
center of mass of each cell is typically small in comparison with 27v. This suggests that the ensemble averaged
distribution of cells at each moment of time and at each point in space is in statistical quasi-equilibrium. Below
we study dependence of the quasi-equilibrium on local cellular density, cellular collision times and cluster sizes. We
also performed a second type of MSM simulations with periodic boundary conditions and uniform average densities
to study statistical equilibrium of cellular motion. Figure 4d shows the result of such second type of simulations
with different average densities p. The expected number of clusters versus the cluster size s (which represents the
probability density distribution of different cluster sizes up to the normalization) shown in Figure 4d indicates a fast
increase in the number of large clusters with the increase of the average density.

IV. ELEMENTARY LAWS OF COLLISIONS (JAMS) BETWEEN CELLS AND EQUILIBRIUM
MOTION OF CELLS IN THE LIMIT OF ZERO NOISE OF THE REVERSAL PERIOD

In the absence of noise in the reversal time T each cell experiences, in a vanishing cell density limit, periodic motion
in space and time. In that case the center of mass of each cell does not moving after averaging over time period 27

However, experimentally observed small noise in the reversal time [32] results in the random walk of the average
position of the center of mass of each cell. (By average position we mean here position averaged over period 27T'.)
This random walk occurs because each cell moves to the right and to the left for unequal time period determined by
the fluctuations of T'. Thus, the random walk occurs at time scales above 27". The random walk results in collisions
of cells for any finite cell density. As the density goes to zero these collisions become more and more rare because
it takes more time for cells to span the average distance between them through random walk. Below in this Section
we consider the limiting case with the random walk neglected, i.e. T = const to extract the major features of such
motion. In the next Section we reintroduce the finite noise in T to understand how it affects the system dynamics.

There is a finite probability for two neighboring cells to collide (jam) in case of a nonzero cell density. By jam we
mean that one cell tries to move where another cell is located, but the excluded volume principle prevents it from
moving. The term ”jam” in this paper is similar to the term ”collision”. The subtle difference is that by collision we
mean that a cell jams with another cell with subsequent unjamming, i.e. the cell is free to move after a jam.

We distinguish two types of jams in this paper. The first type is a “pairwise jam”. It occurs when two neighboring
cells are jammed directly because they try to move in opposite directions towards each other but that motion is
prevented by the excluded volume principle. The second type of jam occurs when a cell 1 tries to move in the same
direction as a neighboring cell 2 but that cell 2 is jammed by another cell(s) (e.g. by cell 3). We refer to this type of
a jam of cell 1 as “indirect jam”. Such jam is an indirect one because there is no direct (pairwise) jam between cells
1 and 2. A typical example occurs when cell 1 moves towards neighboring cell 2 while cells 2 and 3 have a pairwise
jam. After cell 1 touches cell 2 they together (cells 1,2 and 3) form three-cell cluster with pairwise jam between cells
2 and 3 and indirect jam with cell 1. We also say that a given cell is in a “cluster jam” if it is either in a pairwise or
an indirect jam. The pairwise collision time 7,44 is always smaller or equal to T" because of reversal of the direction
of cellular motion. In contrast, the cluster jam time 7,j,ste can be arbitrary large if cells stay inside of a large cluster.
Also in Section VIII we use total jam time 7 per period T, i.e. the time during which a given cell remains jammed
(either directly or indirectly) per period T. With such definition 7 never exceeds T

Assume that the density is small so that mostly pairwise jams occur. In such a case the jamming of two cells lasts
until one of the cells reverses. After that they move together in the same direction until the second cell reverses. After
the second cell reversal, cells move in opposite directions away from each other. Assume that all other cells are still
far away. Then after the first cell reverses for a second time both cells will move in the same direction, and after the
second reversal of the second cell they will move towards each other. Exact calculation shows that these two cells will
never jam again in the absence of other cells. Instead, exactly at the moment when these two cells touch each other,
the first cell will reverse for a third time and they will move in the same direction again. This pattern of periodic
motion without jamming of these two cells will continue for arbitrary long time (or until another, third cell, would
approach them close enough to jam with one of these two cells). It means that any two isolated cells jam only once
and after that both cells experience periodic motion without disturbing one another.

A similar interaction pattern occurs if we consider a system of three or more cells moving in an infinite spatial
domain. After several collisions (jams) between these three or more cells, they also end up in the state where they do
not jam any more and all cells experience periodic motion without touching each other. The center of mass of each cell



participating in a jam shifts relative to its average position at a distance v7pqir to the left or to the right (depending
on which side it has a jam), where 7Tpqir is the collision time. However, after all collisions end, the center of mass
of each cell experiences periodic motion and no averaged over the period 27 motion is observed. We refer to such
state as an equilibrium motion of M. zanthus. Note that equilibrium motion is quite different from the equilibrium
distribution (Gibbs distribution) in statistical mechanics [34] because M. zanthus are always self-propelled and are
not subject to any type of thermal equilibrium. Starting with a finite number of initially densely packed M. zanthus,
after finite number of collisions and provided M. zanthus divisions are neglected, the bacterial colony expands to such
size that there will be no more collisions between cells. After that the average size of the colony remains the same
with bacteria moving periodically at equilibrium.

We now calculate the density of M. zanthus pg at which a transition occurs from motion with collisions to equilibrium
motion. First, consider two neighboring cells and assume that they have phases ¢ and ¢, respectively. Generally
—2T < ¢1 — ¢2 < 2T but assuming periodicity over time 27" we can always add a multiple of 27" to each of the
phases, ¢; = ¢; +n;2T, j = 1,2 (n; are integers), to keep the difference of modified phases inside a twice smaller
interval: —T < ¢~)1 — (;32 < T. For p = pg cells do not jam but during a part of the time interval 27 they move
together (attaching to each other) in the same direction until one of them reverses. After that, they move in opposite
directions from each other for the time interval |¢~)1 - gi~)2| After that second cell reverses and both cells move in the
same direction etc. The minimum separation between the centers of mass of these two cells is L and the maximum
separation is L 4 2v|¢; — ¢2|. The distance Lg;s+ between the average positions of the centers of mass is equal to
Liist = L +v|¢1 — ¢2l. L

Now, to calculate the average density py of many cells we average Lg;s¢ over phase differences 0 < | — ¢po| < T
resulting in the critical density

L

PO= )

L
T L+oT)2 )

T
T‘l/o (L+v¢)d¢]

For the standard values v = L =1, T = 8 it yields that py = 0.2. If initially there is a localized distribution of cells
with the average density p > pg, then these cells would spread out with collisions until their density reaches p = pyg.
If initially p < po, then some redistribution of cellular density may occur when the average distance between centers
of mass of two neighboring cells is Lgist < L 4+ v|¢1 — ¢2|. Because average density is low, this would result only in
a local redistribution of the positions of cells without much change in the macroscopic cellular density. After cells
initially spread out no collisions or cellular density transport is observed. This conclusion is supported by observing
a dynamic sequence of experimental images of cells moving in a raft which is presented in Figure 2.

