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Department of Chemical and Biological Engineering, and

Center for Molecular Study of Condensed Soft Matter

Illinois Institute of Technology

3440 S. Dearborn St., Chicago, Illinois 60616, U.S.A.

Abstract

The dynamic modulus G∗ of a viscoelastic medium is often measured by following the trajectory of a

small bead subject to Brownian motion in a method called “passive microbead rheology”. This equivalence

between the positional autocorrelation function of the tracer bead and G∗ is assumed via the generalized

Stokes-Einstein relation (GSER). However, inertia of both bead and medium are neglected in GSER so that

the analysis based on GSER is not valid at high frequency where inertia is important. In this paper, we

show how to treat both contributions to inertia properly in one-bead passive microrheological analysis. A

Maxwell fluid is studied as the simplest example of a viscoelastic fluid to resolve some apparent paradoxes

of eliminating inertia. In the original GSER, the mean-square displacement (MSD) of the tracer bead

does not satisfy the correct initial condition. If bead inertia is considered, the proper initial condition is

realized thereby indicating an importance of including inertia, but the MSD oscillates as is known, at a

time regime smaller than the relaxation time of the fluid. This behavior is rather different from the original

result of GSER and what is observed. What is more, the discrepancy from GSER result becomes worse

with decreasing bead mass, and there is an anomalous gap between the MSD derived by näıvely taking the

zero-mass limit in the equation of motion and the MSD for finite bead mass as indicated by McKinley et al.

[J. Rheol, 53, 1487 (2009)]. In this paper, we show what is necessary to take the zero-mass limit of the bead

safely and correctly without causing either the inertial oscillation or the anomalous gap, while obtaining the

proper initial condition. The presence of a very small purely viscous element can be used to eliminate bead

inertia safely once included in GSER. We also show that if the medium contains relaxation times outside the

window where the single-mode Maxwell behavior is observed, the oscillation can be attenuated inside the

window. This attenuation is realized even in the absence of a purely viscous element. Finally, fluid inertia

also affects the bead autocorrelation through the Basset force and the fluid dragged around with the bead.

We show that the Basset force plays the same role as the purely viscous element in high frequency regime,

and the oscillation of MSD is suppressed if fluid density and bead density are comparable.

1



I. INTRODUCTION

Microbead rheology is a powerful alternative to measure the linear viscoelastic properties of soft

matter [1]. It has become a very popular tool in materials science and biophysics [2–7], and even

commercial versions are now available. Unlike bulk rheometers, microbead rheology requires only

very small samples. The technique can also be applied to living cells, where no other technique

currently exists. The concept is straightforward. In passive microbead rheology, a tracer bead of

radius R sufficiently small to be subjected to Brownian motion (R . 1µm) is placed in the medium,

and the mean-square displacement (MSD)

〈

∆rb(t)
2〉eq :=

〈

[rb(t)− rb(0)]
2〉eq (1)

of its position rb is followed by using some optical technique. Here t is time, and 〈. . .〉eq is

an average taken at equilibrium. Analysis is typically made in the frequency domain via the

generalized Stokes-Einstein relation (GSER)

〈∆r2b[ω]〉eq =
kBT

πRiωG∗(ω)
(2)

where G∗ is the dynamic modulus of the medium [8], kB is the Boltzmann constant, T is the

temperature, and we indicate the one-sided Fourier transform f [ω] ≡ F {f(t)} :=
∫∞

0 f(t)e−iωtdt

by an overbar and frequency argument ω with square brackets [ω] (the left side is the abbreviation

of F{
〈

∆r2b(t)
〉

eq
}). Neither bead inertia nor medium inertia are included in GSER. A derivation

of eq. (2) is given by Mason in Ref. [9].

Before showing all details, we briefly sketch the derivation of the GSER here, which is comprised

of two important relations. One is the Einstein component that relates the MSD and the frequency-

dependent friction, or the memory function, ζ[ω] of the bead in the medium through

〈∆r2b[ω]〉eq =
6kBT

(iω)2ζ[ω]
. (3)

This is derived from the equation of motion of the bead in the medium when neglecting bead

inertia. The other is the Stokes component that connects the memory function and the dynamic

modulus of the medium via

ζ[ω] =
6πRG∗(ω)

iω
. (4)
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This is a generalized version of the Stokes’ law so that the frequency-dependent modulus that

characterizes viscoelasticity of materials is estimated from the memory function. Medium inertia

is not taken into account in this expression. By eliminating ζ[ω] from both relations, GSER is

obtained.

Consider the simplest possible linear viscoelastic fluid, the single-mode Maxwell model G(t) =

g exp(−t/λ) with dynamic modulus

G∗(ω) := iωF {G(t)} = g
iωλ

1 + iωλ
. (5)

It is straightforward to insert eq. (5) into eq. (2), and invert the bead displacement back into the

time regime to find [10]

〈

∆r2b(t)
〉

eq
=

6kBT

H
+

6kBT

ζ
t (6)

where H := 6πRg is the spring constant of the elastic component of the Maxwell model and

ζ := λH is the friction coefficient of its viscous component. In the short time regime t ≪ λ, the

bead displacement is bounded due to the elastic component of the fluid giving a plateau, while it

diffuses away in the long time regime t ≫ λ due to the viscous component of the fluid. However,

the displacement does not satisfy the proper initial condition, i.e.,
〈

∆r2b(t = 0)
〉

eq
= 6kBT/H 6= 0.

This result is clearly anomalous in the sense that it contradicts the definition of ∆rb(t) at the

initial time 0 irrespective of the initial value of rb(t).

If bead inertia is included in GSER, the correct initial condition for the MSD is achieved as

shown in Sec. II C. Figure 1 shows the MSD of a bead in the Maxwell fluid calculated from GSER

which includes bead inertia. The MSD satisfies the proper initial condition, but it oscillates for

t . λ with the frequency ∼ 1/
√
m where m is bead mass [10–13]. The smaller the bead’s mass, the

higher the frequency of the oscillation so that one recognizes that eq. (6) is never recovered in the

zero-mass limit. Such a result is rather different from experimental observation for Maxwell fluids

(e.g., wormlike micelle solutions [14–16]); that is, no matter how small the tracer mass is, it has

a finite mass that should lead to a highly oscillatory MSD, which is not observed in real systems.

These facts give rise to one näıve question: what are the minimal requirements to eliminate inertial

effects for Maxwell fluids that are once introduced in GSER? We answer this question here. The

effects of both material inertia and bead inertia are considered.

Recently, McKinley et al.[12] and Fricks et al.[13] studied tracer’s individual paths (or positions)

and MSD for the memory kernel of the Prony series with an arbitrary number of modes N that

corresponds to the generalized Maxwell model. McKinley et al.[12] indicated that in the zero-mass
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FIG. 1. (color online). Mean-square-displacement of a bead with the massm = 10−6ζλ floating in a Maxwell

fluid. Dashed line is a result from GSER for the mass-less bead (eq. (6)).

limit of the tracer bead for a fixed finite N , (i) the oscillatory term of the tracer position itself

goes to zero in a weak sense, but (ii) this term remains in the MSD giving a finite correction (or

anomalous gap) to the MSD, and (iii) this correction vanishes in the limit of N → ∞ for a fixed,

finite m. They also detailed the issue of the time window of anomalous diffusive scaling (see also

Ref. [17]) which we will not discuss here. In the present paper, we give the essential idea to take the

zero-mass limit of the bead safely and correctly without causing either the inertial oscillation nor

the anomalous gap as observed in actual viscoelastic fluids and with the proper initial condition.

We consider much milder assumptions than do McKinley et al.. We show that if the purely viscous

component of the solvent is taken into consideration, the oscillation and the anomalous gap of the

MSD disappear in the zero-mass limit even for the smallest number of modes N = 1, i.e., for the

Maxwell fluid. It is not necessary to have multiple modes for the elimination of the oscillation.

Methods by McKinley et al. and Fricks et al. could be extended to add one zero-size relaxation

time (i.e., a pure viscosity term), but the critical roles of this term are not considered in their

papers. We also discuss the combined effects of bead inertia and fluid inertia, and show that the

material inertia tends to suppress the oscillation of the MSD for the Maxwell fluids. Thus, the

apparent paradox about the initial condition, anomalous gap and the inertial oscillation for the

Maxwell fluid is resolved. It should be emphasized that the elimination of MSD oscillation by the

presence of the purely viscous element or fluid inertia is also valid for more realistic systems with

a large number of relaxation modes because the broad relaxation spectrum also tends to suppress

the oscillation, as already indicated by McKinley et al.[12]. Thus, through the study of our ideal
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system, we gain a better understanding why these paradoxes are not observed in actual viscoelastic

fluids. On the other hand, inertia actually gives sizable effects for real fluids such as worm-like

micelle solutions at frequency of order MHz [15]. The GSER that includes tracer inertia and

medium inertia can cover this high frequency regime properly in a self-contained way without the

help of data from mechanical measurements of the modulus [18]. We treat issues of experimental

data analysis in a separate paper.

We discuss the Einstein component of the GSER in the subsequent section. In Sec. II A, we

rigorously rederive the Einstein component of GSER that includes the mass of the tracer bead

on the basis of the explicitly stationary generalized Langevin equation (GLE). After recalling the

equivalence of GLEs with lower limit of the memory integral of either 0 or −∞ in Sec. IIB, we

revisit the Maxwell fluid in Secs. IIC and IID and show that the zero-mass limit of the bead in

MSD and the power spectral density (PSD) can be taken safely if a purely viscous component of

the fluid is considered. The memory function including a purely viscous component is a novel class

of kernels with regularized properties compared to a GLE without this component. The addition

of a pure viscous mode suppresses oscillations where the same exponential terms in the kernel

would have oscillations, and the zero-mass limit is not singular as it is without the viscous mode.

