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Abstract

We use the method of dimensional continuation to isolate singularities in integrals containing

products of Green’s functions or their derivatives. Rules for the extraction of the finite part of so-

called hypersingular integrals are developed, which should be useful in methods based on boundary

integral techniques in science and engineering. In applications to potential theory, electromagnetic

scattering, and crack dynamics in continuum mechanics, boundary integrals now can be readily

evaluated using computational techniques without recourse to complex analysis or contour dis-

tortions since the hypersingularities occurring in intermediate steps of the computations can be

isolated and ignored while taking the finite parts of the integrals into account in a consistent man-

ner. We have also identified new forms of the Dirac δ-function inD dimensions which are useful and

convenient in the calculations. A summary of the integrable singular integrals is given in tabular

form. We extend the considerations to a wider class of Green’s functions and present a theorem,

with additional results arising from it, which shows that hypersingular integrals associated with

3D potential problems can be reduced to 1D finite integrals rather than 2D integrals, again leading

to direct evaluations in such cases. These calculations are compared with existing results to show

the efficacy of the approach.

PACS numbers: 02.40.Xx, 02.30.Em, 41.20.Cv, 46.50.+a

Keywords: Green’s functions, hypersingular integrals, dimensional continuation, boundary element method,

potential theory
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I. INTRODUCTION

The properties of Green’s functions and other generalized functions are defined1 by the

“company they keep,” in the sense that their behavior is determined by an integration of such

functions multiplied by well-behaved functions.2 However, frequently in physical calculations

in science and engineering we encounter derivatives of Green’s functions as in the boundary

integral method, or its numerical implementation in the boundary element method (BEM).

This leads to non-integrable singularities that require careful attention in treating them.

In quantum field theory, we have an analogous situation in which products of Green’s

functions appearing in loop diagrams lead to infinities. Particularly lucid comments on this

issue of the need to define new rules for the evaluation of products of singular functions have

been given by Bogoliubov and Shirkov.3 The method of analytic continuation in spatial

dimension D of the integrals, to isolate the singular part and to identify the relevant finite

values of the integrals, is used in relativistic field theory in perturbative evaluations of

physically relevant quantities. In QFT, the nature of the divergences require “dimensional

regularization” by which the infinities are absorbed into physically observable parameters

through the process of renormalization.4

Fortunately, in potential theory, electromagnetic field computations, and in the theory

of crack dynamics and continuum mechanics, the singularities occurring in intermediate

stages of the calculations can be shown to cancel out. Thus, while renormalization is not an

issue in this case, managing the infinities in the theory and performing numerical analysis

is an issue and it can be troublesome, as evinced by the focus of attention on this in the

literature. Several investigations in the literature refer to the integrals appearing in the

integral representation of potentials and fields, and also in their evaluation by the BEM as

hypersingular integrals.5–8

In all the reports in the literature dealing with hypersingular integrals, the approach for

calculating them is to either use a distorted surface (2D) or contour (1D) to directly address

the issue of the singularity. The presence of the hypersingularities typically reduces the

numerical accuracy attained in the integrals, and the separation of the finite and infinite

parts is a particularly lengthy procedure. Transformation of variables and complex analysis

to evaluate the integrals are also employed in these papers. We cite a recent cross-section

of typical articles in this area in Refs. 9–16.
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There are a few analytic methods to solve the problem of singular integrals, such as

Galerkin approximation using local polynomials (as in the finite element method),9–11 the

Cauchy principle value technique to obtain the finite part in integration,12–14 or complex

analysis through contour deformation.15 These techniques usually consider a local coordinate

system around the singularity. The approaches differ only in the details of the evaluation

of the singular integrals to separate the finite and infinite parts. However, all these earlier

methods require very lengthy procedures due to the arbitrary shape of the discretized ele-

ments, such as triangles, and generally such discretized elements lack symmetry needed to

simplify the integrals. The same complicated procedure has to be applied to each new type

of Green’s function that is appropriate to the problem, as for Laplace problems,9 elasticity

problems,10,11 or in fracture analysis.13

Here we wish to present a new, independent method for the evaluation of the hypersingu-

lar integrals, whereby a more universal approach can be implemented. We propose the use of

dimensional continuation in the evaluation of integrals of the well known Green’s functions.

Since the singularities of Green’s functions and their derivatives can be tamed by the radial

part of the Jacobian, rD−1, arising in D dimensions, we arrive at a closed form expression

for the integrals at high enough values of D. On returning to the dimension of interest by

analytic continuation, the singularity there can be explicitly isolated and shown to cancel

out in all applications. This is the essence of the method of dimensional continuation.

We identify the rules for obtaining consistent results through the use of such methods

for the hypersingular integrals occurring in the BEM.17 We provide a systematic approach

to the treatment of the singularities in typical integrals using the standard example of the

Poisson equation in Sec. II, and show in Sec. II B how to isolate them using the dimensional

continuation method. Further, we define integrable singular integrals that typically occur

in physical applications in Sec. IIC. These results are then used in deriving new expres-

sions for the Dirac δ-functions in D dimensions in Sec. IID; such expressions help resolve

the singularity in the derivative of the solution of the Poisson equation over the infinite

domain. In Sec. III, we derive further results for a general class of Green’s functions on the

integrability of their derivatives, and show how integrals can be performed over a general

shape in the discretized region around the singularity. In Sec. IV, we prove that the hyper-

singular integrals appearing in potential theory can be reduced by one more dimension; in

other words, the boundary integral method which uses Green’s theorem, and reduces the
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dimensionality of the problem from 3D to 2D, can have its singular integrals reduced by

yet one more dimension. This is demonstrated for the Poisson’s equation, and the results

are compared in Table I with extant 2D evaluations in the literature.18,19 Examples of such

integrals occurring in electromagnetic scattering are considered in Sec. V, with the example

of fracture analysis presented in Appendix B. A summary of the integrable singular integrals

is reported in tabular form in Tables II,III, and IV in Appendix C. Concluding remarks are

given in Sec. VI.

It is hoped that the present approach will provide an effective, powerful, and practical

method of evaluating the so-called hypersingular integrals in computational science and

engineering applications, with an automated approach to accounting for these issues in a

direct manner.

II. THE POISSON’S EQUATION IN INFINITE DOMAIN

We consider the usual 3D Laplace’s equation with an inhomogeneous term in order to

identify the problem of singular integrals and illustrate our method in resolving this problem.

We also obtain a new generalized expression for the Dirac δ-function in arbitrary dimensions.

A. Poisson’s equation in 3D

In the infinite domain, the solution of the Poisson equation, ∇2ϕ(r) = −4πρ(r), is given

by20 ϕ(r) =
∫

ρ(r′)/|r− r′| d3r′. Here the potential is represented by ϕ(r), and ρ(r) is the

charge density. The Green’s function for the Poisson problem is G(r, r′) = 1/|r − r′|. The

potential’s first and second order derivatives are

∂iϕ = −
∫

(ri − r′i)ρ(r
′)

|r− r′|3 d3r′, (1)

∂i∂jϕ =

∫
(

− δij
|r− r′|3 +

3(ri − r′i)(rj − r′j)

|r− r′|5
)

ρ(r′) d3r′. (2)

When i = j, we should have the result

3
∑

i=1

∂i∂iϕ(r) = ∇2ϕ(r) = −4πρ(r), (3)
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from the standard identity ∇2G(r, r′) = −4πδ(r− r′). Thus we should be able to carry out

the above integral explicitly, and we expect to have

3
∑

i=1

∫
(

− 1

|r− r′|3 +
3(ri − r′i)

2

|r− r′|5
)

ρ(r′) d3r′ = −4πρ(r). (4)

However, the individual integrals are singular as r → r′ because of the factors of 1/|r− r′|3

and 1/|r − r′|5 in the integrand. In the following we consider the singularities in detail.