We conclude that in order to observe transport of a system of self-propelled rods without noise in the reversal period
T at long times one needs to incorporate in the model a source of the density gradient. In M. zanthus swarms such
source is present due to division of cells in the center of the bacterial colony. Thus, any transport of self-propelled
rods without noise in 7T is a collective phenomena with the threshold density py required for transport.

V. RE-INTRODUCTION OF THE NOISE OF THE REVERSAL PERIOD IN THE SMALL DENSITY
LIMIT

We now add noise in the reversal period T to the analysis described in the previous Section. With noise collisions
between cells occur even for p < pg because the random walk of the average position of cells causes them to move at
arbitrary large distances until they finally collide with other cells. When the density approaches zero the frequency of
collisions also goes to zero. But if p — pg from below then cells collide typically at each period 27 with the collision
time ~ ATp (so that for ATy — 0 collision time would vanish). Thus, py separates two regimes of collisions. If p < pg
then collisions are rare because of the noise in 7" while if p > pg collisions are frequent. At the transition densities
p ~ po the contributions of both of these effects are comparable with each other.

Thus, a transport of M. zanthus is a mixture of two effects. The first effect is the diffusion of individual cells due
to the noise in the reversal period 7" which dominates for small densities p < pg. The second effect is due to the
frequent collisions of cells during each period 27" making that effect essentially a collective one. Two regimes make
M. zanthus quite distinct from bacteria like E. Coli or amoeba Dictyostelium discoideum which diffuse as randomly
moving Brownian-like particles [22-24] without any periodic motion.
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FIG. 5: (Color online) Two stochastic realizations of the pairwise jam time that a single cell experiences with its two
adjacent neighbors. Collisions with the left and right neighbors are colored blue and green respectively for a total of
1,000 different collisions at average cellular density 0.95 and Az = 0.001.

VI. MULTIPLE COLLISIONS AND CELL CLUSTERING FOR LARGE CELLULAR DENSITIES

If the cellular density p is not small (p > po) so that cells typically experience collisions during each period 27", then
cell motion is more complicated than the one described in Section IV based on rare pairwise collisions. In addition,
we assume below that there is nonzero noise in T" as in Section V. Figures 5(a-d) show pairwise jam time (duration)
versus number of collisions that occur between three adjacent cells for the average cellular density p = 0.95. In that
case cells occupy 95% of the total volume and each cell can cover up to vT/L = 8 cell volumes between two reversals
meaning that it could collide with multiple cells. Figure 5 demonstrates that distribution of pairwise jam time 7,4, is
random. This typically occurs closer to the bacterial colony center where cell flux caused by cell divisions is large. It
keeps the system far from the equilibrium motion state as described in Section IV. There are at least two situations
where such a far from equilibrium state is possible. The first is the high density gradient case caused by bacterial
division (as mentioned above). The second case occurs if no-flux boundary conditions maintain a large density of M.
zanthus in a domain with fixed volume. In both cases the rate of bacterial jamming is high and the collision times
are randomly distributed.

Another effect which occurs in the case of large densities is the high probability of the formation of clusters consisting
of more than two bacteria. As the density of bacteria approaches one, all bacteria jam in large clusters. Unjamming
bacteria from large cluster might take a lot of time because the leftmost or rightmost bacteria in the cluster needs to
move away providing space for the bacteria in the center of the cluster to move. As a result, many cells stay jammed
in a cluster for a long time for large densities. Figure 6 shows that the averaged over ensemble of MSM simulations
cluster collision time Tejyster diverges for p — 1. Values of Tojysier for different Az converge fast to the continuous
limit Az — 0. E.g., curves for Az = 0.01 and Az = 0.001 are almost indistinguishable.

Figure 4b shows the distribution of cluster sizes for MSM simulations starting from the top-hat initial condition.
Figure 4d provides cluster size distribution for different densities p obtained in MSM simulations with uniform average
density and periodic boundary conditions. (That second type of MSM simulations is described in Section III.) The
Figure 4d shows that the cluster size probability density distribution becomes much wider for p 2 pg indicating
multiple collisions.

VII. MACROSCOPIC NONLINEAR DIFFUSION MODEL AND MSM SIMULATIONS
A. Nonlinear Diffusion Model and Its Limitations

If collisions are frequent and, additionally, the distribution of the reversal phases and initial position of cells are
random, then we assume that collective dynamics of cells is diffusion-like and it is described by the equation of the
general type (1). In this section, we obtain an approximation of the diffusion coefficient D(p) in (1) to match the
results of MSM simulations. This is achieved by running MSM simulations with a top-hat initial distribution and
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FIG. 6: (Color online) Average cluster collision time 7., ster as a function of density p for different values of Ax. It
is seen that 7.yster — 00 for p — 1.

using BM analysis [33] applied to the ensemble-averaged MSM density profile on the right half of the spatial domain
at time ¢ = ¢tp. Here and below tp describes the time at which we apply BM analysis. (Description of the BM
analysis is given in the Appendix A.) Then we demonstrate that numerical solutions of (1) with D(p) obtained using
BM analysis, yield density dependence on space and time which is in a very good agreement with the one obtained
using MSM simulations. This justifies the initial assumption of collective dynamics of cells being of diffusion-like type.

Results of MSM simulations unavoidably have noise due to the finite size of the stochastic ensemble used to
determine cellular densities. BM analysis relies on calculating derivatives of density and we apply Gaussian filter to
the MSM density data to smooth out both p and all its derivatives [35]. We checked that the change of parameters
of the Gaussian filter resulted in only small corrections without any systematic error.

Typically, to perform BM analysis we run MSM using an initial top-hat distribution of length 1,000 in a domain
of size 4,000 (see the end of Section II for more details). For most of our simulations, the top-hat is wide enough
so that during simulation time the density at the middle of the domain remains close to the initial density ppq. (in
most simulations py,q, = 1). This means that cells mostly move near the boundary of initial top-hat distribution
while at the middle of the domain the cellular density is almost constant. This allows us to ignore the left half of the
domain and treat the cell distribution as if it were step-wise shaped in an infinite domain. This is necessary in order
to perform BM analysis which is exact for infinite spatial interval with step-wise initial conditions only. In Appendix
B we study the accuracy of BM analysis for a finite width of the top-hat initial conditions.