By taking the low-viscosity limit of the purely viscous component after the zero-mass limit, the

original GSER result, eq. (6), is recovered safely.

Even in the absence of a purely viscous element, the inertial oscillation of the MSD can be

attenuated inside the typical experimental time window if there are other modes in the relaxation

spectrum outside the frequency window of G∗ where the Maxwell behavior is observed. The width

of this time window is determined by the relaxation spectrum outside the window. In Sec. IIE,

we consider the two-mode Maxwell fluid for which one Maxwell mode is inside the experimental

frequency window of G∗ and the other has frequency outside the window, and seek the conditions

where the GSER result for a single-mode Maxwell fluid is recovered. McKinley et al. [12] showed

that the oscillation tends to decay in the limit of N → ∞. Our results indicate that only a single

additional mode is sufficient for the elimination of the oscillation inside the experimental window.

The multi-mode systems have been also studied by Fricks et al. [13] for the 4-mode Rouse model

and the 22-mode Zimm model. In the last part of this section (Sec. II F), we discuss the anomalous

gap pointed out by McKinley et al. indicating that the inclusion of the purely viscous element can

eliminate the gap.

In Sec. III, we discuss the Stokes component of GSER that includes medium inertia. The

single-mode Maxwell fluid is again considered as an example to study the effects of fluid inertia
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concretely. We show that if fluid density and bead density are comparable, the oscillation of the

MSD is suppressed even if there is no purely viscous element in the system. Conclusions are devoted

to Sec. IV.

II. EINSTEIN COMPONENT

A. Rederivation of GSER including bead inertia

As in the original paper that introduced the technique [1], we analyze the GSER through the

generalized Langevin equation (GLE) for bead position

m
d2rb(t)

dt2
= −

∫ t

−∞

ζ(t− t′)
drb(t

′)

dt′
dt′ + fB(t), (7)

wherem is an appropriate mass, fB is the Brownian force, and ζ is some as-yet-unspecified memory

function. If fluid inertia is not considered, m is purely bead mass, but in the presence of fluid inertia,

the mass of fluid dragged around with the bead should be included in m (Sec. IIIB). We make

two important notes. Any spherical Brownian bead in any isotropic medium should be described

by the GLE above. An anisotropic medium would have a tensorial ζ. Secondly, most previous

attempts to derive the desired expression use t = 0 as the lower limit of the integral of eq. (7).

Mason derived the expression from such an apparently unstationary GLE but with causality and

the equipartition theorem [9]. These conditions are necessary to make a GLE with the lower

integral limit 0 stationary at t ≥ 0. Instead, we employ the explicitly stationary GLE with the

lower limit of the integral −∞ to avoid the ill-defined initial condition [19] or unstationarity [20,

pp.37-39]. It is shown below that our result is the same as Mason’s result when bead mass is not

neglected, but we consider our derivation to be more natural. We discuss the choice of the lower

limit in Sec. IIB.

It can be proven using projection operator technique of Mori [20, pp.97–108] that the Brownian

force must have zero mean and satisfy the fluctuation-dissipation theorem (FDT)

〈fB(t)fB(t′)〉eq = kBTζ(t− t′)δ (8)

where δ is the identity matrix. In other words, the statistics of the Brownian forces are determined

by the memory kernel. For example, if one assumes that the drag force has no memory so that

ζ(t) is a constant times the Dirac delta function δ(t), eq. (7) reduces to the usual Langevin, or

stochastic differential equation.
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In the frequency domain, the FDT can be written as

〈

fB[ω]fB[ω
′]
〉

eq
= 2πkBTδ(ω + ω′)ζ[ω]δ. (9)

This relation can be proven by twice taking the inverse two-sided Fourier transform of each side,

once for each frequency. Similarly, taking the two-sided Fourier transform of the GLE, eq. (7), we

obtain

rb[ω] =
fB[ω]

−mω2 + iωζ[ω]
, (10)

where rb[ω] = F {r(t)} :=
∫∞

−∞
r(t)e−iωtdt is the two-sided Fourier transform of bead position.

Note that it is the one-sided Fourier transform of the memory kernel ζ that arises here, but the

two-sided version in the fluctuation-dissipation theorem, eq. (9). The two-sided Fourier transform

for the memory kernel satisfies ζ[ω] =
∫∞

−∞
ζ(t)e−iωtdt = 2ℜ

{

ζ[ω]
}

, because ζ is an even function

of time, and ℜ{. . .} represents taking the real part of the argument.

There exists a relationship between the bead-position autocorrelation in the time and frequency

domains similar to that for the Brownian forces, eqs. (8) and (9). Therefore, it is useful to use

eq. (10) to write

〈

rb[ω] · rb[ω′]
〉

eq
=

〈fB[ω] · fB[ω′]〉eq
(−mω2 + iωζ[ω])(−mω′2 + iω′ζ[ω′])

=
2dπkBTδ(ω + ω′)ζ[ω]

(−mω2 + iωζ[ω])(−mω′2 + iω′ζ[ω′])
, (11)

where we used the FDT, eq. (9), to obtain the second line, and d is the spatial dimension arising

from the inner product in the autocorrelation function. We twice take the inverse Fourier transform

of each side to switch back to the time domain

〈

rb(t) · rb(t′)
〉

eq
=

dkBT

2π

∫ ∞

−∞

ζ[ω]eiω(t−t′)dω
∣

∣−mω2 + iωζ[ω]
∣

∣

2 . (12)

The power spectral-density (PSD) is a two-sided Fourier transform of the autocorrelation function

of bead position. By putting t′ = 0 in eq. (12), the PSD is obtained as

I(ω) =

∫ ∞

−∞

〈rb(t) · rb(0)〉eq e−iωtdt

=
2dkBTℜ

{

ζ[ω]
}

∣

∣−mω2 + iωζ[ω]
∣

∣

2

= −ℜ
{

2dkBT

iω(−mω2 + iωζ[ω])

}

. (13)

Equation (10) can also be expressed as

rb[ω] = α(ω)fB[ω], (14)
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where α(ω) := 1/(−mω2 + iωζ[ω]) is the frequency-dependent complex compliance. The PSD,

eq. (13), can be rewritten in terms of the complex compliance as

I(ω) = 2dkBT
|ℑ{α(ω)}|

ω
. (15)

The last equation is the fluctuation-dissipation theorem [21] in d dimensions.

Since bead displacement is a stationary process:
〈

r2b(t)
〉

eq
=
〈

r2b(0)
〉

eq
, the MSD can be ex-

pressed in terms of the positional autocorrelation function:

〈

∆r2b(t)
〉

eq
= 2

(

〈

r2b(0)
〉

eq
− 〈rb(t) · rb(0)〉eq

)

=
1

π

∫ ∞

−∞

I(ω)(1− eiωt)dω. (16)

By taking the two-sided Fourier transform, eq. (16) becomes

〈

∆r2b[ω]
〉

eq
= 2
(

Itotalδ(ω) − I(ω)
)

= 2ℜ
{

Itotalδ(ω) +
2dkBT

iω(−mω2 + iωζ[ω])

}

(17)

where Itotal :=
∫∞

−∞
I(ω)dω = 2π〈r2b(0)〉eq is the total power of the spectrum. The MSD is an

even function due to its stationarity: 〈r(t) · r(0)〉eq = 〈r(0) · r(−t)〉eq and therefore 〈∆r2b[ω]〉eq =

2ℜ{〈∆r2b[ω]〉eq}, so that eq. (17) is rewritten as

ℜ{〈∆r2b[ω]〉eq} = ℜ
{

Itotalδ(ω) +
2dkBT

iω(−mω2 + iωζ[ω])

}

. (18)

With the help of the Kramers-Kronig relation [21], imaginary parts of 〈∆r2b[ω]〉eq and Itotalδ(ω) +

2dkBT
iω(−mω2+iωζ[ω])

are obtained uniquely from their real parts, respectively. Since the real parts are

equal with each other (eq. (18)), so are the imaginary parts. Therefore, we can conclude

〈∆r2b[ω]〉eq = Itotalδ(ω) +
2dkBT

iω(−mω2 + iωζ[ω])
. (19)

The first term in the right side Itotalδ(ω) comes from the initial value 〈r2b(0)〉eq, and is necessary to

obtain the correct MSD from the two-sided formulae (16). However, if we use the inverse one-sided

Fourier transform (or the Laplace transform for s := iω) to obtain the time-domain MSD directly

from eq. (19), the term Itotalδ(ω) does not contribute to the result, i.e.,

〈∆r2b(t)〉eq = F−1

{

2dkBT

iω(−mω2 + iωζ[ω])

}

(20)

where F−1{· · · } represents taking the inverse one-sided Fourier transform of the argument. The

last equation is the Einstein component of GSER that takes account of bead inertia. The Einstein

component of Mason-Weitz’s GSER is derived by just putting m = 0 in eq. (20). We usually use

eq. (20) to derive the inertial MSD in the time-domain. We assume d = 3 in the rest of this paper.

8



B. Mason’s approach

For comparison’s sake, we here briefly review Mason’s derivation of GSER.