Eq.(4) also suggests that we can define a new form of the Dirac δ-function, and we will

consider this issue rigorously in IID below.

B. Singular Integrals

We classify a set of singular integrals that frequently occur in integral equations. Consider

singular integrals of the form
∫

|r|<R

f(r)

|r|d d
Dr, (5)

where f(r) has a Taylor series expansion around the origin, and D is the dimension of

space which we will take to be continuous. We introduce a shift in the denominator8,21 by

substituting |r| ⇒
√
r2 + ǫ2 in order to easily isolate the infinite part of the singular integral.

At the end of the calculation, the limit ǫ → 0 will be imposed.

1. Basic Singular Integrals

We first consider a basic singular integral defined as

I0(R; d, δ) =

∫

|r|<R

1

|r|d d
Dr. (6)

Doing the “angular” integrations in D dimensions, we note that dDr = AD rD−1dr, where

AD = 2πD/2/Γ(D/2) is the surface area of the D-dimensional unit hypersphere. We change

|r| in the denominator to ρ =
√
r2 + ǫ2 to write

I0(R; d, δ) ⇒ AD

∫ R

0

ρ−d rD−1 dr.

To leading order in ǫ the integral then becomes

I0(R; d, δ)

AD
= ǫδ

Γ(−δ/2) Γ(D/2)

2 Γ(d/2)
+

Rδ

δ
, (7)
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where δ = D − d. The details of evaluting this integral are given in Appendix A. We now

consider three limits for the integral I0:

(a) When δ > 0, the first term vanishes when ǫ → 0. In this case I0 is not a singular

integral.

(b) When δ → 0, we have

I0(R; d, δ)

AD
= − Γ′(d/2)

2 Γ(d/2)
− γ

2
+ ln

R

ǫ
+O(δ). (8)

where γ is Euler’s constant γ = 0.5772 · · · . In this case, the integral has a logarithmic

singularity as ǫ → 0.

(c) When δ < 0, we have

I0(R; d, δ)

AD
=

Rδ

δ
+ ǫ−|δ|

(

Γ(−δ/2) Γ(D/2)

2 Γ(d/2)

)

. (9)

In this case we see that the singular integral has an ǫ−|δ| type infinity as ǫ → 0.

Therefore, we separate the infinite part of the singular integral I0(R; d, δ) as follows

I0(R; d, δ)

AD
=



































Rδ

δ
, for δ > 0, no infinity;

− Γ′(d/2)

2 Γ(d/2)
− γ

2
+ ln

R

ǫ
, for δ = 0, log infinity;

Rδ

δ
+ ǫ−|δ|

(

Γ(−δ/2) Γ(D/2)

2 Γ(d/2)

)

, for δ < 0, ǫ−|δ| infinity.

(10)

Notice that the nature of the infinite part is determined only by δ = D − d.

2. General Singular Integrals

The general singular integrals are defined as

Ik(R; d, δ, {ni}ki=1) =

∫

|r|<R

xn1

1 xn2

2 · · ·xnk

k

|r|d+N
dDr, (11)

where N =
∑k

i=1 ni. Let us first focus on the form

I1(R; d, δ, n) =

∫

|r|<R

xn

|r|d+n
dDr. (12)
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The details of the evaluation of these integrals are given in Appendix A and we only provide

the results here. When n is odd, this integral vanishes, and when n is even, I1 is given by

I1(R; d, δ, n) =
(D − 2)!!(n− 1)!!

(D + n− 2)!!
I0(R; d+ n, δ), (13)

where (ni − 1)!! = (ni − 1)(ni − 3) · · ·1, and (−1)!! = 1. The most commonly occurring

non-zero case in typical applications is when n = 2 (see for example, Eq.(4)), for which we

obtain

I1(R; d, δ, 2) =

∫

|r|<R

x2

|r|d+2
dDr =

1

D
I0(R; d+ 2, δ). (14)

Since the type of infinity just depends on δ, I1(R; d, δ, n) has the same singular behavior as

I0(R; d, δ). In fact, the general singular integrals Ik are always multiples of the above basic

singular integral I0. When all ni are even numbers, Ik is given by

Ik(R; d, δ, {ni}ki=1) =
(D − 2)!!

∏k
i=1(ni − 1)!!

(D + n− 2)!!
I0(R; d+N, δ), (15)

and Ik vanishes otherwise. We note that these integrals all have the same singular behavior

as I0.

3. ǫ-Singular Integrals

We can have a singular integral that has ǫ in the numerator. We assume that ǫ is a

constant when performing the integration. Hence we will have

Iǫk(R; d, δ, {ni}ki=0) =

∫

|r|<R

ǫn0xn1

1 xn2

2 · · ·xnk

k

|r|d+n0+N
dDr

= ǫn0Ik(R; d+ n0, δ − n0, {ni}ki=1), (16)

where N =
∑k

i=1 ni. We only need consider the case when all ni are even, since the integral

vanishes otherwise. For non-zero cases, we have

Iǫk(R; d, δ, {ni}ki=0) =
(D − 2)!!

∏k
i=1(ni − 1)!!

(D +N − 2)!!
ǫn0I0(R; d+N + n0, δ − n0). (17)

To simplify the notation we define Iǫ0(R; d, δ, n0) = ǫn0I0(R; d+ n0, δ − n0), so that

Iǫk(R; d, δ, {ni}ki=0) =
(D − 2)!!

∏k
i=1(ni − 1)!!

(D +N − 2)!!
Iǫ0(R; d+N, δ, n0). (18)

Therefore, Iǫk is transformed to Iǫ0, and hence we need to discuss the properties of Iǫ0. This

is done in the following.
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4. Basic ǫ-Singular Integrals

With the result for I0 derived above in Eq.(10), we have

Iǫ0(R; d, δ, n0) = ǫδ

(

Γ
(

n0−δ
2

)

Γ
(

D
2

)

2Γ
(

d+n0

2

)

)

+ ǫn0

(

Rδ−n0

δ − n0

)

. (19)

The earlier definitions for Iǫk and Iǫ0 are convenient because a factor of ǫδ can be pulled out.

Because n0 is always greater than 0, the second term vanishes in the limit ǫ → 0 if δ 6= n0.

When δ = n0, recall that I
ǫ
0 is a multiple of I0, and by Eq.(10) we have

Iǫ0(R; d, δ, n0) = ǫn0I0(R; d+ n0, δ − n0)

= ǫn0

(

− Γ′((d+ n0)/2)

2 Γ((d+ n0)/2)
− γ

2
+ ln

R

ǫ

)

→ 0. (20)

Therefore, Iǫ0 → 0 as ǫ → 0 for all δ > 0, even when δ = n0. In summary, we obtain:

(a) When δ > 0, we simply get Iǫ0(R; d, δ, n0) = 0.