Another limitation of the BM analysis is that it requires calculating (dp(x)/dz)~!. Due to the presence of the regions
where the density is constant, singularities of (dp(x)/dz)~! may be generated during calculation of the non-linear
diffusion coefficient near the end of the diffusion curves where p is close to 0 or p;,q.. These artificial singularities
result from a loss of numerical precision near singularity of (dp(z)/dx)~! which is clearly seen near p = 0 and p = 1
in all Figures below that include D(p). To reduce such loss of numerical precision, we only perform BM analysis in
the neighborhood of the interface that encompasses the initial step of a top-hat instead of the entire right half of the
domain. It can be also mitigated by performing a cubic spline interpolation of D(p) from the domain 0 < p < 1 to
values around p = 0 and p = 1. This, however, appears to be not necessary because the loss of precision does not
affect prediction of the density dynamics in (1) in any significant way.

Since the BM analysis approach for calculating the diffusion coefficient assumes that the nonlinear diffusion equation
(1) is solved on an infinite domain, there will be errors in calculating the diffusion coefficient in case of significantly
high density near the boundaries of the finite computation domain. So, if {p were to be too large, the analysis would
fail. Also, if tp were to be too small, then not enough cells would reverse to generate diffusion. We found that any
time between tp = 125 and tp = 10,000 appears to be sufficient for generating reasonably universal diffusion curves
for T = 8 as shown in Figure 7a. In other words, diffusion coefficient D(p) curves generated at different times tp, are
close to each other. This near-independence of D(p) from ¢p justifies our assumption of the collective dynamics of
cells being diffusion-like and being described by (1).

Unless otherwise specified below, we use tp = 500 to generate the diffusion curves. To demonstrate that there
is little difference in the numerical solutions of (1) with diffusion coefficients D(p) chosen based on BM analysis
with tp = 500 versus tp = 10,000, we compared the resulting numerical solutions with the densities obtained using
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FIG. 7: (Color online) (a) Diffusion coefficient D(p) generated by BM analysis at different times ¢p for 7' = 8. (b)
D(p) generated by BM analysis for varying reversal periods T for diffusion curves calculated from BM analysis at
tp = 500. (c) Density profiles from MSM simulations vs. PDE density profiles (solutions of (1)) at ¢t = 60 and
t = 30,000 obtained using diffusion coefficients from (a) with ¢tp = 500 and ¢p = 10,000. Only right half of the
spatial domain is shown. It is seen that the agreement between two types of density profiles is very good except the
region of small density p < pg = 0.2.

microscopic stochastic model simulations. Figure 7c shows that PDE density profiles p(z) are almost indistinguishable
for both values of tp. Furthermore, the difference between the numerical solutions of the nonlinear diffusion equation
and stochastic simulation results are negligible except for the region p < py.

Diffusion curves for different reversal periods T were also calculated (see Figure 7b). Large reversal periods produce
high diffusion at low densities, and low diffusion at high densities. Small reversal periods result in low diffusion at low
densities and high diffusion at high densities. In the first case cells move left or right until they collide and they stay
jammed for a long time. In the second case, the cells rapidly oscillate left and right. Once cells spread out, collisions
become infrequent.

We now discuss the limitations of nonlinear diffusion model. Figure 7c demonstrates that there is a difference
between MSM and BM prediction for small densities. Namely, diffusion appears to be suppressed in MSM simulations
in comparison with the BM predictions. This difference qualitatively explains small difference between diffusion
curves D(p) generated at different times tp in Figure 7a. The discrepancy between MSM and BM occurs for p < py,
where the critical density pg is defined in (4). For p < pg there are not many jams between cells (see Section IV)
and, subsequently, the diffusion occurs mostly due to the fluctuations of T" only. The diffusion coefficient Dy of this
collision-independent limit p — 0 can be estimated from (2),(3) as

Do = ATZ/(2T). ()

For the parameter values used in Figure 7a it yields Dy = 0.05 which is significantly smaller than D(0) in Figure 7a.
In addition, the finite values of Az also contribute to Dy modifying it as follows Dy = (AT§ + TAz)/(2T) but this
contribution is small for typical values of Az we use in simulations.
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FIG. 8: (Color online) Numerical solution of the diffusion equation (1) (with D(p) from BM analysis) plotted
against the ensemble-averaged MSM results at ¢ = 60 and ¢ = 5,000 for different reversal periods 7. PDE and MSM
results are very close to each other except over the region of low density p < pg, where pyg is given by (4). Only right

half of the spatial domain is shown.

This difference between Dy and D(0) can be attributed to two effects. The first effect is the loss of the numerical
precision of BM analysis for p — 0 as described above in this Section. The second effect is due to the lack of the
diffusion of MSM at small times ¢ ~ T'. To understand that second effect we recall that the diffusion equation for the
Brownian motion of particles can be derived from the Newton equation with random force if we neglect the mass, i.e.
neglect the inertia [36]. As a result the speed of propagation of density in the diffusion equation can be infinite (which
is apparent e.g. if we look at the evolution of fundamental solution of the linear diffusion equation). In contrast, MSM
always describes finite propagation speed because during period T each cell can move for a distance not larger than
vT creating effective inertia with the maximum allowed propagation speed v = 1. That inertia effect is not important
if the density gradients are small. But for the top-hat initial condition, required for BM analysis, the initial gradient is
singular. Thus the diffusion approximation is not applicable for initial evolution of MSM at times ¢ ~ T In addition,
finite size of cells can also contribute to breaking of the nonlinear diffusion approximation at these small times. Most
profound effect of such finite propagation speed occurs for small densities which explains difference between MSM
and BM for small densities. To describe these corrections from the initial large density gradient one can introduce
the inertia-like effect, i.e. through either the introduction of the second time derivative into (1) (see e.g. [37]) or the
development of the version of 1D ballistic coalescence model [38]. We however do not pursue such corrected models
here because they would create significant effect only at small densities p < pg which are not of limited interest for the
growth of bacterial colony as explained in the Introduction. For small gradients the diffusion is of course applicable
for small densities p < py as demonstrated in Section VIII through the analysis of the collisions between cells.