The stationary GLE, eq. (7), can be rewritten as

m
dvb(t)

dt
= −

∫ t

0
ζ(t− t′)vb(t

′)dt′ + f ′
B(t), (21)

where vb := drb/dt is bead velocity, and f ′
B(t) is the effective Brownian force defined by

f ′
B(t) := fB(t)−

∫ 0

−∞

ζ(t− t′)vb(t
′)dt′. (22)

This Brownian force is not stationary because it depends on the choice of the upper boundary of

the time integral (or, equivalently, the lower boundary of the integral in eq. (21)). This property is

a “somewhat unnatural artifice” as Kubo et al. pointed out in their book [20, pp.37-39]. However,

if it satisfies the causality at t = 0: 〈vb(0)f ′
B(t

′)〉eq = 0 for t′ > 0 and the equipartition theorem:

1
2m〈vb(t)2〉 = 3

2kBT holds for t ≥ 0, then the autocorrelation function of f ′
B is stationary and

satisfies FDT, and the GLE’s, eqs. (21) and (7), describe the same Brownian motion of the bead

[20, pp.37-39].

Mason derived the GSER on the basis of eq. (21) with the help of the causality at t = 0 and

the equipartition theorem while neglecting the bead’s mass during the derivation [9]. If bead mass

is kept, eq. (20) is obtained by this procedure. This is a consequence of the statistical equivalence

between the two GLE’s under these two physical conditions.

C. Maxwell fluid

The single-mode Maxwell model is often used to describe the viscoelastic behavior of fluids

having a single relaxation time within a certain frequency window, usually at low and moderate

frequencies. The dynamic modulus of wormlike micelle solutions [22] and telechelic associating-

polymer solutions [23] are well described in terms of the single-mode Maxwell model at lower

frequencies. The dynamics of a tracer bead in the single-mode Maxwell fluid has been well studied

due to the simple structure of the memory kernel [13, 24]. Here we detail the effects of bead inertia

on MSD and PSD for the single-mode Maxwell fluid as an introductory step to investigate the

influence of the purely viscous element. Most equations in this section (II C) are already known.

Inertial effects of the fluid are not considered here, and we use eq. (4) to relate the memory function

to G∗ in the rest of this section. Assumptions of eq. (4) and its extension to include fluid inertia

is detailed in Sec. III.
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The frequency-dependent friction on the bead placed in the Maxwell fluid is obtained by substi-

tuting eq. (5) into the Stokes component of GSER, eq. (4). By putting the thus-obtained friction

function into eq. (20), we have

〈∆r2b[ω]〉eq =
6kBT

H(iω)2
1 + iωλ

λ+ λ2
m(iω) + λλ2

m(iω)2
, (23)

where

λm :=

√

m

H
(24)

is the inertial time scale of bead position. By taking the inverse one-sided Fourier transform of

eq. (23), the MSD of the bead is obtained as

〈

∆r2b(t)
〉

eq
≃ 6kBT

H

[

1 +
t

λ
− e−

t
2λ

(

cosωmt+
3λm

2λ
sinωmt

)]

(m ≪ λζ). (25)

It oscillates with frequency ωm, where

ωm :=

√

λ2
m − 4λ2

2λλm
≃ 1/λm (m ≪ λζ). (26)

In both eq. (25) and eq. (26), bead mass is assumed to be very small, i.e., m ≪ λζ. This is a

rather reasonable assumption. For example, in the microrheological analysis of wormlike micelle

solutions that exhibit Maxwellian behavior, typically m ≃ 10−11λζ. (The plateau modulus and the

relaxation time of wormlike micelle solutions are typically g ≃ 100Pa and λ ≃ 1sec, respectively

[16], and the bead radius is R ≃ 1µm. Therefore, λζ = λ2H = 6πRλ2g ≃ 1g. On the other hand,

bead density is about ρb ≃ 1g/cm3 in many cases, so that the mass of a bead is estimated as

m ≃ 4πR3ρb/3 ≃ 10−11g.) In the rest of this paper, we assume the condition m ≪ λζ and ignore

m if it is compared with λζ, unless otherwise noted.

We now consider the physics behind each time regime of the bead displacement. Equation

(25) satisfies the proper initial condition as a result of inclusion of bead inertia. In the short-

time regime (t ≪ λm), the bead displacement is ballistic, i.e.,
〈

∆r2b(t)
〉

eq
≃ (3kBT/m)t2. After

the ballistic mode, the MSD oscillates for λm ≪ t . 2λ with frequency ωm. We assume this

oscillatory mode is ascribed to the resonance between the bead motion and the elastic component

in the medium. Actually, for purely viscous (Newtonian) fluids in the absence of an elastic trap,

oscillations are not generated in the MSD by inclusion of the bead inertia. However, due to the

energy dissipation of the bead caused by the viscous component, the oscillation is attenuated after

t ≃ 2λ, and the diffusion motion prevails:
〈

∆r2b(t)
〉

eq
≃ (6kBT/ζ)t. There is no plateau regime in

the MSD because the terminal time of the oscillation ∼ 2λ is longer than the onset of the diffusive
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FIG. 2. (color online). The mean-square displacement estimated from eq. (20) and the corresponding power

spectral density of a bead embedded in the single-mode Maxwell fluid. A result from GSER is also drawn

as a reference.

motion λ (estimated from the coefficient of t in the MSD). In the small-mass limit, the frequency

diverges as 1/
√
m while keeping the amplitude of the oscillation finite; therefore the result obtained

from GSER, eq. (6), is never recovered (see also Fig. 2). Such a MSD behavior is not observed

experimentally for viscoelastic fluids (it can be observed for a viscous fluid, air, when the bead is

trapped by an external force [25]).

It is instructive to consider these dynamical properties in terms of the power spectral density.

The PSD of the bead is derived from eq. (13) as

I(ω) =
6kBT

Hλ

ω4
m

ω2 [(ω + ωm)2(ω − ωm)2 + (ω/λ)2]
. (27)

Figure 2 shows the PSD and the corresponding MSD for several bead masses. The PSD has a

resonance peak at ωm = 1/λm =
√

H/m with the height 6kBTλ/H corresponding to the oscillation

of the MSD. Note that the height does not depend on m. At frequencies near the peak, eq. (27) is

approximately expressed as

I(ω) ≃ 3kBT

2λH

1

(ω − ωm)2 + 1/(2λ)2
. (28)

This equation is estimated by putting ω = ωm into eq. (27) other than the term ω − ωm in its

denominator. From eq. (28), the half-value width of the peak is known to be 1/λ independent of

m. Thus the area of the peak is not affected by bead mass, and the peak remains no matter how

small the bead mass is. On the other hand, a näıve elimination of m annihilates the peak from
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the PSD thereby decreasing the total power Itotal :=
∫∞

−∞
I(ω)dω by the peak area. This causes

an anomalous gap 6kBT/H between the MSD derived from eqs. (16) and (13) with m = 0 and

the MSD from the same equations but for finite m. We discuss the anomalous gap in detail in

Sec. II F. Also, eq. (27) is roughly expressed as

I(ω) ≃ 6kBT

ζ
×



















ω−2 (ω ≪ ωm)

λ2 (ω = ωm)

ω4
mω−6 (ωm ≪ ω)

. (29)

At frequency lower than the peak position (ω ≪ ωm), the PSD is the same as that derived from

GSER without bead mass. With decreasing bead mass, the peak at ω = ωm moves towards the

higher frequencies with its height and width kept constant, thereby increasing the GSER domain.

In the zero-mass limit, the GSER domain extends over the full frequency regime except at the

high-frequency extreme where the peak remains, giving rise to the oscillation of MSD with infinite

frequency.

D. Effects of solvent viscosity

As stated above, the viscous component of the Maxwell element attenuates the amplitude of

the oscillation in MSD at times longer than the relaxation time of the medium due to the energy

dissipation of the bead by this viscous component. Therefore, it is reasonable to expect that if

a purely viscous component exists in the medium, it enhances the attenuation of the oscillation.

The purely viscous element often originates from solvent viscosity. We first consider the simplest

system of a viscoelastic fluid that includes a purely viscous part: a single Maxwell element and

a single purely viscous element connected in parallel (called the three parameter model or the

three-element model).

The dynamic modulus of the three-parameter model is

G∗(ω) = g
iωλ

1 + iωλ
+ iωη0, (30)

where η0 is the viscosity from the purely viscous element. In the following, the friction coefficient

of the bead ζ0 = 6πRη0 is used instead of the viscosity to make the equations simple. The memory

function of a bead in this fluid can be derived by putting the last equation into eq. (4). Then the

MSD in the frequency domain is obtained by substituting the memory function into eq. (20) as

〈∆r2b[ω]〉eq =
6kBT

H(iω)2
1 + iωλ

λ+ λ0 + (λλ0 + λ2
m)(iω) + λλ2

m(iω)2
, (31)

12



where λm is the relaxation time of bead position given by eq. (24), and a new time constant

λ0 :=
ζ0
H

(32)

appears that is associated with the purely viscous element of the medium. The power spectral

density can be derived from eq. (31) as

I(ω) =
6kBT

H

λ+ λ0 + λ0λ
2ω2

ω2
[

(λ+ λ0)2 + (λ4
m − 2λ2

mλ2 + λ2λ2
0)ω

2 + λ2λ4
mω4)

] . (33)

The inverse one-sided Fourier transform of eq. (31) picks out two poles, the inverse of which describe

the characteristic times of the bead floating in the medium. These times are given by

τb,e :=
2λλ2

m

λλ0 + λ2
m ±

√

(λλ0 + λ2
m)2 − 4λλ2

m(λ+ λ0)
, (34)

where τb takes the positive sign and τe takes the negative sign. (A subscript b indicates ballistic

mode and e stands for elastic plateau.) In the absence of the purely viscous element (ζ0 = 0), the

argument of the square-root of eq. (34), m(m− 4λζ)/H2, is negative because m ≪ λζ. Therefore,

τb and τe take complex values thereby leading to the oscillation of MSD. However, in the presence

of the purely viscous element, the argument of the square root can be positive for a certain range

of m meaning that there exists a condition that the MSD does not oscillate. The critical mass mc

for such an oscillation/non-oscillation transition to occur is the mass that makes the square root

of eq. (34) zero, and therefore, it is given by

mc := λζ
(

√

1 + λ0/λ− 1
)2

. (35)

The MSD does not oscillate if m < mc while it oscillates if m > mc. (Another root of the equation

that makes the square root of eq. (34) zero is m′
c := λζ(

√

1 + λ0/λ+ 1)2. This is larger than mc,

and is also always larger than m because λζ ≫ m, so that we can ignore m′
c.)