(b) When δ → 0, we have

Iǫ0(R; d, δ, n0) =
Γ
(

n0

2

)

Γ
(

D
2

)

2Γ
(

d+n0

2

) +O(d), (21)

which is finite.

(c) When δ < 0, we have

Iǫ0(R; d, δ, n0) = ǫ−|δ|

(

Γ
(

− δ−n0

2

)

Γ
(

D
2

)

2Γ
(

d+n0

2

)

)

, (22)

which has a singularity arising from the ǫ−|δ| factor.

C. Integrable Singular Integrals

If two singular integrals have the same infinite part their difference is a finite number.

More generally, a linear combination of singular integrals may sum to a finite number when

their infinite parts cancel. We call such combinations as integrable singular integrals (ISI).22

As will be shown below, most of the singular integrals in physics applications of potential

theory and engineering analysis using Green’s functions are ISI’s.23
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For the non-zero cases, the integrals Ik(R; d, δ, {ni}ki=1) are always a multiple of I0(R; d+

N, δ), so that both classes of integrals have the same type of infinity, logarithmic infinity

when δ = 0, and ǫ−|δ|-type infinity when δ < 0. Therefore, we can take the linear combination

of Ik(R; d, δ, {ni}ki=1) and I0(R; d, δ) to cancel the singular parts and obtain ISI’s.24 Such ISI’s

are given by

I0(R; d, δ)− (d+N − 2)!!

(d− 2)!!
∏k

i=1(ni − 1)!!
Ik(R; d, δ, {ni}ki=1)

=



















[

1− (d+N − 2)!!(D − 2)!!

(D +N − 2)!!(d− 2)!!

]

AD

δ
Rδ, for δ < 0;

1

2

[

Ψ

(

d+N

2

)

−Ψ

(

d

2

)]

AD, for δ = 0,

(23)

where all ni are even, and Ψ(x) = Γ′(x)/Γ(x) is the digamma function. Ψ((d+N)/2)−Ψ(d/2)

can be written as

Ψ

(

d+N

2

)

−Ψ

(

d

2

)

=
2

d
+

2

d+ 2
+ · · ·+ 2

d+N − 2
. (24)

Another type of ISI includes Iǫk. Because Iǫk can always be transformed to Iǫ0, we just

need to consider Iǫ0. We noted earlier that Iǫ0 is finite when δ = 0, and is integrable. When

δ < 0, we have

I0(R; d, δ)−
(

Γ
(

− δ
2

)

Γ
(

− δ
2
+ n0

2

)

Γ
(

d
2
+ n0

2

)

Γ
(

d
2

)

)

Iǫ0(R; d, δ, n0) =
AD

δ
Rδ. (25)

We call the above as the fundamental ISIs because all the other ISIs can be written

as linear combinations of them. Some simple examples of fundamental ISI’s are given as

follows.

(a) By setting k = 1, n1 = 2 in Eq.(23), we obtain the simplest ISI which takes the form

∫

|r|<R

(

1

|r|d − d
x2

|r|d+2

)

dDr =
AD

D
Rδ. (26)

It can be checked that this formula holds for all δ ≥ 0, or δ < 0.

(b) By setting n0 = 2 in Eq.(25), we have another ISI obtained from I0 and Iǫ0, which we

call ǫ2-ISI, for which

∫

|r|<R

(

1

|r|d − d

d−D

ǫ2

|r|d+2

)

dDr =
AD

δ
Rδ. (27)

9



D. The Dirac δ-function in ISI

We note that

δ(D)(r) =
1

AD

D
∑

i=1

(

1

|r|D − D r2i
|r|D+2

)

, (28)

is a Dirac δ-function in D dimension in the sense that25

1

AD

D
∑

i=1

∫
(

1

|r− r′|D − D(ri − r′i)
2

|r− r′|D+2

)

ρ(r′) dDr′ = ρ(r). (29)

To verify the above we take a series expansion of ρ(r′)

ρ(r′) = ρ(r) + (r′ − r) · ∇ρ(r) +O((r′ − r)2). (30)

The leading term of the expansion gives

D
∑

i=1

∫
(

1

|r− r′|D − D(ri − r′i)
2

|r− r′|D+2

)

ρ(r) dDr′ = ρ(r)D

∫
(

1

|s|D − Ds2i
|s|D+2

)

dDs, (31)

where s = r′ − r. This is the simplest ISI with d = D. So from Eq. (26) we have

D
∑

i=1

∫
(

1

|r− r′|D − D(ri − r′i)
2

|r− r′|5
)

ρ(r) dDr′ = ADρ(r). (32)

We can show that the further terms in the series expansion are zero. Actually, any integral

of the following form can be expressed as

D
∑

i=1

∫

|s|<R

(

1

|s|D − Ds2i
|s|D+2

) D
∏

i=1

saii dDs = λ I0(R; d, δ), (33)

where d = D −∑ ai, with ai being the power of si in the Taylor expansion of ρ(r′), and

δ = D−d =
∑

ai > 0, and λ is a constant that is obtained by doing the angular integration

and is given by Eq.(15). Because δ > 0, we know this is a regular integral with no singularity,

and from Eq.(10) we obtain

D
∑

i=1

∫

|s|<R

(

1

|s|D − Ds2i
|s|D+2

) D
∏

i=1

saii dDs = ADλ
Rδ

δ
. (34)

On the other hand, by evaluating the difference between two such integrals over the ranges

|s| < R1 and |s| < R2 with R2 > R1 we have

D
∑

i=1

∫ R2

R1

(

1

|s|D − Ds2i
|s|D+2

) D
∏

i=1

saii dDs = ADλ
Rδ

2 − Rδ
1

δ
. (35)
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We note that for s 6= 0

D
∑

i=1

(

1

|s|D − Ds2i
|s|D+2

)

=
D

|s|D − Ds2

|s|D+2
= 0. (36)

Hence the left side of Eq.(35) is zero, so that λ = 0. Therefore the integral in Eq.(34)

vanishes. Combined with Eq.(32), we reconstruct the relation Eq.(29).

Also, we can write the δ-function as a limit

δ(D)(r) =
D

AD
lim
ǫ→0

(

1

(
√
r2 + ǫ2)D

− r2

(
√
r2 + ǫ2)D+2

)

=
D

AD
lim
ρ→r+

(

1

ρD
− r2

ρD+2

)

. (37)

This new representation of the Dirac δ-funaction can be used to directly prove Eq.(4).

III. FURTHER RESULTS ON INTEGRABLE SINGULAR INTEGRALS

We present here two important additional results that can further substantially simplify

the evaluation of integrable singular integrals.

A. Singular Integrals arising from the Derivatives of Green’s Functions

With the formulas obtained from dimensional continuation in the above sections we can

prove a general theorem which shows that the singular integrals coming from the derivative

of Green’s functions must actually be finite.

