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Abstract 

 We present a discrete element method (DEM) model to simulate the mechanical behavior 

of sea ice in response to ocean waves. The interaction of ocean waves and sea ice can 

potentially lead to the fracture and fragmentation of sea ice depending on the wave amplitude 

and period. The fracture behavior of sea ice is explicitly modeled by a DEM method, where 

sea ice is modeled by densely packed spherical particles with finite size. These particles are 

bonded together at their contact points through mechanical bonds that can sustain both tensile 

and compressive forces and moments. Fracturing can be naturally represented by the 

sequential breaking of mechanical bonds. For a given amplitude and period of incident ocean 

wave, the model provides information for the spatial distribution and time evolution of stress 

and micro-fractures and the fragment size distribution. We demonstrate that the fraction of 

broken bonds, α , increases with increasing wave amplitude. In contrast, the ice fragment 

size l decreases with increasing amplitude. This information is important for the 

understanding of breakup of individual ice floes and floe fragment size. 
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I. Introduction 

 The purpose of this paper is to present a discrete element model (DEM) for understanding 

ocean wave/sea ice interactions and the mechanical response of sea ice to waves with various 

amplitudes and periods. This information is particularly important in the study of ice margin 

dynamics in the Marginal Ice Zone (MIZ), for it helps in the understanding of how ocean 

wave/sea ice interactions are related to the breakup of individual ice floes and in determining 

the floe size distribution in the entire MIZ [1, 2]. 

 Sea ice may fill inlets and harbors of the Arctic Ocean and the Antarctic Continent [1]. 

Most ice fields are shielded from direct interaction with the outer ocean waves and may grow 

over many years. The boundary zone between the open and ice-covered sea is referred to as 

the MIZ, which consists of many individual ice floes with various shapes and types. Ocean 

waves play an important role in ice dynamics in the MIZ because they are the primary energy 

source that is responsible for the breakup or fragmentation of sea ice [1].  

 The effect of ocean waves in ice dynamics is well documented in the literature [3-5]. In 

principle, wave energy propagates in the form of flexural-gravity waves in ice floes 

accompanied by the energy loss due to the wave scattering at imperfections, the ice creep 

deformation, and the floe collision that leads to the wave attenuation. The ice floe could be 

significantly deformed while the flexural-gravity wave penetrates into it. Depending on the 

magnitude and the frequency of the ocean wave, the fracturing can occur if the stress or strain 

induced in the ice is greater than the ice can sustain. This provides an important mechanism 

for the breakup of a vast ice field into many pieces of floes. The thermodynamics of ice grow 

and ice melt can be significantly changed due to the breakup of ice floes where the ice 
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melting is accelerated during the summertime and the ice formation is enhanced during the 

wintertime [6, 7].  

 The mechanical behavior of ice is significantly affected by the nucleation and growth of 

micro-fractures. Realistic and robust models for sea ice should account for these details at 

small and large scales. The Discrete Element Method described in this paper is an approach 

to approximate complex materials as assemblies of independent discrete elements (particles) 

of various sizes, shapes, and other properties that interact via cohesive interactions, repulsive 

forces, and friction forces. The macroscopic behavior can be treated as a collective behavior 

of many interacting discrete elements.   

 DEM was first introduced by Cundall [8-10] as an alternative to continuum mechanics. It 

has been extensively applied to simulations of ball mills [11], the shear flow of non-cohesive 

granular materials [12], the behavior of crushable soil agglomerates [13], and the mechanical 

behavior of rocks [14]. Recently, Wilchinsky etc. introduces a DEM model to the study of 

the effect of wind stresses on the rupture behavior of ice pack and pattern of faults due to the 

ice mechanical failure [15, 16]. In DEM, both the grains and mechanical bonds are 

deformable, and the bonds may break when either the tensile or shear stress exceeds the 

critical strength. Similar to other popular particle methods such as Smoothed Particle 

Hydrodynamics (SPH) [17, 18] and Dissipative Particle Dynamics (DPD) [18-20], the 

movement of each DEM particle, including translation and rotation, can be calculated from 

Newton’s second law through explicit numerical integration in the fashion of molecular 

dynamics (MD).  