(i) m < mc : MSD in the time domain is obtained by taking the inverse one-sided Fourier

transform of eq. (31). Since τb and τe are real variables, it is written as

〈

∆r2b(t)
〉

eq
=

6kBT

H

(

λ

λ+ λ0

)2 [

1 + t/τd − (1 +Am)e−t/τe −Ame−t/τb
]

(36)

where τd is the longest time-constant with respect to the diffusive mode of the bead:

τd :=
λ2

λ+ λ0
, (37)

and Am := (λ+λ0
λλ0

λm)2. The bead displacement is classified into four regimes: the ballistic mode

(t ≪ τb), a diffusive mode due to the purely viscous element (τb ≪ t ≪ τe), a plateau by the elastic

13
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FIG. 3. (color online). The mean-square displacement and the corresponding power spectral density of a

bead embedded in the three-parameter model fluid. Dashed curve in each MSD figures are obtained from

GSER. The shaded region represents the plateau and succeeding diffusive regime from the GSER. Figures

a-1, a-2 and a-3 satisfy the condition m > mc whereas figures b-1 and b-2 fulfill the opposite condition

m < mc. ζ0 = 10−5ζ.

element of the Maxwell model (τe ≪ t ≪ τd), and the final diffusive mode due to the two viscous

elements of the model (t ≫ τd). See figures b-1 and b-2 in Fig. 3 for which the bead’s mass is so

small that the condition m < mc is attained.

With decreasing bead mass, the ballistic domain is placed in the short-time regime and it

disappears in the zero-mass limit (i.e., τb ≃ m/ζ0 → 0 with m → 0). Then, noting that τe → λ0λ
λ+λ0

and Am → 0, eq. (36) reduces to the MSD derived from GSER for the three-parameter model:

〈

∆r2b(t)
〉

eq
→ 6kBT

H

(

λ

λ+ λ0

)2(

1 +
λ+ λ0

λ2
t− e

−
λ+λ0
λλ0

t
)

(m → 0). (38)

It is worth mentioning that despite the fact that the last equation is derived with vanishing bead

inertia, it satisfies the correct initial condition. This is because the diffusive motion of the bead

at shorter time regime (t ≪ τe) compensates the wrong initial condition. Next, by taking the

zero-friction limit of the purely viscous component, then the onset of the plateau goes to 0 (i.e.,

τe =
ζ0λ
ζ+ζ0

→ 0 with ζ0 → 0), and therefore, eq. (38) approaches the result from the GSER for the

Maxwell model (eq. (6)) as shown in Fig. 4. However, unlike eq. (6), the proper initial condition

14



is satisfied and the MSD jumps at t = 0 due to the exponential function of eq. (38), i.e.,

〈

∆r2b(t)
〉

eq
→







0 (for t = 0)

6kBT/H + (6kBT/ζ)t (for t > 0)
(ζ0 → 0). (39)

An important point here is that the zero-mass limit must be taken before taking the zero-friction

limit so that the result from GSER is achieved correctly for t > 0. If the zero-friction limit is taken

first, the three-parameter model simply reduces to the single-mode Maxwell model, and does not

converge to the original GSER result in the zero-mass limit as explained above.

In real systems where bead mass and the viscosity from the solvent are small but finite, inertial

effects appear only in the high-frequency regime.

If we put m = 0 in eq. (13) näıvely, the MSD is derived from eqs. (16) and (13) (not from

eq. (20)) as 〈∆r2b(t)〉eq = (6kBT/ζ)t. This result can be obtained by introducing the harmonic

potential to trap the bead around the equilibrium position and then removing it after going back

to the time domain. This result, 〈∆r2b(t)〉eq = (6kBT/ζ)t, satisfies the correct initial condition

but there is a constant gap with eq. (39) by 6kBT/H. This is another pathological result arising

from eliminating inertia in a näıve way. This anomalous gap corresponds to the one reported in

Ref. [12]. In the presence of an infinitesimal purely viscous element, this paradox is resolved and

the gap does not exist anymore, i.e., the MSD becomes expressed as eq. (39). The elimination of

the anomalous gap can also be explained in terms of the PSD. In the zero-mass limit, the PSD

when there is the small pure viscosity, eq. (33), becomes

I(ω) =
6kBT

ζ

λω0(ω
2 + ω0/λ)

ω2(ω2 + ω2
0)

(40)

where ω0 := 1/λ0 = H/ζ0 and the condition λ0 ≪ λ (or ζ0 ≪ ζ) is assumed. Equation (40) can be

roughly expressed as

I(ω) ≃ 6kBT

ζ
×



















ω−2 (ω ≪
√

ω0/λ)

λ/ω0 (
√

ω0/λ ≪ ω ≪ ω0)

λω0ω
−2 (ω0 ≪ ω)

. (41)

That is, there is a plateau regime in the PSD at
√

ω0/λ ≪ ω ≪ ω0 rather than the peak due to the

presence of the purely viscous element (see PSD curve for m = 10−14ζλ in Fig. 3 as a reference).

The area of the peak that exists when m > mc corresponds to the area associated with this plateau

regime, and therefore the elimination of the peak by the naive zero-mass limit m → 0 does not

create the anomalous gap in the total power Itotal and thus in the MSD (see Sec. II F for more

details).
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FIG. 4. (color online). The mean-square displacement of a mass-less bead embedded in the three-parameter

model fluid. The friction coefficient ζ0 of the purely viscous element is decreasing from the left to the right

figures. In the limit ζ0 → 0, the GSER result for the single-mode Maxwell fluid is recovered at t > 0

(rightmost figure).

The novelty of this paper is not in the methodology to analyze the oscillation and the time scale

(they are found in Refs. [12, 13] for arbitrary number of modes) but in giving the essential idea

to take the zero-mass limit safely and correctly without causing either the anomalous gap nor the

inertial oscillation with the proper initial condition.

(ii) m > mc : If bead mass is larger than mc, then τb and τe are complex variables and

therefore MSD is expressed in terms of oscillating functions as

〈

∆r2b(t)
〉

eq
=

6kBT

H

(

λ

λ+ λ0

)2 [

1 + t/τd − e
− t

2
( 1
τb

+ 1
τe

)
(

cosωmt+
λ0

2λ2
mωm

sinωmt

)]

, (42)

where the frequency of the oscillation is given as the imaginary part of 1/τb,e, i.e.,

ωm :=

√

4λλ2
m(λ+ λ0)− (λλ0 + λ2

m)2

2λλ2
m

. (43)

The MSD is characterized by the geometric and harmonic mean times rather than τb, τe themselves,

i.e.,

√
τbτe = λm

√

λ

λ+ λ0
=: λb, (44)

2

1/τb + 1/τe
=

2λλ2
m

λλ0 + λ2
m

=: λe. (45)

The bead displacement is classified into four time regimes: the ballistic mode at the shortest time

regime t ≪ λb, the oscillatory mode at λb ≪ t . λe followed by the plateau regime at λe ≪ t ≪ τd,

and the diffusive mode at the longest time regime t ≫ τd. See figures a-1, a-2 and a-3 in Fig. 3

where the present condition m > mc is satisfied. The width of the plateau, or a separation of λe

and τd, becomes narrow with decreasing ζ0, and the plateau disappears in the limit ζ0 → 0 because
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the onset of the plateau λe(→ 2λ) comes later than the terminal τd(→ λ). Thus the plateau does

not exist in MSD for the Maxwell fluid without a purely viscous element.

Relating to the three-element model, it is worth considering here a situation that a tracer

bead embedded in a Newtonian fluid is bound by a harmonic potential 1
2Heδr

2
b, for example, an

externally applied optical trap. Here δrb is the bead displacement from its equilibrium position.

The MSD of this harmonically bound Brownian particle (HBBP) [26, 27] in the frequency domain is

obtained as 〈∆δr2b[ω]〉eq = 6kBT/[iω(He−mω2+ iωζ0)]. There is a threshold mass mc = ζ20/(4He),

above which the MSD oscillates. This oscillation condition can be realized if the medium viscosity

is so small as to satisfy m > mc. As a matter of fact, the MSD of a Brownian particle trapped

by an optical tweezer in air can attain this condition and the MSD oscillates if the air pressure

(and therefore viscosity and density) is low [25]. On the other hand, it is impossible for typical

liquids to attain such low viscosity. This is one reason why oscillatory behavior of the MSD is not

observed for viscoelastic liquids.