Theorem: If the Green’s function G(r) can be expressed as the following series expansion

G(r) =
∑

M

∑

{ni}

aM,{ni}
rn1

1 rn2

2 · · · rnD

D

rM
, (38)

then we have the following equality

∫

r≤R

∂G(r)

∂ri
dDr =

1

R

∂

∂R

∫

r≤R

ri G(r) dDr, (39)

which is always a finite number. We have relegated the proof of this theorem to Appendix

A. With this theorem we can show that the integral of the double derivatives of the Green’s

function is also integrable, as shown below. In fact, this implies that any finite order deriva-

tives of Green’s functions can be integrated.
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Assume the conditions of the above Theorem hold for G(r). Then the integral of the

double derivative of G is also finite, where we have
∫

r≤R

∂i∂jGdDr =
1

R

∂

∂R

∫

r≤R

ri ∂jGdDr =
1

R

∂

∂R

∫

r≤R

[∂j(ri G)− δij G] dDr

=
1

R

∂

∂R

(

1

R

∂

∂R

∫

r≤R

rirj GdDr

)

− δij
1

R

∂

∂R

∫

r≤R

GdDr. (40)

B. Singular Integrals Over A General Shape

In practical applications, we usually have singular integrals over volumes V of any general

shape rather than necessarily spherically symmetric regions. We now generalize our method

to account for this in the following. Assume the conditions in the above Theorem hold for

G(r). For an analytic function u(r), we have
∫

r≤R

u ∂iGdDr =

∫

r≤R

[∂i(uG)−G∂iu] d
Dr

=
1

R

∂

∂R

∫

r≤R

ri uGdDr−
∫

r≤R

G∂iu d
Dr. (41)

We employ the characteristic function26 defined by

χV (r) =







1 r ∈ V,

0 r /∈ V.
(42)

(This is a generalization of the usual step-function θ(x), which is zero for x < 0 and unity

for x > 0.) Then if we take a large enough spherical integration range such that it contains

V , we have
∫

r≤R

χV ∂iGdDr =

∫

V

∂iGdDr. (43)

By the Stone-Weierstrass theorem,27 the characteristic function χV can be approximated

closely by polynomial functions. We can therefore apply this result to obtain
∫

V

∂iGdDr =
1

R

∂

∂R

∫

r≤R

ri χV GdDr−
∫

r≤R

G∂iχV dDr

= êi ·
∫

∂V

n(r)G(r) dD−1r, (44)

where ∂V is the boundary of V , n(r) is the (outward directed) unit normal vector on ∂V

at r, and êi is the i-th unit basis vector. The first term in Eq. (44), having ∂/∂R, vanishes

because χV is zero outside V , so the integral does not depend on R. The derivative of χV
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will become (the negative of) the δ-function on ∂V , as the derivative of the step function

θ(x) is the delta-function δ(x), so the second term becomes an integration on the boundary.

The above discussion is a physical explanation rather than a strict mathematical proof.

In order to provide a rigorous proof, we need to have several conditions for V , such as the

requirement for compactness and convexity, and by saying that χV can be approximated

by polynomials we actually mean a uniform convergence as stated by the Stone-Weierstrass

theorem. We also note that Eq.(44) can be applied when G has 0−n singularities inside V ;

however, it cannot be applied when G has logarithmic singularities.

The formula in Eq.(44) is especially useful in the boundary integral equation (BIE)

method, where we break up the surface into discrete triangles and have singular integrals of

the forms
∫

∆
ρ ∂iGdS and

∫

∆
ρ ∂i∂jGdS. In a small triangle ∆ enclosing the singularity we

can assume ρ to be a constant ρ0. With the above formula, we have

∫

∆

∂iGdS =
3
∑

k=1

(

êi · nk

∫

lk

Gdl

)

, (45)

where the sum over k means that we evaluate the integral over the three sides of the triangle,

thereby reducing the BIE integral to a sum of one-dimensional integrals.

IV. POISSON PROBLEM IN A FINITE DOMAIN

A. Poisson’s equation in 3D

Now we consider the boundary integral approach to a typical 3D potential problem for

which the Poisson Green’s function is G(x,y) = 1/|x− y|. The boundary integral equation

is given by

∫

Γ

G(x,y)
∂ϕ(y)

∂n
dSy −

∫

Γ

n(y) · ∇xG(x,y)ϕ(y) dSy = 4πϕ(x), (46)

where ϕ(x) is the potential needed to be solved on the boundary Γ, and n(y) is the unit

normal vector on Γ at y. In a numerical approximation of the boundary integral equation

we divide the surface Γ into non-overlapping contiguous triangles, so the original integration

can be expressed by a sum of 2D integrations over flat triangles, and we express ϕ(y) by

polynomial functions in each triangle. In essence this is the boundary element method. One

problem arising in this calculation is that if x and y lie in the same triangle, the integration

13



over this triangle will become singular because the singularity appearing in G(x,y) and its

derivative (and in other examples its higher derivatives). We note that this problem does

not occur if x and y lie in different triangles because they are separated and their distance

will have a lower bound, and G(x,y) will be a finite number.

In the following, we restrict our attention to the case when x and y are in the same

triangle ∆, and we define r = x − y. The class of singular integrals that appear in such

calculations are

I1 =

∫

∆

1

r
dS; I i1 =

∫

∆

ri
r
dS; I i3 =

∫

∆

ri
r3

dS; I ij3 =

∫

∆

ri rj
r3

dS;

δij I3 − 3 I ij5 =

∫

∆

(

δij
r3

− 3 ri rj
r5

)

dS. (47)

The analytic results for these integrals have been evaluated previously by accounting for

the singularities through lengthy procedures in 2D.18,19,28 Here we are using the notation in

Ref. 18 for the integrals. Within our framework, as developed in this report, the analytic

expressions can be obtained more easily because, with the exception of I1 which is a finite

integral, the 2D integrals can be transformed to (1D) line integrals, on employing the result

in Sec. III B, as follows:

I i1 =
3
∑

k=1

(

êi · nk

∫

lk

r dS

)

; I i3 = −
3
∑

k=1

(

êi · nk

∫

lk

1

r
dS

)

;

I ij3 = −
∫

∆

rj ∂i
1

r
dS = −

3
∑

k=1

(

êi · nk

∫

lk

rj
r
dl

)

+ δij I1,

δij I3 − 3 I ij5 =

∫

∆

∂i∂j
1

r
dS =

3
∑

k=1

(

êi · nk

∫

lk

∂j
1

r
dl

)

. (48)

For the Poisson Green’s function, it can be verified that the numerical results from the line

integration perfectly match the analytic expressions of the earlier work when they are evalu-

ated numerically.18 We have verified that our line integrals can also be evaluated analytically

to obtain the same expressions. In Table I we give the numerical comparison between the two

methods. We have taken the three vertices of the triangle, shown in Fig. 3, to be (−2,−1),

(2,−2), and (1, 1) as a general example for obtaining concrete numerical results.