B. Testing accuracy of the nonlinear diffusion model and macroscopic limit of MSM

To test that the diffusion curves in Figure 7b actually predict the diffusion in the stochastic model, we compared
numerical solutions of the diffusion equation (1) with D(p) derived using BM analysis of MSM simulations with
different reversal periods at early and at later times (see Figure 8). A very good match is demonstrated for p > py,
where the critical density pg is defined in (4).

To test whether the dynamics of the discrete stochastic system is consistently well approximated by the diffusion
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FIG. 9: (Color online) Comparison of ensemble-averaged MSM simulations with numerical solution of (1) (with
D(p) from BM analysis) using different initial densities. MSM densities are not smooth because of finite size of
statistical ensemble. It is seen that PDE results are well approximations for MSM for p > pg if we average over fast
fluctuations of MSM densities. Simulations results were taken at ¢t = 50,000

equation independently of initial density, we compared numerical solutions of the diffusion equation with the MSM
simulations for the reversal period T' = 8 and different initial conditions (different amplitudes of densities in the initial
top-hat profile). We first generated random initial conditions with constant average density and periodic boundary
conditions and allowed cells to move in the MSM simulations for ¢ = 50,000 to reach statistical equilibrium. After
that we inserted the obtained equilibrium distribution as a top part of the top-hat initial condition and run MSM
simulations starting with these spatially nonuniform initial conditions. Figure 9 shows a very good match between
these simulations and numerical solutions of the nonlinear diffusion equation. Matching is not as good for smaller
densities due to the qualitative change of diffusion and lack of collisions for p < pg as was explained above.

Since cells move on a discrete grid at discrete time steps, we tested convergence of the system to a continuous
description of cell movement by decreasing the grid spacing Az, and by scaling the lengths and time steps appro-
priately. The spatial profiles of cell density obtained using ensemble-averaged MSM simulations are shown in Figure
10. The Figure 10 demonstrates that the reduction of Az from 0.1 to 0.001 results only in small changes in the
cellular density dynamics with density curves for different Az being practically indistinguishable. This suggests that
Ax = 0.1 already provides a good approximation for the cellular dynamics in continuous limit.
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FIG. 10: (Color online) Spatial distribution of density at ¢t = 30,000 from the ensemble-averaged MSM simulations
with different Az. The initial condition had a top-hat distribution form of width 1000.

The diffusion curves D(p) obtained from BM analysis are more sensitive to the change of Az in comparison with
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the sensitivity of p(z) shown in Figure 10. Figure 11 presents diffusion curves from BM analysis obtained at tp = 500
from the same MSM simulations as in Figure 10. D(p) converges relatively well for Az < 0.01. These changes in
D(p) do not undermine the efficiency of the BM analysis of predicting density dynamics. For example, it does not
affect good agreement between the MSM and PDE simulations as shown in Figure 7. For all values of Az < 0.1,
corresponding diffusion curves from BM analysis work well for describing density dynamics. The effect of the finite
Az results only in modifying diffusion through additional Az-dependent fluctuations of the reversal time 7. The
cause of such modification is discussed in Section II.
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FIG. 11: (Color online) Diffusion coefficient D(p) generated by BM analysis at tp = 500 for the same simulation as
in Figure 10.

We now address the effect of different values of ATy. Experimental observations of fluctuations of the reversal
period T of individual cells in a M. zanthus swarms have shown that they can be described by a probability density
function for T sharply peaked near average reversal period T [32]. We study the role of addition of noise to the
reversal period by changing the value of ATy. For each AT, we determine the nonlinear diffusion coefficient D(p)
using BM analysis [33] of ensemble averaged MSM simulations. We found that D(p) changes with AT as shown in
Figure 12. Then, we compared the density dynamics description from the MSM simulations with the solution of the
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FIG. 12: (Color online) Diffusion curves D(p) for different values of variance AT} of the reversal time T fluctuations
(see the equation (3) and after it for definitions) obtained from BM analysis of ensemble-averaged MSM simulations.

nonlinear diffusion equation (1). For finite values of noise (typically for ATy/Ty 2 0.1), the agreement between (1)
and MSM simulations is very good (see Figure 7c). We found that (1) is not a good approximation of the density
dynamics when no noise is added (ATy = 0), i.e. MSM density no longer follows (1) with D(p) obtained using BM
analysis as shown in Figure 13.

BM analysis is exact for any nonlinear diffusion process with smooth D(p). Thu our failure to fit MSM density for
AT,y = 0 proves that in the zero noise case the dynamics of the system cannot be described by any nonlinear diffusion
process. We conclude that finite noise is necessary for the nonlinear diffusion approximation to work.

Also, finite value of Ax creates effective noise in 1" as discussed above meaning that effects of finite ATy and finite
Ax generally add up. To distinguish these effects one can additionally reduce Ax.



15

—_

---MSM AT0=0
0.8 —PDE ATO=O
o
>0.6
B
® 0.4
go.
0.2
0
-1,000 0. 1,000
(a) Location
1 —MSM AT =0.0283
0.8 —PDE AT =0.0283
06 —MSM AT =0.0894
a -PDE AT =0.0894
0.4 —MSM AT =0.2828
0.2 PDE AT =0.2828
% 200 400 600 800 1000
(b) Distance x

FIG. 13: (Color online) (a) Density curves at time ¢ = 30,000 for the MSM simulations with ATy = 0 and PDE
simulations (obtained using BM analysis with ¢tp = 500). (b) Density curves at ¢t = 30,000 for MSM simulations for
a series of values of ATy and PDE simulations (obtained using BM analysis with ¢p = 500). Only right half of the
spatial domain is shown. For larger values of ATy = 0.2828 agreement between MSM and PDE simulations is much
better than for the smaller values of ATy = 0.0283 and AT, = 0.0894. Initial conditions in all cases have a form of a

top-hat distribution of width 1000.

Notice that macroscopic models of microscopic phenomena do not necessary follow the solutions of a nonlinear
diffusion equation (1). In other words, the diffusion coefficient may depend on the density gradients but not on
the density alone or it may be nonlocal in time as discussed in Section VII A. This would mean the non-locality of
diffusion. However, extensive comparison of the MSM with BM-based D(p) in this Section suggests that it is not the
case (assuming p > po and finite ATy as discussed above). (If D(p) were to be obtained using the BM analysis then at
different times ¢p this analysis would produce different values of D(p). Also, each D(p) from the BM analysis would
reproduce MSM density only for fixed ¢t = ¢tp.) We show in this Section that all of this is not true. Our results suggest
that D(p) obtained from the BM analysis is not a result of an uncontrolled fit but, instead, it reflects fundamental
properties of the MSM which, at this time, we cannot derive from the first principles. To strengthen these argument,
we also compared the MSM dynamics simulations with the initial distribution in the form of a parabola (not a top-hat
initial distribution as above) with the density dynamics obtained using the BM analysis as shown in Figure 14. Here
D(p) was obtained from the BM analysis for the top-hat distribution, i.e. completely independent from the form of
the parabola. The results show again a very good agreement between MSM and the nonlinear diffusion equation.