E. Effects of relaxation spectrum outside experimental window

So far, we have focused on the simplest fluidal system that has only a single viscoelastic relax-

ation time λ. In general, however, viscoelastic fluids exhibit a more complex relaxation spectrum

with multiple modes. It is natural to expect that short relaxation times in the spectrum con-

tribute to the damping of the oscillation of MSD as the purely viscous component does for the

Maxwell fluid. We show here that the broad spectrum that contains a short relaxation time outside

the frequency window of G∗ in which a single-mode Maxwellian behavior is observed can atten-

uate the oscillation of MSD inside the corresponding time window. Thus, the GSER’s result is

approximately recovered inside the window even in the absence of the purely viscous element.

As the simplest example, we consider the two-mode Maxwell model whose dynamic modulus is

described by

G∗(ω) = g1
iωλ1

1 + iωλ1
+ g2

iωλ2

1 + iωλ2
. (46)

We assume that the first mode with relaxation time λ1 and modulus g1 is greatly separated in time

from the second mode with relaxation time λ2 and modulus g2, i.e., λ1 ≫ λ2, so that each Maxwell

mode is discernible. By taking the limit λ2 → 0 while keeping the viscosity η2 = g2λ2 constant, the

second mode reduces to the purely viscous element. Thus the present two-mode model is a simple

extension of the three-parameter model discussed in Sec. IID, but this model helps us obtain an

17



1/λ1

e-1M

1/λ2

λ1λ2

e-1M

FIG. 5. (color online). The dynamic modulus of the discernible two-modeMaxwell fluid (top) and an example

of the mean-square displacement of the bead embedded in it (bottom). The shaded domain describes the

extended single-mode Maxwell (e-1M) window ω ≪ 1/λ2 or t ≫ λ2. The secondMaxwell mode can attenuate

the oscillation of the MSD inside the e-1M window (see text).

insight into more general multi-mode systems.

In the following, we focus on a window defined by the frequency domain ω ≪ 1/λ2, or by the

time domain t ≫ λ2. We call it the e-1M (extended single-mode Maxwell) window because this

window includes not only the first Maxwell mode but a transient regime between two modes (see

Fig. 5). The second Maxwell mode strongly influences the MSD inside the e-1M window. An

employment of such an extended window is reasonable since the experimental window of G∗ for

Maxwell fluids such as wormlike micelle solutions observed by conventional mechanical rheometer

often includes higher frequency modes.

By putting eq. (46) into eq. (20), MSD of a bead embedded in the two-mode Maxwell fluid is

obtained in the frequency domain as

〈∆r2b[ω]〉eq =
6kBT

(iω)2
1 + (λ1 + λ2)iω + λ1λ2(iω)

2

ζ1 + ζ2 + (λ1ζ2 + λ2ζ1 +m)iω +m(λ1 + λ2)(iω)2 +mλ1λ2(iω)3
, (47)

where ζj := λjHj (j = 1, 2) is the friction coefficient of the viscous component of each Maxwell

mode with Hj := 6πRgj being the spring constant of each elastic component. We reasonably

assume a condition m ≪ λ1ζ1 as before, as well as λ1 ≫ λ2.

It is useful to separate eq. (47) into two parts, for inside and outside the e-1M window to good

approximation as

〈∆r2b[ω]〉eq ≃ 〈∆r2b[ω]〉(1)eq + 〈∆r2b[ω]〉(2)eq . (48)
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This separation makes the denominator of eq. (47) quadratic and therefore the method employed

in Sec. IID can be applied. The first term

〈∆r2b[ω]〉(1)eq :=
6kBT

(iω)2
1 + iωλ1

ζ1 + ζ2 + (λ1ζ2 + λ2ζ1 +m)iω +mλ1(iω)2
(49)

=
6kBT

m(iω)2
iω + 1/λ1

(

iω + 1/τ
(1)
b

)(

iω + 1/τ
(1)
e

) (50)

describes the behavior inside the e-1M window ω ≪ 1/λ2. Equation (49) is derived by approxi-

mating λ1 + λ2 ≃ λ1 and by neglecting the highest order term of ω in both the denominator and

numerator of eq. (47). Singular points of eq. (50) give (the inverse of) the bead’s characteristic

times in the fluid at t ≫ λ2. They are

τ
(1)
b,e :=

2mλ1

λ1ζ2 + λ2ζ1 +m±
√

(λ1ζ2 + λ2ζ1 +m)2 − 4mλ1(ζ1 + ζ2)
(51)

where τ
(1)
b (τ

(1)
e ) takes the positive (negative) sign. On the other hand, the second term in the

right side of eq. (48) describes the behavior outside the e-1M window ω ≫ 1/λ2 and is given by

〈∆r2b[ω]〉(2)eq :=
6kBT

iω

λ1λ2

λ1ζ2 + λ2ζ1 +m+mλ1(iω) +mλ1λ2(iω)2

=
6kBT

miω

1
(

iω + 1/τ
(2)
b

)(

iω + 1/τ
(2)
e

) , (52)

where

τ
(2)
b,e :=

2mλ1λ2

mλ1 ±
√

(mλ1)2 − 4mλ1λ2(λ1ζ2 + λ2ζ1 +m)
(53)

are bead characteristic times at t ≪ λ2 for which τ
(2)
b (τ

(2)
e ) takes the positive (negative) sign. This

term is obtained by neglecting the first and the second terms in the numerator and the first term

in the denominator of eq. (47).

Typical behaviors of the MSD are shown in Fig. 6 for several different bead masses. Mathemat-

ical descriptions of the MSD and details of relevant time constants in Fig. 6 are given in App. A.

There are two critical masses m
(1)
c and m

(2)
c defined by eq. (A4) and eq. (A11), respectively. If

m > m
(1)
c , the MSD oscillates in the e-1M window. With decreasing bead mass, the oscillatory

regime becomes narrow, and it disappears if m = m
(1)
c . The oscillation is pushed outside the e-1M

window if m < m
(1)
c . Thus the second Maxwell element outside the first Maxwell window drives

the oscillation to the outside of the window in which GSER’s result is recovered at a large part

(t ≫ τ
(1)
e ). The condition for the oscillation to occur in each side of the window is summarized

in Tab. I. Note that if m
(2)
c is smaller than m

(1)
c and a condition m

(2)
c < m < m

(1)
c is satisfied,
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FIG. 6. (color online). The mean-square displacement and the corresponding power spectral density of a

bead embedded in the two-mode Maxwell fluid. Dashed curve in each MSD figure is drawn from GSER

without bead mass. The shaded domain describes the e-1M window t ≫ λ2. In figures a-1 and a-2, bead

mass satisfies the condition m
(2)
c < m

(1)
c < m. In figure b, a condition m

(2)
c < m < m

(1)
c is satisfied. Figures

c-1 and c-2 fulfill the inequality m < m
(2)
c < m

(1)
c . See also the left table in Tab. I. λ2 = 10−7λ1 and

ζ2 = 10−5ζ1.

then the MSD does not oscillate over all time regimes as shown in figure b of Fig. 6. On the other

hand, if m
(2)
c is larger than m

(1)
c and m

(1)
c < m < m

(2)
c is fulfilled, the oscillation occurs across the

boundary of the observable window (not shown here).

The oscillation inside the e-1M window (t ≫ λ2) shifts towards shorter times outside the window

with decreasing bead mass. The shifted oscillation never disappears outside the e-1M window.

But if there is a third Maxwell mode with the relaxation time λ3 smaller than λ2, it shifts further

towards the shorter time regime as bead mass decreases. In general, the broader the relaxation

spectrum, the smaller the time regime where the oscillation takes place in MSD. This is another

reason why the oscillations of the MSD are typically not observed and GSER works properly inside

experimental windows in real systems.
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OUTSIDE INSIDE

a. m
(2)
c < m

(1)
c < m

√
oscillate

b. m
(2)
c < m < m

(1)
c

√ √

c. m < m
(2)
c < m

(1)
c oscillate

√

OUTSIDE INSIDE

d. m
(1)
c < m

(2)
c < m

√
oscillate

e. m
(1)
c < m < m

(2)
c oscillate oscillate

f. m < m
(1)
c < m

(2)
c oscillate

√

TABLE I. The condition for the oscillation not to occur in MSD for the inside (t ≫ λ2) and the outside

(t ≪ λ2) of the e-1M window for m
(2)
c < m

(1)
c (left) and m

(1)
c < m

(2)
c (right).

√
means that the oscillation

does not occur.

F. Anomalous gap in the zero-mass limit

McKinley et al. [12] studied the singular nature of the zero-mass limit for the generalized

Maxwell model of an arbitrary number of modes with uniform and random weights. They started

from the GLE with the lower integral limit 0, and calculated the bead position in the Laplace space.

Then they derived the bead position (or path) in the time domain by taking the inverse Laplace

transform with keeping m finite (a), or by näıvely putting m = 0 (weak zero-mass limit) before the

transformation (b), and showed that both results do not agree even in the long time regime where

the inertial oscillation decays. The result is shown in Fig.3 of Ref. [12] for the 16-mode Rouse

model. McKinley et al. showed that this anomalous gap disappears in the limit of infinite number

of modes N → ∞.