 In this paper, we describe a DEM model for modeling the mechanical behavior of sea ice 

due to the interaction with ocean waves of various amplitudes and periods. The fracturing 
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behavior is expected to be important in this application and is included naturally in the DEM 

model. The model provides important insights for a better understanding of the breakup of 

sea ice in the MIZ. This paper is organized as follows. Section II describes the general 

Discrete Element Method, followed by the parameterization of a DEM model for sea ice in 

Section III and a DEM model for ocean wave/sea ice interaction in Section IV.  Section V 

provides the numerical results and discussion. 

 

II. Discrete Element Method  

 In the standard DEM, the computational domain is discretized into a collection of circular 

(2D) or spherical (3D) particles of various sizes. Each particle has a finite size and mass, and 

the particles are kept together by bonds at their points of contact. The contact forces (normal 

and shear force) and moments (in-plane twist and out-of-plane bending moment) between 

DEM particles can be calculated in an incremental fashion or from their relative 

displacements. The displacement of each particle including translation and rotation can be 

calculated from Newton’s second law through an explicit numerical integration in the fashion 

of molecular dynamics (MD). Dynamic fracturing can be naturally modeled through the 

sequential breakup of inter-particle bonds.  

 As shown in Fig.1, particles have a finite stiffness so that two particles are allowed to 

overlap in a small region relative to their size. The overlap between the particles results in a 

contact force.  The bond between two particles is treated as a mechanical element that also 

has a finite stiffness and can carry both force and moment. In Fig 1, the bond (gray area), 

connecting particles A and B, can break depending on the interactions between two particles. 

In summary, particles A and B interact with each other through both contact force and the 
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mechanical bond. The total resultant force and moment due to the interaction between two 

particles are therefore comprised of the contact contribution ( gF ) and the bond contribution 

( bF  and bM ), namely the contribution from the grain-grain interaction and from the 

mechanical bond, respectively.  

 The contact force contribution gF  can be resolved into the normal ( n
gF ) and shear 

components ( s
gF ) with respect to the contact plane between particles A and B. A linear force-

displacement law is employed for each component, where 

 n n n
gF K u= ,       (1) 

and 

 , ,
s s s

g t tF K uΔ = − Δ .       (2) 

nK  and sK  are the grain normal and shear stiffness, and un is the displacement along the 

centerline connecting A and B. Shear component ,
s

g tF  is computed in an incremental fashion 

(Eq. (2)) in the sense that ,
s

g tFΔ , the increment of shear component s
gF  at time t, is computed 

at each time step based on the shear displacement increment ,
s
tuΔ  (perpendicular to the 

centerline). Therefore, the total shear component at the next time step can be written as,  

 , , ,
s s s

g t t g t g tF F F+Δ = + Δ .      (3) 

 The bond contribution, bF , to the total force can be resolved into normal ( n
bF ) and shear 

components ( s
bF ) in a similar fashion:  

 n n n
bF k Au= ,       (4) 

and 
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 , ,
s s s

b t tF k A uΔ = − Δ .       (5) 

Here, nk  and sk  are the bond normal and shear stiffness per unit area. A is the area of the 

bond cross-section and chosen to be 2A Rπ= , where ( ) ( )min( , )A BR R R=  is radius of the 

bond chosen to be the smaller size of particles A and B. The total shear component ,
s

b tF  can 

be computed as,  

 , , ,
s s s

b t t b t b tF F F+Δ = + Δ .      (6) 

The bond moment contribution bM  can be resolved into the bending moment ( s
bM , acting 

out of contact plane) and the twisting moment ( n
bM , acting in contact plane). Linear 

relationships are established between the moments and the bending and twisting angles,  

 s s s
bM k Iθ= − ,       (7) 

and  

 n n n
bM k Jθ= − ,       (8) 

where I and J are the moment of inertia and polar moment of inertia, respectively. sθ  and 

nθ are the bending and twisting angles. The maximum normal ( bσ ) and shear stress ( bτ ) in 

the cross-section of mechanical bond can be easily calculated with given contact and bond 

contributions, 

  
sn
bb

b

M RF
A I

σ = − + ,      (9) 

and 

 
s n

b b
b

F M R
A J

τ = +  ,      (10) 
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where R is the radius of the bond cross-section. The mechanical bond can break if either 

normal ( bσ ) or shear stress ( bτ ) in the bond is beyond its strength (threshold value), namely  

MAX
b bσ σ>  or MAX

b bτ τ> . There still exists grain-grain interaction (contact force) if two 

particles come back into contact even after bond is broken. In principle, bond strengths MAX
bσ  

and MAX
bτ  can be various numbers for different bonds to mimic the effect of random defects. 