VIII. ANALYTICAL APPROXIMATIONS OF THE PAIRWISE AND TOTAL COLLISION TIMES

In this section an analytical approximation of the pairwise collision time and semi-analytical fit to the total collision
times are derived. We mostly focus on a limit of intermediate cellular density when p > py but p is not very close to
one so that many collisions between cells are still pairwise and they do not result in larger clusters. Assume that a cell
experiences on average jam(s) of total duration 71 from the left and 75 from the right during each reversal period 27
We include both pairwise jams and indirect jams into definition of 7 (see Section IV for detailed definitions of jams).
In such a case a shift of the center of mass of a given cell per period 27T is (71 — 72)v. The average collision time 7 in
a given direction (left or right) must be a slow function of z (i.e. 71 ~ 72 = 7) to avoid large microscopic gradients.
Typically 7 can be viewed as the average (ensemble or time average) over many collisions (jamming events) for each
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FIG. 14: (Color online) Comparison of ensemble-averaged MSM simulations with numerical solution of the equation
(1) (with D(p) obtained using BM analysis and the top-hat distribution) obtained from the parabolic initial density.
700 cells were used in the MSM simulations in the domain of size 4,000 (only a central part of the spatial domain is
shown). PDE results provide a very good approximation for the MSM simulation results for p > pg. Curves are
plotted for ¢ = 0, 10,000 and 50,000. Other parameters are the same as in Figure 10.

given cell. It is necessary to stress that 7 in this section is the (total) jam time (from both direct and indirect jams)
per period T'. This quantity is different from 7.jyster from Section IV because T never exceeds T by its definition.
Although jam times can fluctuate strongly from collision to collision (as seen in Figure 5), after averaging over
several collisions 7 becomes a slow function of x and t. We also neglect for now the influence of the fluctuations
of the reversal time, i.e. we assume that all reversal phases are constant. Below in this Section we also separately
discuss the effect of these fluctuations. Taking into account finite value of 7 we estimate the local cellular density
as p = L/(Laist), where the average distance between neighboring cells is Lgise = L + v|¢1 — ¢2| — vr and (...)
means statistical averaging over the uniformly distributed phases ¢Zl and (;32. This expression is, however, only true
for |¢1 — ¢2| > 7 because distance between centers of mass of two neighboring cells is > L. For pairs of cells with
smaller difference in phases |¢Zl - é2| < 7 we have to take into account simultaneous collisions (jams) of three and
more cells. During each triple collision two neighboring cells have pairwise jams and third one has an indirect jam. If
7 is small |¢1 — ¢2| < 7 then cells 1 and 2 move parallel to each other most of the time. They either attached to each
other or separated by a typical distance 2v|¢~)1 — gi~)2| After reversing direction cell always alternates between these
two possibilities. A distance between average positions of the centers of mass of these two cells is ~ v|é1 — é2| Cells
1 and 2 move almost all the time together separated by that average small distance between them. After colliding
with another (third) cell on the left (referred to as cell 0) or with a cell on the right (referred to as cell 3) they quickly
form 3-cell cluster. Assume that the lifetime of each such cluster is about 7. Then the pairwise jam time for cells
0 (with cell 1) or cell 3 (with cell 2) is ~ 7. For cell 1 and 2 each collision is either a pairwise jam with the jam
time ~ 7 or a cluster jam with the jam time ~ 7. The average jam time is ~ 7 in both cases. The distance between
average positions of cells 0 and 1 (or between cell 2 and 3) is ~ L + v(|¢1 — ¢2| — 7). Based on that we obtain the
following approximate expression for the average distance between two neighboring cells combining contributions from

|61 — 2| > 7 and |§y — da| < T

(Laist) =T 1

/TT(L + v[¢p — 7])do + /OT[L + vO((b)]dgb] =L+4v <§ - T> + 070 (%) 7 (6)

where we included the contribution of the average distance ~ v|<;31 - gi~)2| between cells 1 and 2 for |¢~)1 - gi~)2| < 7 into
O(¢) term. Here and below O(x) refers to O(x) = 1z + cox? + c32 + ... with constants ¢y, ¢, ... generally ~ 1.
Terms o v72/T, vr3/T? vr*/T3, etc. in (6) result from the 3-cell, 4-cell, 5-cell, etc. cluster contributions,
respectively. To establish scaling associated with the number of cells in a cluster we note that the probability to have
n-cell cluster is roughly proportional to the probability P,_o of n — 2 neighboring cells simultaneously having small
differences in phases |¢; — ¢ir1| < 7,0 = 1,2....,n — 2. Here P, 5 o (7/T)" 2 because phases are statistically
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FIG. 15: (Color online) (a) Dependence of Tpair(p)/T from MSM simulations on the lattice size Az = 0.05
(dash-dotted line) and Az = 0.005 (dashed line) in comparison with the analytical expression (9) for 7pq:r/T" (solid
line). (b) Relative amount of time cells spend without moving per period T' (dashed line) vs. relative total jam time
7/T (solid line) with Az = 0.005. 7 includes both indirect and pairwise collisions. Decrease of Az results in better
match between each pair of curves. T" = 8 for all simulations.

independent. n-cell cluster is formed by these n — 2 cells together with two surrounding cells involved in pairwise
jams with the average time 7. Similar to the case of 3-cell cluster, the n — 2 cells inside of a cluster have an average
jam time 7 dominated by the indirect jams. The resulting contribution to the (Lgis) is ~ v7FP,—2. Of course for
densely packed clusters such approximation is oversimplifies but the general form of O(z) remains the same. These
qualitative arguments do not affect the quantitative calculations described below and yield qualitative understanding
of the MSM dynamics.

Qualitatively we can also interpret the formation of a large cluster as a loose analog of phase locking because cells
with similar phases have a tendency to form clusters more easily as explained earlier in this Section (they push out
other cells less in the process of jamming). We would like to stress that it is purely a kinematic effect because we
assume here that fluctuations of the reversal phases of each cell are independent and follow the Poisson distribution
(2),(3).