Due to the equivalence of GLEs stated in Sec. IIB, the same goes for the MSD derived from

the GLE (7) with the lower integral limit −∞. That is, the MSD derived from eqs. (16) and

(13) with keeping m finite (a) is larger than the MSD obtained from these equations by näıvely

putting m = 0 before the integration (b) in the time regime where the oscillation decays. See Fig. 7

where the results for the two-mode Maxwell model are shown. For the generalized Maxwell model

(ζ[ω] =
∑

j
ζj

1+iωλj
), the anomalous gap δMSD is estimated to be

δMSD = lim
t→0

〈∆r2b(t)〉eq =
6kBT
∑

j Hj
(54)

where the inverse one-sided Fourier transform of limω→∞〈∆r2b[ω]〉eq = 6kBT
iω

∑
j Hj

(see eq. (20) with

m = 0) was taken in the second equality. We can explain this gap in terms of the inertial peak

of the PSD as follows. (The following discussion is based on the analytical results for N = 1 and

numerical results for N = 2, 3, 4 for wide range of parameter-value sets of {λj , ζj}, but it could

be generalized to any N in a straightforward manner.) In the case of (a) (i.e., m > 0), there is

an inertial peak in the PSD as previously shown for the Maxwell fluids (Sec. II C). On the other

hand, the procedure (b) (i.e., näıvely put m = 0) eliminates the peak in the PSD. Therefore, the
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FIG. 7. (color online). The mean-square displacement of the bead in the two-mode Maxwell fluid derived

from eqs. (16) and (13) for the finite bead mass m = 10−3λ1ζ1 (a), from the same equations but taking

the zero-mass limit näıvely in the frequency domain (b), from Mason-Weitz’s GSER (t > 0) that takes the

zero-mass limit näıvely in the frequency (or Laplace/one-sided Fourier) domain (c). Although (b) and (c)

should give the same result because they are seemingly the same procedure, there is a gap 6kBT/(H1+H2).

By introducing the infinitesimal pure viscosity and then taking the zero-mass limit in the frequency domain,

the gap can be eliminated and (b) becomes (c). In the limit of the infinite number of modes N → ∞, (c)

approaches (b) (not opposite) as 6kBT/
∑N

j=1 Hj → 0. This figure can be compared with Fig. 3 of Ref. [12].

ζ2 = 2ζ1, λ2 = 10λ1.

total area under the PSD curve Itotal =
∫∞

−∞
I(ω)dω = 2π〈r2b(0)〉eq for (b) is smaller than that for

(a) by the peak area δItotal:

I
(b)
total = I

(a)
total − δItotal. (55)

Or, equivalently, 〈r2(0)〉eq for (b) is smaller than that for (a) by δItotal/(2π):

〈r2(0)〉(b)eq = 〈r2(0)〉(a)eq − δItotal/(2π). (56)

Recalling that the MSD is written as 〈∆r2b(t)〉eq = 2〈r2b(0)〉eq − 2〈rb(t) · rb(0)〉eq, the MSD for (b)

(i.e., m = 0) is smaller than that for (a) (i.e., m > 0) by the gap δItotal/π that is estimated to be

δItotal/π = (I
(a)
total − I

(b)
total)/π

=
1

π

∫ ∞

−∞

(I(ω)|m>0 − I(ω)|m=0) dω

= 6kBT

(

1
∑

j Hj
− m

(
∑

j ζj)
2

)

. (57)
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Note that Itotal is a divergent quantity due to the singularity of I(ω) at ω = 0 by the diffusive nature

of the bead in the long-time limit, but the difference of inertial Itotal|m>0 and inertia-less Itotal|m=0

is finite. We treat mathematical details in a separate paper. Equation (57) becomes equal to MSD

gap given by eq. (54) when m ≪ (
∑

j ζj)
2/
∑

j Hj. Even if we take the zero-mass limit in (a), the

inertial peak in the PSD just shifts towards the high frequency and never disappears as previously

shown for the Maxwell fluids, and therefore the MSD for m > 0 (a) never approaches that for

m = 0 (b) no matter how small m is. If there is a pure viscosity in the dynamic modulus, the peak

in the PSD decays in the zero-mass limit. But the area from the pure viscosity compensates the

peak area of the PSD, so that the gap of the MSD does not appear. Thus the correct result can

be obtained by adding the infinitesimal viscosity before taking the zero-mass limit (c).

The Einstein part of Mason-Weitz’s GSER derives the correct inertia-less MSD at t > 0 as (c)

by the one-sided Fourier transform in spite of the fact that the zero-mass limit is taken näıvely

as (b). This is because the term Itotalδ(ω) in eq. (19) disappears by taking the inverse one-sided

Fourier transform and therefore δItotal does not affect the MSD in the time-domain.

III. STOKES COMPONENT

A. Correspondence principle

Expressions (13) and (20) relate the measurable quantity on the left with the response of the

fluid to the bead ζ(t). More typically, we seek the material property of the medium instead of its

response to a particular probe. Hence, we seek a relationship between the memory kernel ζ(t) and

the appropriate material property. It is here where we necessarily make assumptions that restrict

the applicability of the relations. First, we assume that the bead experiences a continuous medium,

which implies that the bead radius R is larger than the fluid microstructure. Second, we assume

that the fluid is incompressible. A network in a solvent is expected to show compression from bead

motion, and would require a different approach [28]. Thirdly, we assume that the viscous solvent

and solute are coupled through viscous drag and move as one at length scales large compared with

the fluid microstructure [29]. Finally, we assume that, since the bead experiences only Brownian

forces and no external driving forces, the fluid remains near equilibrium so is completely character-

ized by its linear viscoelastic (LVE) properties. LVE theory states that all rheological information

is contained in the relaxation modulus G(t), or equivalently the dynamic modulus G∗(ω) [8]. Since

we are near equilibrium we assume that terms of the equation of motion that are nonlinear in
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velocity can be neglected. Our final assumption restricts us to passive microbead rheology, or very

small perturbations in active microbead rheology.

The memory kernel ζ(t) in the GLE is a macroscopic quantity that can be determined by solving

the flow field around a bead sphere. In the paper of Schnurr, et al. [29], an explanation is given for

the generalization of Stokes Law to a viscoelastic medium. Basically, the idea is that the viscosity

in the solution of the problem for a sphere moving in the medium can be replaced by G∗/(iω).

This (correct) idea is explained in the paper through the concept of a compressible network. We

show it in a more general and mathematically explicit way.

The correspondence principle mentioned in that paper [29] between low-Reynolds number,

purely viscous flow, and linear viscoelasticity is made much more explicit in a recent paper [30].

However, that paper [30] is restricted to steady-state flow only, so does not cover the problem

at hand. The correspondence was seen as early as 1970 by Zwanzig and Bixon [31], when they

applied the idea to exactly the problem of a bead in a viscoelastic medium. In their paper they

restricted the relaxation spectrum to a single mode. The original connection between Stokes flow

and LVE appears to have been made with solid mechanics by Lee [32]. We now consider the general

time-dependent case.

Conservation of momentum in an incompressible viscoelastic fluid yields the equation of motion

ρ
∂v(r, t)

∂t
= −∇ · τ (r, t) −∇p(r, t) (58)

where ρ is the fluid density, v(r, t) is the fluid velocity field at a location r, ∇ is the vector

differential, τ is the stress tensor, p(r, t) is pressure, and terms nonlinear in velocity are neglected.

Equation (58) requires a constitutive equation relating stress to the flow field. For an incompressible

Newtonian fluid, this expression is

τ (r, t) = −η
[

∇v(r, t) + (∇v(r, t))†
]

. (59)

Any general viscoelastic medium near equilibrium can be described by the LVE constitutive equa-

tion

τ (r, t) = −
∫ t

−∞

G(t− t′)
[

∇v(r, t′) + (∇v(r, t′))†
]

dt′, (60)

where G(t) is the relaxation modulus. The key to the correspondence is that eqs. (58-60) are linear

in both velocity and stress. Hence, we can take the two-sided Fourier transform of both sides of

the last three equations. Then the equation of motion for the Newtonian and LVE fluids have the

same form in the frequency domain

ρiωv[ω] = η∗(ω)∇2v[ω]−∇p[ω], (61)
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where η∗(ω) := η for the Newtonian fluid and η∗(ω) := G∗(ω)/(iω) for the LVE fluid. The argument

r of both v and p is omitted for simplicity. For our problem, both fluids are expected to have the

same (sticky) boundary conditions v(|r| = R) = drb/dt, so the spatial dependence of the solution

to each problem is the same—only the time (or frequency) dependence is different. Therefore, to

obtain the LVE prediction from the creeping flow solution, we just have to transform the creeping

flow solution to the frequency domain, and make the substitution: η → η∗(ω) = G∗(ω)/(iω). This

last observation has great practical importance: any Newtonian creeping-flow solution can be used

to find the solution for the LVE problem. Since a great number of analytic solutions and efficient

numerical techniques exist for creeping flow, these may be taken over directly into LVE.

B. Medium inertia

Landau and Lifshitz [33] give a detailed solution of eq. (61) for the Newtonian fluid for the force

F on a sphere surface. Zwanzig and Bixon [31] claim that Stokes derived the essential elements

for the solution in 1851, and that the following was first found by Boussinesq

F [ω] =

{

6πRη + 6πR2
√

ρiωη +
2

3
πR3ρiω

}

iωrb[ω]. (62)

The first term on the right side is the well-known Stokes-law drag term for steady displacement,

the second is the Basset force [34], and the third is the inertia of the fluid that is dragged along

with the bead [35]. We chose the sign for the square root so that the power spectral density has

positive values for all frequencies. Note that sign for iω in the Fourier transform is different from

that of Ref. [33] thereby causing a different coefficient in the Basset force from that of Ref. [33].