For more complex Green’s functions, evaluating the analytic expressions on arbitrary 2D

surfaces with singularities appearing inside them will be very lengthy procedures within the

framework of the methods used in the literature. Analytic approaches in 2D would be more

14



Singular Integrals 2D Analytic results18 Present 1D calculations

I1 7.161515826913852 (nonsingular)

I11 1.373374685494244 1.373374685494246

I13 1.549306788877796 1.549306788877799

I1 − I113 3.484787720187224 3.484787720187223

I123 0.125979758603789 0.125979758603789

I3 − 3 I115 3.412616456100593 3.412616456100595

I125 0.978715205225059 0.978715205225061

TABLE I. Comparison between the 2D calculations based on the final analytic expressions given

by Fata, et al.18 and the results from our 1D reduction of the ISI using the theorem of Sec. IV.

complex than the 1D analytic approach presented here. Secondly, if numerical integrations

are performed over the 2D region, the presence of the singularities reduce accuracy of the

integrals in the intermediate steps of the analysis. The 1D numerical integrals that one

would encounter correspondingly in our method will not have any reduction in accuracy due

to the singularities since the integrations are on the boundary.

B. Poisson’s equation in 2D

For completeness we present a short elaboration of singular integrals appearing in the

2D boundary integral method, even though the following integrals are not ISI’s. In the 2D

Poisson problem, cast in terms of the boundary integral method, we have17

ϕ(r) =
1

4π

∮

dl′
(

G(r, r′)
∂ϕ(r′)

∂n′
− ϕ(r′)

∂G(r, r′)

∂n′

)

, (49)

where G(r, r′) = −2 ln |r − r′|. we can assume ϕ and ∂n′ϕ to be constants, as a worst case

scenario, over a small line element from ℓa to ℓb, so that we need to evaluate the singular

integrals

B1 =

∫ ℓb

ℓa

ln s dl′; B2 =

∫ ℓb

ℓa

s · n′

s2
dl′, (50)

where s = r− r′. B1 is a well-defined integrable end-point singular integral typified by
∫ R

0

ln x dx = lim
ǫ→0

(x ln x− x)|Rǫ = R lnR− R. (51)
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The integral B2 can be evaluated using the point-shifting technique used earlier. We make

use of the geometry displayed in Fig. 1 and write dl′ = s dθ/cosα = s dθ/ŝ · n′. Then,

B2 =

∫ ℓb

ℓa

s · n′

s2
s dθ

ŝ · n′
=

∫ ℓb

ℓa

dθ. (52)

This integral in the limit ǫ → 0 corresponds to an angle subtended by the contour at the

singular point, so that for a straight contour (See Fig. 2a ) we have B2 = π, while for a

corner, as shown in Fig. 2b, we have B2 = 3π/2, as an exterior angle. Further details can

be obtained for 2D treatments of the boundary integral method in Ref. 17.

V. ISI IN ELECTROMAGNETIC SCATTERING

We illustrate the above considerations with a brief application to the evaluation of elec-

tromagnetic fields emitted by a conducting surface,29,30 where again integrable singularities

occur. (An additional example from the field of fracture dynamics is described briefly in

Appendix B.)

A. 3D Scattering

In 3D, the electric field radiated by a conducting surface takes the form21,31

E = −ikZ0

∫

S

[

G(r, r′)J(r′) +
1

k2
∇∇G(r, r′) · J(r′)

]

dS ′, (53)

where the Green’s function is given byG(r, r′) = eik̺/4π̺, with ̺ = |r−r′|, and Z0 =
√

µ0/ǫ0

is the impedance of free space.29 The second term in the integral involves a second derivative

of the Green’s function, and therefore the corresponding integral is a hypersingular integral.

It is usual to discretize the surface into small elements. As a simple approximation, we may

assume that the current J(r′) is a constant J0 over a suitably small element (in general it

can be taken to be a simple polynomial). We can then write the second term of the integral

explicitly as
∫

∆S

∇∇G(r, r′) · J0 dS = J0 ·
∑

i,j

ˆ̺i ˆ̺j

∫

∆S

Gij dS, (54)

where ∆S is an element containing the singularity and

Gij =

[

(3− 3ik̺− k2̺2)̺i̺j
̺5

− δij(1− ik̺)

̺3

]

eik̺. (55)
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The singular integrals in
∫

Gij dS are

K1 =

∫

∆S

(

3̺2i
̺5

− 1

̺3

)

dS; K2 =

∫

∆S

̺i̺j
̺5

dS, (i 6= j), (56)

where we have expanded the exponential exp(ik̺) ≃ (1 + ik̺) for small ̺ to isolate the

singular terms. If we take the region of integration to be a circle around the singularity,

we find K1 = π/R is the simplest ISI with d = 3, D = 2, and K2 = 0 as is evident from

Eq.(A-13). In the full calculation, we have to take the integral within and outside the

circular region separately; we then note that the integral over the exterior of the circle is

a regular integral and can be computed directly. These identifications of the finite parts

should substantially simplify the computational modeling of electromagnetic scattering.

B. 2D Scattering

In 2D scattering, the Green’s function is given by29

G(r, r′) =
eik̺√
̺
, (57)

where ̺ = |r− r′|. Similarly, the components of ∇∇G are

∂i∂jG =

[(

5

4
̺−

9

2 − 2ik ̺−
7

2 − k2 ̺−
5

2

)

̺i̺j +

(

−1

2
̺−

5

2 + ik ̺−
3

2

)

δij

]

eik̺

=
5

4
̺i̺j ̺

− 9

2 − 1

2
δij̺

− 5

2 + ik

(

−3

4
̺i̺j ̺

− 7

2 +
1

2
δij̺

− 3

2

)

+O
(

̺−
1

2

)

. (58)

It can be easily checked that the singular terms in
∫

GijdS also sum to ISI’s. For example,

the leading terms of
∫

GijdS given by

K3 =

∫

̺<R

(

1

̺5/2
− 5

2

̺2i
̺9/2

)

dS; K4 =

∫

̺<R

(

1

̺3/2
− 3

2

̺2i
̺7/2

)

dS, (59)

where K3 = πR−1/2 is the simplest ISI with d = 5/2, D = 2, and K4 = πR1/2 is the simplest

ISI with d = 3/2, D = 2.

VI. CONCLUDING REMARKS

We have used dimensional continuation in the evaluation of integrals of the well known

Green’s functions and their derivatives. We have identified the rules for obtaining consistent

results through the use of such methods for the hypersingular integrals occurring in the BEM,
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potential theory, electromagnetic scattering, and in fracture analysis (see Appendix B). We

have provided a systematic approach to the identification of the singularities in typical in-

tegrals and shown how to isolate them using the dimensional continuation method. We

have identified new representations for the Dirac δ-function in D dimensions that are not

stated in the standard literature. These results are then used in the calculation of examples

of such integrals occurring in physical applications. A summary of the integrable singular

integrals is given in tabular form in Appendix C. The Theorem presented in Sec. III shows

how the potential problems in 3D, which are reduced to 2D boundary integrals by Green’s

theorem with hypersingularities, can be further reduced to 1D finite integrals. This pro-

vides a concrete example of the strength of our approach through the further reduction in

dimensionality afforded the application of the theorem.

It is hoped that the present approach will provide an effective, practical method of evalu-

ating the so-called hypersingular integrals in computational science and engineering applica-

tions. Our tabulated ISIs will lead to an automated computation of the physical quantities

of interest without having to recalculate finite parts of integrals for each specific occurrence.
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Appendix A: Classification of Singular Integrals

For convenience, we use the substitutions

ρ2 = r2 + ǫ2; r = (x1, x2, . . . , xD),

δ = D − d; AD =
2π

D

2

Γ(D
2
)
. (A-1)

We will always use d as the order of the singularity of the integrand, i.e. the power of r in the

denominator of the integrand, and D as the dimension of the multi-dimensional integration.