The equation (6) results in the following relation between cellular density and the collision time

L L

Pan = i)~ L+ oT/2 — vt + 0rO(r/T) -

After solving the equation (7) for 7 we obtain the following analytical approximation for the average collision time

"0) = |5 = 2o+ 3+ 70G/T) | O ), Q

where py is given by (4), ©(y) is a Heaviside step function (©(y) = 1 for y > 0 and O(y) = 0 for y < 0) and the factor
O(p — po) is obtained from the condition that 7 > 0 (recall that it is shown in Section IV that jams are absent for
p < po fluctuations of the reversal time are neglected).

Neglecting 7O(7/T) in (8) means that we take into account only pairwise jams and neglect indirect jams resulting
in the average pairwise collision time 7pq;:

T L L

in ) = |5 = o+ 2] 00~ ). )

Figure 15a compares Tpqr (p)/T simulations that were obtained using MSM with simulations from (9). MSM simula-
tions were performed with the periodic boundary conditions at the spatial interval of length 1000 and initial random
placement of N cells (avoiding configurations forbidden by excluded volume principle). We used Az = 0.05 and
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Az = 0.005. N was chosen for each simulation to match given p (i.e. N = 1000p). All types of collision times were
calculated by running simulations till the final simulation time ¢, = 10%. We also assumed ergodicity and recorded
collisions of all cells during each simulation. Convergence was tested by comparing the results for a subset of densities
to results obtained with ¢ f;,, = 107 and a good match was demonstrated. Ergodicity was also tested by comparing
the collision time results from several different stochastic realizations with ¢¢ipq = 10% and a very good match was
shown for tested density values.

Figure 15a shows that MSM simulations and (9) are in a reasonably good agreement for p > pg. For p < pg one
would need to modify (9) to include fluctuations of the reversal time. Comprehensive analysis of such modification is
outside the scope of this paper. Here we consider the particular value of density p = pg as well as the limit of small
densities p < pp.

For p = pg cells do not collide without fluctuations of T but they often get next to each other and move in parallel
as explained in Section IV. It means that with inclusion of fluctuations of T' the typical pairwise collision time would
be ~ ATy, i.e. Tpair(po) ~ ATy (in contrast to Tpeir(Po) = 0 in (9)) which is in a good agreement with Figure 15a.
(ATy/T = 0.09 for the parameter values of MSM simulations in Figure 15a while Tpeir(po)/T =~ 0.1 for the dashed
curve of Figure 15a.) In case of p < pg such modification is smaller because for smaller density cells collide only as a
result of a random walk due to the fluctuations of T'. Smaller is the density, longer time it takes for random walk to
ensure collisions. This results in the decay of Tpqr(p) to zero as p — 0.

Consider now the limit p < pg where collisions between cells are rear (a typical time between collision is much
above T'). We average the cellular dynamics over period 27" and consider time scales larger than 27. After averaging,
each cell experiences a random walk with jumps at the average distance AT at times 0, T, 27T, .... I.e. we obtain
a random walk at discrete grid and in discrete time. To take into account collisions we introduce the effective size of
cells from (6) in the limit of 7 — 0 :

Leff = L+1}T/2. (10)

We now look at each cell as the effective object with the average size L.y and we introduce the effective average
distance Az.sy between neighboring cells based on the normalization (p/L)(Less + Azers) = 1 (see also (7) for the
definition of p). That normalization means that at the distance L.ss + Az.ys there is exactly one cell. Together (10)
it gives
L vT
A,Teff = D L 5 . (11)
Thus in the limit p < pg we reduce, by averaging over period 27, the dynamics of the full MSM problem to 1D
discrete random walk of cells with the effective length L.;¢ and the effective average intercellular distance Ax.yy.
These effective cells are subject to excluded volume constraint. A problem of that type was studied in Ref. [24] in the
continuous limit of infinitely small spatial jumps. In particular, the nonlinear diffusion equation of the general type
(1) was derived. Using the diffusion coefficient Dy (5) of the cells without collision (corresponds to the limit p — 0)
we obtain from the equation (1) of Ref. [24] the following nonlinear diffusion coefficient:

1+ (Less/L)*p?
(L= (Less/L)p)? L

where L¢ys is given by (10). For p — po the nonlinear diffusion coefficient (12) diverges because the approximation
of the discrete random walk is valid only for p < po which means that Az.r¢ > ATv. However, the tendency of the
fast increase of D(p) for p ~ py/2 explains the quick growth of the diffusion coefficient from Dy to the typical values
determined by BM analysis in Section VII A.

We now calculate the collision time 7. for p < pg. Assume that at some moment of time two cells collide. Similar
to Ref. [24], we introduce an “extended collision” time Teztend as the average time over which two initially collided
cells will be separated by the distance Az.f¢. The problem of finding 7eytend can be formulated as a mean escape
time problem for the motion of pointwise particle in a domain of size Az with the reflecting boundary condition
O.p = 0 at one boundary (corresponds to the collision between cells) and the absorbing boundary condition p = 0 at
the second boundary (corresponds to the escape of cells from the extended collision because if the distance between
cells is above Az.ry then collisions with other neighboring cells are equally probable [24]).

We define

(12)

D(p):Do[

_ A:Z?eff

ATy’

i.e. m is the value of Azcsy in units of elementary jumps ATw. In the limit Az.rs > AT, the average number of
jumps until the cells will be separated by Az, ¢y is m? giving the average time Teytena (the extended collision duration)

(13)
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FIG. 16: Dependence of Tpqir/T on the density p from MSM simulations (solid line), the equation (16) (dashed line)
and the equation (17) (dotted line).

during which the extended collision lasts:
Textend — m2T- (14)

During that time the number of elementary collisions between two cells is m (similar to the number of times which
random worker passes through the initial point during m? jumps). It gives the cumulative collision time 7T¢oir cumulative
(a sum of all times when cell is not moving because of collision) during the extended collision duration Teztend as
follows:

Teoll,cumulative = mAT. (15)

It follows from the equations (11),(13),(14) and (15) that the pairwise collision time Tpeir = T'Teoll,cumulative/ Tetend
per period T is given by

AT?y

air/ T = F——7=- 16

Figure 16 shows Tpeir/T vs. p for T = 8. It is seen that for p < 0.12, the analytical approximation (16) is quite
accurate. For 0.12 < p < 0.2 = pg, the number of the the effective jumps in discrete random walk approximation,
necessary to span Az.ss, is not large any more compare with one. But the approximation of (16) is based on
continuous random walk (limit of infinitely small jumps). Thus for 0.12 < p < 0.2 = pg the approximation (16)
breaks down and the effect of discreteness of the number of the effective jumps needs to be taken into account which
is beyond the scope of this paper. Solid line in Figure 16 represent the simplest reduction of (16) for p <« L/Le¢yy,
when the effective size L.y can be neglected giving

Tpair )T = AT?vpL ™' T~ (17)

Also note that for p < pg the difference between the pairwise and the total collision times is negligible because
clustering is not significant for these densities so that (16) is equally good for the description of both pairwise and
total collision times. For p > py the fluctuations of T' result in more efficient exploration of the space by cells which
increases Tpqir in comparison with (9) explaining the difference between solid curve and dashed curve in Figure 15a.