If we take the Fourier transform of eq. (7) and compare to eq. (62), we obtain

ζ[ω] = 6πRη + 6πR2
√

ρiωη (63)

for the Newtonian fluid. Note that we have added fluid inertia as an effective mass to the bead,

which is appropriate. Hence, m in eq. (7) should be replaced with

meff := m+M/2 (64)

where M := 4
3πR

3ρ is the medium mass per bead volume. To obtain the memory kernel for the

LVE fluid, we make our substitution η → G∗(ω)/(iω)

ζ[ω] =
6πRG∗(ω)

iω
+ 6πR2

√

ρG∗(ω) (65)
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for the LVE fluid. Note that the expression assumed in earlier work does not contain the second

term. This term can be neglected if ω ≪ ωM where ωM is determined by
√

|G∗(ωM )|
ρR2

= ωM . (66)

When a rigid body in a Newtonian fluid moves and disturbs its surroundings, the stress penetrates

through the fluid. Propagation of the stress is characterized as the diffusion of a vortex. In the case

of an oscillatory disturbance with frequency ω, the vortex expands away from the body to a distance

of the penetration depth (or oscillatory boundary layer) δ =
√

η/(ρω) [33, 36]. For a viscoelastic

material, the penetration depth is approximately δ =
√

|G∗|/(ρω2) [30]. If R is much smaller

than δ, effects of fluid inertia and stress propagation are negligible. This leads to the condition

ω ≪ ωM . In other words, inertial effects of the material become strong at frequencies higher than

ωM . For example, for aqueous solutions of wormlike micelles, G∗ is typically 102 ∼ 103Pa in the

high-frequency domain and ρ ∼ 1g/cm3 [15]. Since particle size is order one micron, the critical

frequency for fluid inertia is about ωM ≃ 105 ∼ 106rad/sec in this system which is attainable in a

recent technique [37].

Equation (65) is quadratic in
√
G∗, so solution is straightforward

G∗(ω) =
iωζ[ω]

6πR
+

R2ω2

2





√

ρ2 +
2ρζ[ω]

3πR3iω
− ρ



 . (67)

The second term comes from the Basset force, which goes to 0 in the limit ρ → 0. The sign for the

square root can be determined from the condition that G′ and G′′ must be positive. Therefore,

only the plus sign is possible.

C. Maxwell fluid

We again consider the single-mode Maxwell fluid but now taking account of fluid inertia together

with bead inertia.

There are two types of contribution from the fluid inertia: one is the Basset force and the other

is the inertia of the fluid dragged around with the bead. The Basset force appears in the memory

function that is given by putting eq. (5) into eq. (65) as

ζ[ω] = ζ

(

1

1 + iωλ
+

1

λωM

√

iωλ

1 + iωλ

)

(68)

where

ωM =

√
2

3

√

H

M
(69)
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is the frequency defined by eq. (66) above which the Basset force affects bead displacement. In the

following we consider the frequency regime ω ≫ 1/λ because we are interested in inertial effects

which appear only at high frequency (note that ωM ≫ 1/λ). In this condition,
√

iωλ(1 + iωλ) ≃
±iω and therefore eq. (68) is approximately

ζ[ω] ≃ ζ

1 + iωλ

(

1 +
iω

ωM

)

(ωλ ≫ 1). (70)

The second term in the parentheses, that proportional to
√
M , comes from the Basset force. The

sign for this term must be plus so that the PSD is positive for all ω. On the other hand, the inertia

of the dragged fluid contributes to the PSD through the effective mass meff = m+M/2:

I(ω) = −ℜ
{

6kBT

iω(−meffω2 + iωζ[ω])

}

(71)

where m in eq. (13) was replaced with meff . The fluid density and the bead density should be

comparable so that the bead undergoes Brownian motion in the fluid. Thus the ratio M/m = ρ/ρb

takes a value of order one. Below, we take a look at these influences of fluid inertia on the PSD

one at a time.

1. Effects of the Basset force

Firstly, we examine the effects of the Basset force alone. By putting eq. (70) into the last

equation but with meff = 0, we obtain

I(ω) ≃ 6kBT

ζ

λωM (ω2 + ωM/λ)

ω2(ω2 + ω2
M )

(ω ≫ 1/λ). (72)

This expression is the same as that for the single-mode Maxwell fluid with a purely viscous element

(eq. (40)). The equivalence between eqs. (40) and (72) comes from the fact that the contribution

from the Basset force to the frequency-dependent friction, the second term of the right side of

eq. (65), gives the constant 6πR2√ρg = H/ωM (:= ζM) at ω ≫ 1/λ that plays the same role as a

constant, pure viscosity. Thus the inclusion of the Basset force alone corresponds to the inclusion

of an effective pure viscosity ζM , thereby eliminating the peak in the PSD and the oscillation in

the MSD. As shown below, even when the effective bead mass is considered, the peak in the PSD

does not appear if the bead density and the fluid density are comparable. Equation (72) is roughly

expressed as

I(ω) ≃ 6kBT

ζ
×



















ω−2 (ω ≪
√

ωM/λ)

λ/ωM (
√

ωM/λ ≪ ω ≪ ωM)

λωMω−2 (ωM ≪ ω)

. (73)
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FIG. 8. (color online). The power spectral density (left) and the mean-square displacement (right) of a

bead in the Maxwell fluid with effects of the Basset force alone (dashed green line), and effective bead mass

alone (solid blue line), and the Basset force and effective bead mass (dotted red line). M = m = 10−10λζ.

See Fig. 8 (dashed line of the left figure). There appears a plateau at
√

ωM/λ ≪ ω ≪ ωM , and

the bead moves diffusively both in lower (ω ≪
√

ωM/λ) and higher (ω ≫ ωM ) frequency regimes.

The corresponding MSD is

〈

∆r2b[ω]
〉

eq
≃ 6kBT

H

(

1 +
t

λ
− e−ωM t

)

(74)

≃ 6kBT

H
×



















ωM t (t ≪ 1/ωM )

1 (1/ωM ≪ t ≪ λ)

t/λ (t ≫ λ)

(75)

where ωM ≫ 1/λ was assumed in deriving these equations. See also Fig. 8 (dashed line of the right

figure). Since the MSD does not oscillate, effects of the Basset force can be erased in a näıve way

simply by taking a limit M → 0 (i.e., ωM → ∞).

2. Effective bead mass

In the absence of the Basset force, inertial effects of the bead and the fluid dragged around

with it is qualitatively the same as that of the bare bead. The only difference is that bead mass

m is replaced with meff in which mass of the dragged fluid is included. Therefore, as discussed

in Sec. IIC, the inertial time scale is given by the inverse of the frequency ωmeff
:=
√

H/meff . If
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m ≃ M then ωmeff
≃ ωM , and the PSD is roughly expressed as (see Fig. 8)

I(ω) ≃ 6kBT

ζ
×



















ω−2 (ω ≪ ωM )

λ2 (ω ≃ ωM )

ω4
Mω−6 (ωM ≪ ω)

. (76)

The peak appearing at ω ≃ ωM cannot be neglected safely by the limit m ≃ M → 0; it just moves

towards higher frequencies while keeping its height and width constant, and never disappears.

3. Combined effects of fluid inertia

Finally, we examine the influence of the Basset force together with the inertia of the dragged

fluid on the PSD. Substituting eq. (68) into eq. (71), we obtain

I(ω) ≃ 6kBT

ζ

λωM

ω2

ω2 + ω/λM

(λmeffωM/ζ)2ω4 +
[

(meffωM/ζ + 1)2 − 2λmeffω
2
M/ζ

]

ω2 + ω2
M

(ω ≫ 1/λ).

(77)

As before, we can assume conditions ωM ≫ 1/λ and meff ≪ λζ. If m ≃ M , then ωm ≃ ωM and

eq. (77) is approximately written as

I(ω) ≃ 6kBT

ζ

λω3
M(ω2 + ωM/λ)

ω2(ω4 + ω2
Mω2 + ω4

M)
(78)

≃ 6kBT

ζ
×



















ω−2 (ω ≪
√

ωM/λ)

λ/ωM (
√

ωM/λ ≪ ω ≪ ωM)

λω3
Mω−4 (ωM ≪ ω)

. (79)

The only difference with eq. (73) is that the power of the PSD is −4 (ballistic) rather than −2

(diffusive) in the high frequency regime ω ≫ ωM . See Fig. 8 where numerically calculated MSDs

corresponding to eq. (77) are also shown. Some cases where M is not equal to m are depicted in

Fig. 9 as a reference. With increasing M toward m, a peak in the PSD decreases (or the oscillation

of the MSD attenuates) and it disappears if both masses are comparable. Thus the inertial effects

of both fluid and bead can be erased in a näıve way simply by taking a limit M → 0 with keeping

M ≃ m. If M ≃ m and therefore there is no peak in the PSD (or no oscillation in the MSD),

an inclusion of the purely viscous element with infinitesimal viscosity causes only an infinitesimal

change in the PSD (and the MSD).
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FIG. 9. (color online). The mean-square displacement and the corresponding power spectral density of a

bead in the Maxwell fluid. Fluid mass per bead volume M is different for each curve with a fixed bead mass

m = 10−10λζ.

IV. CONCLUSION

We studied the effects of inertia of both tracer bead and medium on the positional autocorrela-

tion of the bead (mean-square displacement and power spectral density) for a single-mode Maxwell

fluid and its extension. By introducing a small amount of bead mass in the generalized Stokes-

Einstein relation, the mean-square displacement of the bead oscillates drastically at time regimes

smaller than, but comparable to, the relaxation time of the fluid. The frequency of oscillation

diverges in the zero limit of bead mass. However, if we include a purely viscous element with

infinitesimal viscosity in the dynamic modulus, inertia can be eliminated safely thereby recovering

the result from the GSER without bead inertia, but with proper initial condition. An anomalous

gap indicated by McKinley et al. between the inertia-less MSD (this is different from the one from

Mason-Weitz’s GSER) and the MSD for finite bead mass also disappears in the presence of the

purely viscous element. The anomalous gap of the MSD corresponds to the area of the inertial

peak in the PSD that is eliminated in the näıve zero-mass limit.