It will be shown below that whether an integral is singular, and if so the type of the infinite

part, is determined by δ = D − d. Here AD is the surface area of the D-dimensional unit

hypersphere.
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1. The basic integral I0(R; d, δ) =

∫

|r|<R

1

|r|d dDr.

Doing the “angular” integrations in D dimensions, we note that dDr = AD rD−1dr. We

change |r| in the denominator to ρ =
√
r2 + ǫ2 to write

I0(R; d, δ) ⇒ AD

∫ R

0

ρ−d rD−1 dr.

The integral then becomes

I0(R; d, δ)

AD
=

∫ ∞

0

ρ−d rD−1 dr −
∫ ∞

R

ρ−d rD−1 dr. (A-2)

The first integral can be expressed in terms of Gamma functions,
∫ ∞

0

rD−1

ρd
dr = ǫδ

(

Γ(−δ/2) Γ(D/2)

2 Γ(d/2)

)

, (A-3)

and the second integral can be expressed as a hypergeometric function
∫ ∞

R

rD−1

ρd
dr = −

(

Rδ

δ

)

2F1

(

d

2
,−δ

2
; 1− δ

2
;− ǫ2

R2

)

, (A-4)

where

2F1(a, b; c; z) =

∞
∑

n=0

(a)n(b)n
(c)n

zn

n!
,

with (ξ)n = ξ(ξ + 1)(ξ + 2) · · · (ξ + n − 1), (ξ)0 = 1. From the series expansion of the

hypergeometric function, to leading order in ǫ, we have
∫ ∞

R

rD−1

ρd
dr = −Rδ

δ
(1 +O(ǫ2)). (A-5)

Therefore,
I0(R; d, δ)

AD
= ǫδ

Γ(−δ/2) Γ(D/2)

2 Γ(d/2)
+

Rδ

δ
. (A-6)

2. Integrals of the type I1(R; d, δ, n) =

∫

|r|<R

xn

|r|d+n
dDr.

We suppose that the x above coincides with one of the xi in Eq.(A-1). In this case, we

make the usual substitution into hyperspherical coordinates

x1 = r cos θ1, 0 ≤ θ1 ≤ π,

x2 = r sin θ1 cos θ2, 0 ≤ θ2 ≤ 2π,

...
...

xD = r sin θ1 sin θ2 · · · sin θD−1

dDr = rD−1 sinD−2 θ1 · · · dr dθ1 · · · dθD−1, (A-7)
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and shift the denominator from |r| to ρ =
√
r2 + ǫ2 (with x ≡ x1 without loss of generality,

and θ1 = θ) to write

I1(R; d, δ, n) ⇒ AD−1

∫ π

0

∫ R

0

(rn cosn θ)

ρd+n
rD−1 sinD−2 θ dr dθ

= AD−1

∫ R

0

ρ−(d+n) r[(D+n)−1] dr

∫ π

0

cosn θ sinD−2 θ dθ

= I0(R; d+ n, δ) · AD−1

AD

∫ π

0

cosn θ sinD−2 θ dθ. (A-8)

The angular integrals have been suppressed into AD−1, AD, which are the surface areas of

the unit hypersphere in D − 1 and D dimensions. The last integral in Eq. (A-8) is a Beta

function and we have

AD−1

AD

∫ π

0

cosn θ sinD−2 θ dθ =











0, for n odd;

Γ(D
2
) Γ(n+1

2
)

√
π Γ(D+n

2
)
, for n even.

(A-9)

When n is even, the Gamma functions can be simplified further to obtain

I1(R; d, δ, n) =
(n− 1)(n− 3) · · · 1

(D + n− 2)(D + n− 4) · · ·D I0(R; d+ n, δ). (A-10)

Since the type of infinity just depends on δ, I1(R; d, δ, n) has the same singular behavior as

I0(R; d, δ). For example, the most commonly occurring non-zero case in typical applications

is when n = 2, for which we obtain

I1(R; d, δ, 2) =

∫

|r|<R

x2

|r|d+2
dDr =

1

D
I0(R; d+ 2, δ). (A-11)

3. Integrals of the type I2(R; d, δ,m, n) =

∫

|r|<R

xm1 xn2
|r|d+m+n

dDr.

For such integrals we again make the substitutions into hyperspherical coordinates

x1 = r cos θ1,

x2 = r sin θ1 cos θ2,

dDr = AD−2r
D−1 sinD−2 θ1 sin

D−3 θ2 dr dθ1 dθ2, (A-12)
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and as usual change |r| in the denominator to ρ =
√
r2 + ǫ2 to obtain

I2(R; d, δ,m, n) ⇒ AD−2

∫ π

0

∫ π

0

∫ R

0

rm+n cosm θ1 sin
n θ1 cos

n θ2
ρd+m+n

×

rD−1 sinD−2 θ1 sin
D−3 θ2 dr dθ1 dθ2

= I0(R; d+m+ n, δ)×
AD−2

AD

∫ π

0

cosm θ1 sin
D+n−2 θ1 dθ1

∫ π

0

cosn θ2 sin
D−3 θ2 dθ2

=
Γ(D

2
) Γ(m+1

2
) Γ(n+1

2
)

π Γ(D+m+n
2

)
I0(R; d+m+ n, δ), (A-13)

when both m and n are even, and I2 = 0 otherwise. Thus I2 also has the same singular

behavior as I0(R; d, δ).

4. Integrals of the type Ik(R; d, δ, {ni}ki=1) =

∫

|r|<R

xn1

1 xn2

2 · · · xnk

k

|r|d+N
dDr; N =

∑k
i=1 ni.

Using the same approach as above, we can obtain a general formula

Ik(R; d, δ, {ni}ki=1) =

∫

|r|<R

xn1

1 xn2

2 · · ·xnk

k

|r|d+N
dDr

=

∏k
i=1(ni − 1)!!

(D +N − 2)(D +N − 4) · · ·D I0(R; d+N, δ), (A-14)

when all ni are even, and Ik = 0 otherwise. Also, (ni − 1)!! = (ni − 1)(ni − 3) · · ·1, and
(−1)!! = 1.

5. Integral of the Derivative of Green’s Function

Theorem: If the Green’s function G(r) can be expressed as the following series expansion

G(r) =
∑

M

∑

{ni}

aM,{ni}
rn1

1 rn2

2 · · · rnD

D

rM
; (A-15)

then we have the following equality

∫

r≤R

∂G(r)

∂ri
dDr =

1

R

∂

∂R

∫

r≤R

ri G(r) dDr, (A-16)

which is always a finite number. Here M is any real number and the ni are non-negative

integers.