We also performed simulations with decreased values of Ax to demonstrate that Az = 0.05 is already small enough
to provide a good approximation of 7,4 (p) in comparison with the continuous limit Az — 0. Figurelba shows
convergence of Tpqr(p) to the analytical expression (9) with the decrease of Ax.

The same MSM simulations were used to calculate the total collision time per period T'. In simulations we distinguish
two types of the total collision time. The first type is the total collision time 7 itself (total jam time per period T)
which includes both pairwise jams and indirect jams. The second type is the average time (per period T') cells
spend without movement which includes pairwise jams, indirect jams and jams due to finite value of Az. The third
contribution occurs when two cells are attached to each other and move in the same direction. If a cell which follows
another one is chosen by the MSM algorithm then its movement is prevented by the second cell. This artificial effect
is due to discretization and finite value of Axz. It disappears for Az — 0 so that both types of the total collision
time are the same in that limit. Figure 15b shows the time cells spend without movement per period T" versus 7. It
demonstrates that these total collision times (normalized to T') are very close to each other for Az — 0.005.
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Fraction of time cell is in state

FIG. 17: (Color online) Plots of the total collision time per period 7/T from MSM simulations (dashed line 1) and
from the analytic approximation of Tgppror (18) (solid line 2). The lattice size is Az = 0.005 and T = 8.

In contrast to the pairwise collision time used in (9), the equation (8) includes an extra term 7O(7/T) which
corresponds to the total jam time 7 per period T'. Dashed line in Figure 17 shows the dependence of MSM simulations
with the noise in T on 7(p) (with the standard ATy = 0.9). We now approximate the term 7O(7/T) in the equation
(8) in the simplest possible way neglecting noise in T' as O(z) = ¢y with ¢; = 2 which yields

Tapproac(p) = Tpair(p) |:1 + 2%7@] G(p - p0)7 (18)

where 7,4 (p) is given by (9). ©-function reflects the neglect of noise in T' similar to (9). We choose ¢; = 2 here to
ensure correct asymptotic value Topproz (1) = T' for p = 1 because all cells are jammed all the time in that case. Figure
17 shows a good fit between (18) (solid line 2) and the total collision time per period 7/T from MSM simulations with
ATy = 0.9 (dashed line 1). It suggests that addition of noise in (18) might result in a very good fit. Exact analytical
theory is needed in order to verify this hypophysis which is quite a challenging problem and which is outside of the
scope of this article.

IX. CONCLUSIONS AND DISCUSSION

A connection was established in this paper between a stochastic 1D model (MSM) of microscopic motion of the
system of regularly reversing self-propelled rod-shaped cells and a nonlinear diffusion equation describing macroscopic
behavior of this system. Stochastic dynamics averaged over an ensemble was shown to be in a very good agreement
with the numerical solutions of the nonlinear diffusion equation (1), where the diffusion coefficient was obtained using
BM analysis. Critical density py was found such that for p < pg the cellular diffusion is dominated by the diffusion
(random walk) of individual cells while for p > pg the diffusion is dominated by the collisions between cells. py was
determined (4) from the condition that cells do not jam with each other in the no noise limit. We found that the role of
noise in the reversal period is crucial. Without noise, BM analysis cannot reproduce the MSM dynamics which means
that nonlinear diffusion is not a good approximation for it. However, even a relatively small level (ATy/T ~ 0.1) of
noise produces excellent agreement between BM based nonlinear diffusion and MSM simulations. The primary role
of a small noise is to ensure randomization of collisions between different cells.

An analytical approximation of the pairwise collision time 7,4 (9) and semi-analytical fit for the total jam time
per reversal period Tuppros(p) (18) have also been obtained. Frequent collisions for p > po are responsible for the
nonlinear diffusion of the cellular density. For p < pg cells tend to spread out so they collide only if fluctuations of
the reversal time are taken into account. Without such fluctuations there are no collisions and no cellular transport is
possible because cells experience periodic motion in space and time. There still remains quite a challenging problem
of developing a full statistical theory of 1D self-propelled rod dynamics with reversals which would be applicable for
all densities. Such theory would require a detailed description of formation and interaction of large cellular clusters.

It was also shown that the nonlinear diffusion coeflicient D(p) used to describe the macroscopic process, changes
depending on the reversal period. Small and large reversal periods yield diffusion coefficients that favor high and low
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cell density diffusion respectively, as is shown in Figure 8. Since the dynamics of the system is determined by the
dimensionless parameters vT'/L (the ratio of distance traveled by cells between reversals and the cell length) and p,
increase of the speed at which cells move is equivalent to the increase of the reversal period. Thus, cell populations
with small T are able to spread out effectively at high densities while large T promotes cell population swarming at
smaller densities.

An interesting problem to be studied in future work is to determine the optimal choice of reversal time 7" maximizing
the swarming rate of M. zanthus colony using nonlinear diffusion equation, and compare it with the one obtained in
Ref. [5] using stochastic model.

Appendix A: Boltzmann-Matano Analysis

In this appendix we review Boltzmann-Matano (BM) Analysis (see [33] for details) for the readers’ convenience.
Assume that the process we are studying can be modeled using the nonlinear diffusion equation (1) with some unknown
nonlinear diffusion coefficient D(p).

BM analysis allow to recover D(p) from the 1D dynamics of the cellular density p with the stepwise initial condition

p(z,0) = {pL, %f z <M (A1)
PR if x>z

at infinite 1D domain. Here we assume that p; > pg.