In real Maxwell fluids such as wormlike micelle solutions, there exists a relaxation spectrum

outside the window where a single-mode Maxwell behavior is observed. Such a spectrum attenuates

the oscillation of bead displacement at the corresponding time regime inside the window. We

studied the two-mode Maxwell model to find the condition necessary for such a suppression of
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the oscillation. It was shown that if bead mass is smaller than a specific mass determined by the

viscoelastic parameters, oscillation is pushed outside the window and decays inside the window.

The oscillation never disappears outside the window. But if there were a third Maxwell mode

whose relaxation time is smaller than that of the second mode, the oscillation would shift further

towards the shorter time regime. In general, we expect that the broader the relaxation spectrum,

the smaller the time regime where the oscillation takes place in the MSD.

Fluid inertia affects the bead autocorrelation through both the fluid dragged around with the

bead and the Basset force. The former generates a peak in PSD (or oscillation of MSD) while the

latter does not. Actually, the Basset force plays the same role as the purely viscous element at

high frequencies where the storage modulus exhibits the plateau. If fluid density and bead density

are comparable, the Basset force suppresses the peak in the PSD.

All these factors, i.e., the existence of a purely viscous component, relaxation modes at high

frequencies, and medium inertia tend to bury the oscillations of the MSD inside an experimental

window in the noise level of particle-tracking measurements.

We are grateful to the National Science Foundation (grant NSF-SCI 05063059) and the Army

Research Office (grants W911NF-08-2-0058 and W911NF-09-1-0378) for financial support.

Appendix A: The two-mode Maxwell fluids

Here we detail MSD behavior of the bead in the two-mode Maxwell fluids discussed in Sec. II E

for each side of the e-1M window.

1. Inside the e-1M window (t ≫ λ2)

By taking the inverse one-sided Fourier transform of eq. (50), MSD inside the e-1M time window

is obtained as

〈

∆r2b(t)
〉(1)

eq
=
6kBT

H1

(

ζ1
ζ1 + ζ2

)2

×







1 + t/τ
(1)
d −

(

1+B
(1)
m

2 e−t/τ
(1)
e + 1−B

(1)
m

2 e−t/τ
(1)
b

)

(for m < m
(1)
c )

1 + t/τ
(1)
d − e−t(1/τ

(1)
e +1/τ

(1)
b )/2

(

cosω
(1)
m t+B

(1)
m

′
sinω

(1)
m t
)

(for m > m
(1)
c )

(A1)

where

τ
(1)
d :=

ζ1λ1

ζ1 + ζ2
(A2)
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is the time constant associated with the diffusive motion of the tracer bead, and the coefficients

are given by

B(1)
m :=

C(1)

λ1ζ1
√

(λ1ζ2 + λ2ζ1 +m)2 − 4mλ1(ζ1 + ζ2)
, (A3a)

B(1)
m

′
:= −iB(1)

m =
C(1)

2mλ2
1ζ1ω

(1)
m

(A3b)

with C(1) := (λ1ζ2 + λ2ζ1 +m)2 − λ1(ζ1 + ζ2)(λ1ζ2 + λ2ζ1 + 3m).

In eq. (A1),

m(1)
c := λ1ζ1

(

√

1 + ζ2/ζ1 − 1
)2

(A4)

is the critical mass defined from the zero-point of the square-root in the denominator of eq. (51).

If bead mass is so small as to satisfy the condition m < m
(1)
c , then the argument of the square-root

is positive, so that τ
(1)
b,e have a real value indicating that the MSD does not oscillate inside the

e-1M window. The condition τ
(1)
b < τ

(1)
e < τ

(1)
d is always satisfied, but the relaxation time of

the ballistic mode τ
(1)
b can be placed inside (λ2 < τ

(1)
b ) or outside (τ

(1)
b < λ2) the e-1M window

depending on the value of bead mass. In the former case (λ2 < τ
(1)
b ), the ballistic mode appears

inside the e-1M window followed by the diffusive mode up to τ
(1)
e due to the viscous component of

the second Maxwell element (see figure b of Fig. 6), while in the latter case (τ
(1)
b < λ2), it does not

and only the diffusive mode appears (see figures c-1 and c-2 of Fig. 6). For both cases, a plateau

appears with its height 〈rb(t)2〉eq = 6kBT
H1

(

ζ1
ζ1+ζ2

)2
for τ

(1)
e ≪ t ≪ τ

(1)
d , and the bead diffuses as

〈rb(t)2〉eq = 6kBT
ζ1+ζ2

t at the longest time regime t ≫ τ
(1)
d . (The precise expression of the plateau is

6kBT
λ1ζ1+λ2ζ2
(ζ1+ζ2)2

. Since the second term of the denominator can be neglected in the current condition

λ1 ≫ λ2, this is approximately expressed as 6kBT
λ1ζ1

(ζ1+ζ2)2
≃ 6kBT

H1
( ζ1
ζ1+ζ2

)2.) An important point

here is that if ζ2 is much smaller than ζ1, the GSER’s result is recovered at t ≫ τ
(1)
e that exists

inside the e-1M window.

With increasing m, the onset τ
(1)
b and the terminal τ

(1)
e of the internal diffusive mode approach,

and if m = m
(1)
c , both become equal with each other thereby eliminating this diffusive mode. When

m > m
(1)
c , these times take a complex value, and therefore the MSD oscillates. The imaginary part

of their inverse gives the frequency of the oscillation:

ω(1)
m :=

√

4mλ1(ζ1 + ζ2)− (λ1ζ2 + λ2ζ1 +m)2

2mλ1
. (A5)
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Instead of τ
(1)
b,e themselves, their mean times

√

τ
(1)
b τ

(1)
e =

√

mλ1

ζ1 + ζ2
=: λ

(1)
b , (A6)

2

1/τ
(1)
b + 1/τ

(1)
e

=
mλ1

λ1ζ2 + λ2ζ1 +m
=: λ(1)

e (A7)

describe the dynamics of bead displacement in this case. These times always satisfy the conditions

λ2 < λ
(1)
b < λ

(1)
e < τ

(1)
d [38]. In the smaller time regime t ≪ λ

(1)
b , the bead displacement is ballistic.

(This mode is also dominant at all time regime outside the e-1M window.) The oscillation is

observed for λ
(1)
b ≪ t . λ

(1)
e while gradually decreasing its amplitude as times goes on because

of the energy dissipation by the viscous elements. After the oscillation is attenuated, a plateau

appears for λ
(1)
e ≪ t ≪ τ

(1)
d . The bead diffuses away at the longest time regime t ≫ τ

(1)
d . These

behavior can be confirmed in figures a-1 and a-2 in Fig. 6.

2. Outside the e-1M window (t ≪ λ2)

The MSD of the bead outside the e-1M window is obtained from eq. (52) as follows

〈

∆r2b(t)
〉(2)

eq
=
6kBT

H1

λ2ζ1
λ1ζ2 + λ2ζ1 +m

×







1−
(

1+B
(2)
m

2 e−t/τ
(2)
e + 1−B

(2)
m

2 e−t/τ
(2)
b

)

(for m > m
(2)
c )

1− e−t/(2λ2)(cosω
(2)
m t+B

(2)
m

′
sinω

(2)
m t) (for m < m

(2)
c )

(A8)

where the coefficients are given by

B(2)
m :=

√

mλ1

mλ1 − 4λ2(λ1ζ2 + λ2ζ1 +m)
, (A9a)

B(2)
m

′
:= −iB(2)

m =
1

2λ2ω
(2)
m

(A9b)

with

ω(2)
m :=

√

4mλ1λ2(λ1ζ2 + λ2ζ1 +m)− (mλ1)2

2mλ1λ2
, (A10)

and the critical mass is

m(2)
c := 4

λ2

λ1
(λ1ζ2 + λ2ζ1). (A11)

If m > m
(2)
c , the argument of the square-root of τ

(2)
b,e given by eq. (53) is positive, so that τ

(2)
b,e take a

real value and the MSD does not oscillate. A condition λ2 < τ
(2)
b < τ

(2)
e holds. The first inequality
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assures that the bead displacement is ballistic at all time regimes outside the e-1M window (figures

a-1, a-2 and b in Fig. 6).

On the other hand, if bead mass is so small that the condition m < m
(2)
c is fulfilled, τ

(2)
b,e take

a complex value and the MSD oscillates with the frequency ω
(2)
m . With decreasing bead mass, the

frequency becomes high as ω
(2)
m ≃

√

λ1ζ2+λ2ζ1
mλ1λ2

, and it diverges in the zero-mass limit. Therefore, the

oscillation never disappears outside the e-1M window, although its effects disappear inside the e-1M

window as explained above. The bead’s displacement is governed by the following characteristic

times given as the means of τ
(2)
b,e :

√

τ
(2)
b τ

(2)
e =

√

mλ1λ2

λ1ζ2 + λ2ζ1 +m
=: λ

(2)
b , (A12)

2

1/τ
(2)
b + 1/τ

(2)
e

= 2λ2 =: λ(2)
e . (A13)

These times always satisfy the condition λ
(2)
b < λ2 < λ

(2)
e [39]. The displacement of the bead is

ballistic at the shortest time regime t ≪ λ
(2)
b , and oscillates in the rest of the regime: λ

(2)
b ≪ t .

λ
(2)
e (∼ λ2). See also figures c-1 and c-2 in Fig. 6.
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