21



We can prove this result for each of the terms in G. Let

g =
rn1

1 rn2

2 · · · rnD

D

rM
, (A-17)

and without loss of generality we take its derivative respect to r1 to obtain

∂1g =

(

n1

r1
− Mr1

r2

)

g. (A-18)

Its integral is
∫

r≤R

∂1g d
Dr =

∫

r≤R

n1

r1
g dDr−

∫

r≤R

Mr1
r2

g dDr. (A-19)

If n1 is even or any of the other ni is odd, the multi-dimensional integral vanishes because

of symmetry, and the theorem holds trivially. Otherwise, notice that the two terms on the

right side of Eq. (A-19) are respectively given by

g1 =

∫

r≤R

n1

r1
g dDr = n1

∫

r≤R

rn1−1
1 rn2

2 · · · rnD

D

rM
dDr

= n1 ID(R; d, δ, {n1 − 1, n2, . . . , nD}), (A-20)

and

g2 = −
∫

r≤R

Mr1
r2

g dDr = −M

∫

r≤R

rn1+1
1 rn2

2 · · · rnD

D

rM+2
dDr

= −M ID(R; d, δ, {n1 + 1, n2, . . . , nD}), (A-21)

where d = M −N + 1, N =
∑D

i=1 ni, and δ = D − d = D −M +N − 1.

Recalling Eq. (23), we note that it applies to g1 and g2 with k = D, now that we have n1

odd and all other ni’s even. We then obtain

g1 + g2 =
n1!!

∏D
i=2(ni − 1)!!

D(D + 2) · · · (D +N − 1)
ADR

D−M+N−1, (A-22)

which holds for all δ and is always a finite number.

From the right side of Eq. (A-16) we have
∫

r≤R

r1 g d
Dr =

∫

r≤R

rn1+1
1 rn2

2 · · · rnD

D

rM
dDr = ID(R; d, δ, {n1 + 1, n2 . . . , nD})

=
n1!!

∏D
i=2(ni − 1)!!

D(D + 2) · · · (D +N − 1)
I0(R;M, δ), (A-23)

where d = M − N − 1 and δ = D − M + N + 1. The derivative with respect to R only

applies to I0, so that

∂

∂R
I0(R;M,D −M +N + 1) = ADR

D−M+N , (A-24)
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which is a finite number, independent of whether I0 is a singular integral or not. Thus we

have
∫

r≤R

∂g(r)

∂r1
dDr =

1

R

∂

∂R

∫

r≤R

r1 g(r) d
Dr. (A-25)

This equation holds if we take linear combination of different g’s, and we can also change r1

to any of ri’s. Therefore, in general we have
∫

r≤R

∂G(r)

∂ri
dDr =

1

R

∂

∂R

∫

r≤R

ri G(r) dDr. (A-26)

Appendix B: Fracture Analysis

It is important to show the generality of our method. The theory of crack energetics again

illustrates the issue of resolving hypersingular integrals using dimensional continuation. For

the sake of completeness we briefly describe the relation appearing in fracture analysis. The

relation between surface displacements ui(P ) and tractions τi(P ) for a smooth crack is given

by the integral equation8,32,33

uj(P ) = 2

∫

∂C

[Uij(P,Q)τi(Q)− Tij(P,Q)ui(Q)]dsQ, (B-1)

where ∂C is the crack surface. A sum over repeated indices is implied. The displacement

Uij(P,Q) and traction Tij(P,Q) at the observation point P due to source point Q are given

by Kelvin’s solution,

Uij =
1

16π r (1− ν)G
[(3− 4ν)δij + ∂ir ∂jr], (B-2)

and

Tij = − 1

8π r2 (1− ν)

{

[(1− 2ν) δij + 3 ∂ir ∂jr]
∂r

∂n
+ (1− 2ν)(nj ∂ir − ni ∂jr)

}

, (B-3)

where r = |rP − rQ|, ν is Poisson’s ratio, and G is the shear modulus. With the normal

force N = Ni ei, the traction τ is given by

τi(P ) = G

[

(∂jui + ∂iuj)Nj +
2ν

1− 2ν
Ni ∂kuk

]

(B-4)

The derivative of ui can be obtained from Eq.(B-1) to be substituted here, and we have

τi(P ) = 2GNj

∫

∂C

{ [ ∂jUmi(P,Q) + ∂iUmj(P,Q) ] τm(Q)

−[ ∂jTmi(P,Q) + ∂iTmj(P,Q) ] um(Q) } dsQ
+

4ν

1− 2ν
GNi

∫

∂C

[ τm(Q) ∂kUmk(P,Q) + um(Q) ∂kTmk(P,Q) ] dsQ. (B-5)
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We assume the boundary condition that the traction τm(Q) = 0 on the crack, so the above

integral is simplified to

0 = −2GNj

∫

∂C

[ ∂jTmi(P,Q) + ∂iTmj(P,Q) ] um(Q) dsQ

− 4ν

1 − 2ν
GNi

∫

∂C

um(Q) ∂kTmk(P,Q) dsQ, (B-6)

and ∂kTij is given by

∂kTij(P,Q) =
1

8π (1− ν) r3
×

{

3(δjk ∂ir + δik ∂jr − 5 ∂ir ∂jr ∂kr)
∂r

∂n
+ 3nk ∂ir ∂jr

+(1− 2ν)

[

δijnk − δjkni + δiknj + 3

(

ni ∂jr ∂kr − nj ∂ir ∂kr − δij ∂kr
∂r

∂n

)]}

.(B-7)

We will show that the first integral of Eq.(B-6) is a singular integral and can be resolved

by the ISI method. The same technique can be applied for the second integral. Invoking

the finite element method, we assume the crack surface is flat over a small element ∆S,

and choose the local coordinate system so that the normal direction of ∆S is e3. Here ∆S

contains the singular point, so that P and Q are points in ∆S. On this element we have

n = e3 and the normal force N = N3e3. Hence the first integral in Eq.(B-6) becomes

−2GN3

∫

∆S

[ ∂3Tmi(P,Q) + ∂iTm3(P,Q) ] um(Q) dsQ, (B-8)

and ∂kTij becomes

∂kTij(P,Q) =

(

1

8π (1− ν) r3

) {

3(δjk ∂ir + δik ∂jr − 5 ∂ir ∂jr ∂kr) ∂3r + 3δ3k ∂ir ∂jr

+(1− 2ν)

[

δijδ3k − δjkδ3i + δikδ3j + 3

(

δ3i ∂jr ∂kr − δ3j ∂ir ∂kr − δij ∂kr ∂3r

)]}

.(B-9)

We further assume that um(Q) is a constant um over the small element ∆S, and consider

the integral in Eq.(B-6) to be over a small circle centered at P . We then have the singular

integral

Jim = 8π (1− ν)

∫

r<R

[ ∂3Tmi(P,Q) + ∂iTm3(P,Q) ] dsQ

= δim

∫

r<R

[

(3 + 12δ3m)(∂3r)
2 + 3(∂mr)

2 − 30(∂3r)
2(∂mr)

2

r3

+(1− 2ν)
2− 3(∂3r)

2 − 3(∂mr)
2

r3

]

d2r, (B-10)
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with no sum over m. Notice that we take the integral to be on the xy-plane, and the

z direction is actually the direction along which we shift the origin. We therefore write

∂3r = z/r = ǫ/r. Since Jim is zero for i 6= m we are left with

Jmm =

∫

r<R

[

3r2m
r5

+
3ǫ2

r5
− 30ǫ2r2m

r7
+ (1− 2ν)