The special property of the stepwise initial condition is that it does not have any spatial scale (spatial size of system
is infinite and spatial scale of jump at @ = xps is zero. Then the only possible solution has a self-similar form p(¢)
which was found by Boltzmann in 1894. Here

(= (x—anm)/t"? (A2)
which is motivated by a self-similar solution of a heat equation (for D = const). s is a reference point also known
1
as the Matano interface. Assuming that p(¢) does not depend on ¢ explicitly, we obtain that %p(() = —5%%1)(0
1
and (,%p(() = m%p(() which allows to reduce (1) to
¢ o 0 0
2 = |D(p)=nl. A3
2 3c" ag[ (p)acp} (A3)

Since the solutions to a non-linear diffusion equation with stepwise initial conditions are monotonic, it follows that for
any given fixed time the function p(z) is invertible with respect to x. Below we use the notation z(p) for the inverse
of p(z). Integrating both sides of (A3) with respect to ¢ yields

_m%/? /p (z(p) — @n)dp = D(p)pc

PL

where the left hand side follows from

¢ 9 P 1 P
| cgptc= [ comr=5 [ @)~

prL

Since g—g = tlm%, the equation can be rewritten as
Do) = -1 [2]7 [ (o) = aana
=——|= z(p) —x ,
p 2% | oz - p M)ap
which gives the Boltzmann description of the diffusion equation. Now it is possible to calculate the appropriate value
of the interface, x,, to ensure that the diffusion calculation is consistent. Specifically, since mass diffuses from the

left to the right across the interface, there is a mass conservation equation where the mass lost on the left of the
interface should equal the mass gained on the right of the interface,

[ on=ptents = [ o) - pais

—o00 T
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Again inverting p(z), we can calculate the area under of the integrals in terms of x(p) to get the following equivalent
expression

/pL (z(p) — znm)dp = /pM (xnm — 2(p))dp,

pPMm PR

which simplifies to

/ " (2(p) — aar)dp = 0.

pL
Mass conservation occurs precisely when
PR
(p)dp
Ty = P (A4)
bPL — PR

which is the Matano’s result to determine x,; if it is unknown in advance.
In our simulations we know zj; in advance so in fact we use Boltzmann analysis, but not BM analysis (except
additional tests discussed in Appendix B). Also in our simulations p;, = ppe. and pr = 0.

Appendix B: Accuracy of Boltzmann-Matano Analysis

BM analysis, described in Appendix A, is defined on infinite spatial interval with step-wise initial conditions only.
Assume now that we apply BM analysis for the top-hat initial conditions as described in Section II. In that case BM
analysis is only approximate one because initial conditions include spatial scale x;q:n, Which is the spatial width of
top-hat. Self-similar solution of Appendix A does not agree with top-hat. That solution is only approximately valid
in the neighborhood of each of two steps of top-hat. Because of spatial symmetry it is enough to consider any of
these two steps. To estimate the accuracy of BM analysis in that case we note that if the density at = 0 (middle of
top-hat) remains nearly constant then BM analysis is still applicable (except small unavoidable corrections because
for any ¢ > 0 density is never exactly constant). Assuming that the diffusion coefficient D(p) ~ 1, we roughly estimate
that the width of initial top-hat doubles with time when D(p)to/ xfuidth ~ 1 which gives tg ~ 106 for zya = 1000.
For t <« ty a change of density in the middle of top-hat is small in agreement with Figure 7. A similar limitation of
BM analysis is that the total spatial width of the simulation domain must exceed the width of the top-hat in several
times to make sure that the cellular density remains low at boundaries as seen in Figure 7.

As additional test of BM analysis we varied the domain length and width of the initial top-hat distribution calcu-
lating diffusion coefficient by BM analysis from MSM simulations (Figure 18a). We observed that small top-hat width
~ 100 is not enough for applicability of BM analysis (dash-dotted curve in Figure 18a) while top-hat widths = 1000
total domain lengths > 4000 are far enough for such applicability. Figure 18b compares D(p) obtained from PDE
simulation (solid line) and MSM simulations (dashed line) for the top-hat initial conditions of width 600. Difference
between these curves is almost indistinguishable. This indicates that our statistical ensemble in MSM simulations is
large enough to avoid influence of noise in the data on the diffusion curve. We also tested MSM data with and without
the Gaussian filter and obtained the same diffusion curves. Larger widths were also tested and proven to match very
well, but the results are not displayed here. From these observations, we conclude that the generated diffusion curves
are independent of the width of the top-hat if the top-had is wide enough. This means that the center and boundaries
of the spatial domain have constant density in time.

We would like to point out to avoid confusion that the BM analysis is needed only to determine the diffusion curves
at reasonably small times (¢ < tp). After that, PDE simulations can be run with these diffusion curves for much
longer time (when density is changing both at the middle of the top-hat and at boundaries). For these much longer
times a very good agreement has been also observed between MSM simulations and PDE simulations (see e.g. Figures
4 and 8).

As discussed in Section VII, another limitation of the BM analysis is the loss of numerical precision near p(z) = const
because it requires calculating (dp(z)/dx)~t. Figures 7a,b and 18 show jumps of D(p) near p = 1 due to such loss
of numerical precision which can be fixed by the polynomial extrapolation. This is, however, not necessary because
these jumps do not change results of the PDE simulations in a significant way.

We also tested BM analysis vs. Boltzmann analysis as shown in Figure 18c. Although z); is known from the top-hat
initial conditions, for the finite width of the top-hat one can ask whether allowing x; to be located not exactly at the
step of top-hat could improve the accuracy of BM analysis to determine D(p). In this sense x ) could be viewed as an
additional fitting parameter needed for accommodating the the top-had width. Figure 18c compares diffusion curves
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FIG. 18: (Color online) (a) The nonlinear diffusion coefficient D(p) determined from BM analysis of MSM
simulations with different initial top-hat widths. The density profiles at tp = 500 were used for all curves. It is seen
that curves for the widths 1000 and above are almost undistinguishable. (b) D(p) obtained from MSM simulations

(dashed line - curve 1) and PDE simulation (solid line - curve 2) for the top-hat initial conditions of width 600.
Density profile at time ¢p = 1,000 is used for BM analysis. (¢) Comparison of BM analysis with Boltzmann analysis
from PDE density profile at tp = 500. Dashed line is D(p) used to produce density profiles from PDE simulations.
All curves at (b) and (c) are almost indistinguishable.

obtained using BM analysis, Boltzmann analysis and exact diffusion curve. The difference in accuracy between BM
analysis and Boltzmann analysis is very small. It appears that the advantage of using BM analysis vs. Bolztmann
analysis is not significant in our case.
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