(

2

r3
− 3r2m

r5
− 3ǫ2

r5

)]

d2r, for m 6= 3,

(B-11)

and

J33 =

∫

r<R

[

18ǫ2

r5
− 30ǫ4

r7
+ (1− 2ν)

(

2

r3
− 6ǫ2

r5

)]

d2r. (B-12)

When m 6= 3, Jmm is a linear combination of the integrals

J1 =

∫

r<R

(

1

r3
−3r2m

r5

)

dS; J2 =

∫

r<R

(

1

r3
−3ǫ2

r5

)

dS; J3 =

∫

r<R

(

1

r5
−5r2m

r7

)

dS.(B-13)

Here, J1, J2 and J3 are all ISI’s with no singularities. In the above, J1 = πR−1 is the simplest

ISI with d = 3, D = 2, J2 = −2πR−1 is an ǫ2-ISI with d = 3, D = 2, and J3 = πR−3 is the

simplest ISI with d = 5, D = 2. In fact, we have

Jmm = −J1 + J2 + 6ǫ2J3 + (1− 2ν)(J1 + J2) = 2(ν − 2)πR−1. (B-14)

Returning to J33 we see that it is a linear combination of J2 and J4 given by

J4 =

∫

r<R

[

1

r5
− 5

3

ǫ2

r5

]

dS. (B-15)

Here J4 = −(2πR−3/3) is an ǫ2-ISI with d = 5, D = 2. So we have

J33 = 18ǫ2J4 + 2(1− 2ν)J2 = −4(1 − 2ν)πR−1. (B-16)

In all the above integrals the finite parts are explicitly determined by the ISI method. We

thus see again that dimensional continuation provides a unified approach to all hypersingular

integrals making it easy to isolate the singularities, which actually cancel, leaving a well-

defined finite part.
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Appendix C: Table of Integrable Singular Integrals

1. A Table of the Simplest ISI:

∫

r<R

(

1

rd
− x2d

rd+2

)

dDr =
AD

D
R−(d−D)

Integral D d Value
∫

r<R

(

1

r
− x2

r3

)

dx 1 1 2
∫

r<R

(

1

r2
− 2x2

r4

)

dx 1 2 2R−1

∫

r<R

(

1

r3
− 3x2

r5

)

dx 1 3 2R−2

∫

r<R

(

1

rd
− dx2

rd+2

)

dx 1 d 2R−(d−1)

∫

r<R

(

1

r2
− 2x2

r4

)

dS 2 2 π
∫

r<R

(

1

r3
− 3x2

r5

)

dS 2 3 πR−1

∫

r<R

(

1

r4
− 4x2

r6

)

dS 2 4 πR−2

∫

r<R

(

1

rd
− d x2

rd+2

)

dS 2 d πR−(d−2)

∫

r<R

(

1

r3
− 3x2

r5

)

dV 3 3 4π/3
∫

r<R

(

1

r4
− 4x2

r6

)

dV 3 4 4πR−1/3
∫

r<R

(

1

r5
− 5x2

r7

)

dV 3 5 4πR−2/3
∫

r<R

(

1

rd
− d x2

rd+2

)

dV 3 d 4πR−(d−3)/3

∫

r<R

(

1

rd
− d x2

rd+2

)

d4r 4 d π2R−(d−4)/2
∫

r<R

(

1

rd
− d x2

rd+2

)

d5r 5 d 8π2R−(d−5)/15
∫

r<R

(

1

rd
− d x2

rd+2

)

dDr D d ADR
−(d−D)/D

TABLE II. A table of Integrable Singular Integrals for spatial dimension D = {1, . . . 5}, with

singular denominators r−d, with d = {1, . . . 5, d}.
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2. A Table of the Integrals: ǫ2-ISI

∫

r<R

(

1

rd
− d

d−D

ǫ2

rd+2

)

dDr = − AD

d−D
R−(d−D)

Integral D d Value
∫

r<R

(

1

r2
− 2

ǫ2

r4

)

dx 1 2 −2R−1

∫

r<R

(

1

r3
− 3

2

ǫ2

r5

)

dx 1 3 −2R−2/2
∫

r<R

(

1

r4
− 4

3

ǫ2

r6

)

dx 1 4 −2R−3/3
∫

r<R

(

1

rd
− d

d− 1

ǫ2

rd+2

)

dx 1 d −2R−(d−1)/(d− 1)

∫

r<R

(

1

r3
− 3

ǫ2

r5

)

dS 2 3 −2πR−1

∫

r<R

(

1

r4
− 2

ǫ2

r6

)

dS 2 4 −πR−2

∫

r<R

(

1

r5
− 5

3

ǫ2

r7

)

dS 2 5 −2πR−3/3
∫

r<R

(

1

rd
− d

d− 2

ǫ2

rd+2

)

dS 2 d −2πR−(d−2)/(d − 2)

∫

r<R

(

1

r4
− 4

ǫ2

r6

)

dV 3 4 −4πR−1

∫

r<R

(

1

r5
− 5

2

ǫ2

r7

)

dV 3 5 −2πR−2

∫

r<R

(

1

r6
− 2

ǫ2

r8

)

dV 3 6 −4πR−3/3
∫

r<R

(

1

rd
− d

d− 3

ǫ2

rd+2

)

dV 3 d −4πR−(d−3)/(d − 3)

∫

r<R

(

1

rd
− d

d− 4

ǫ2

rd+2

)

d4r 4 d −2π2R−(d−4)/(d− 4)
∫

r<R

(

1

rd
− d

d− 5

ǫ2

rd+2

)

d5r 5 d −8π2R−(d−5)/3(d − 5)
∫

r<R

(

1

rd
− d

d−D

ǫ2

rd+2

)

dDr D d −ADR
−(d−D)/(d −D)

TABLE III. A table of ǫ2-Integrable Singular Integrals for spatial dimension D = {1, . . . 5}, with

singular denominators r−d, with d = {1, . . . 5, d}.
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3. The Dirac δ-function in ISI: δ(D)(r) =
D

AD
lim
ρ→r+

(

1

ρD
− r2

ρD+2

)

, (ρ2 = r2 + ǫ2)

Dimension δ-function

1 δ(1)(r) =
1

2
lim
ρ→r+

(

1

ρ
− r2

ρ3

)

2 δ(2)(r) =
1

π
lim
ρ→r+

(

1

ρ2
− r2

ρ4

)

3 δ(3)(r) =
3

4π
lim
ρ→r+

(

1

ρ3
− r2

ρ5

)

4 δ(4)(r) =
2

π2
lim
ρ→r+

(

1

ρ4
− r2

ρ6

)

TABLE IV. A table of Dirac δ-functions in spatial dimension D = {1, . . . 4} arising in integrable

singular integrals.
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FIG. 1. The contour used to identify the terms in the integrand of the boundary integral approach

for evaluating the 2D Poisson potential.

29



FIG. 2. The geometry used in evaluating the 2D Poisson contour integral in the boundary element

method, (a) for a straight contour and (b) for an angular edge.
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P

FIG. 3. The 2D triangular region for the evaluation of the hypersingular integrals in the 3D Poisson

problem with a singularity located at (0,0) is shown. The 2D integrals over the triangle calculated

using the expressions given by Refs. 18 and 19 are compared with our 1D line integral along the

edges of the triangle in Table I.
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