In the current study, we are using same strengths for every bond. At any time step, all bonds 

with stresses large than threshold values are removed from the model along with all 

associated forces and moments. By this manner, the complicated micro-fractures and fracture 

network can be represented by the broken bonds, and the fracturing process can be modeled 

as the sequential breakup of mechanical bonds.   

 

III. Parameterization of the DEM Sea Ice Model  

 The DEM model parameters can be calculated using the mechanical properties of sea ice. 

We use the following material constants for wave/ice interactions and ice mechanical 

properties: the Young’s modulus of ice 6E =  GPa , the Poisson ratio 0.3ν = , the density of 

water 1025wρ = ( )3kg m , and the density of ice 922.5iρ = ( )3kg m [1, 21]. The ice tensile 

and compressive strength have been measured by a number of researchers [22]. In general, 

the ice strengths are dependent on temperature, strain rate, and many other factors. The 

tensile strength tσ  has a wide range from 0.7 to 3.1 MPa, with an average strength of 1.43 

MPa for the temperature range of -10oC to -20oC. The compressive strength cσ  ranges from 

5 to 25 MPa in the same temperature range [22].  



 8

 An example of the relationship between the material modulus and the DEM parameters is 

provided in [14]. Input parameters in the DEM sea ice model should be chosen to match the 

ice strength. We implement simulations for uniaxial tests to calibrate DEM model parameters 

with ice mechanical properties. Inset of Fig.2 shows the geometry used in uniaxial tests with 

a width of w=2.5m and a height of h=5m. Periodic boundary conditions were applied to the 

vertical boundaries, and both upper and lower horizontal boundaries subject to a constant 

vertical speed to mimic the constant strain rate tests. A time step 51.24 10t s−Δ = ×  was 

chosen for explicit integration so that any disturbance cannot propagate farther than its 

neighbors in a single step [14]. Figs. 2 and 3 show the macroscopic stress-strain curves for 

uniaxial tensile and compressive tests obtained directly by DEM simulations with 

parameters: 

nK ED=  and 0.4sK ED= ,       (11) 

 nk E D=  and 0.4sk E D= ,      (12) 

0.001MAX
b Eσ =  and 0.001MAX

b Eτ = ,     (13) 

where 0.1D m=  is the average diameter of DEM particles. As adopted in most DEM 

simulations, the size of the DEM particles is assumed to follow a uniform distribution in the 

range [0.075m, 0.125m] with an average size of 0.1D m= . A Poisson ratio of v=0.25 is used 

for the ice material and the prefactor 0.4 in Eqs. (11) and (12) is a direct result of the 

relationship between shear and Young’s modulus for isotropic materials, where 

( )2 1s nK K ν= + . The corresponding tensile and compressive strength of the ice obtained 

from the DEM simulations are  2.7t MPaσ =  and 9.7c MPaσ = , well within the range 

available from the literature [22]. In general, both the size distribution and the ice strength 



 9

can have effects on the ice fragmentation behavior, which can be carefully investigated by 

the same simulation methodology but with different DEM parameters.   

 In reality, the microstructure of natural sea ice largely depends on the ice formation 

processes. For example, the granular ice forms under dynamic and turbulent conditions while 

the columnar ice forms under static conditions. The real sea ice is a complex heterogeneous 

and anisotropic material depending on the forming process. In the current study, sea ice was 

treated as a homogenous, isotropic material in the current model. However, heterogeneity can 

be naturally introduced into the model through the position-dependent DEM parameters, 

where the effect of heterogeneity on ice fragmentation can be studied in more detail.  

 

IV. DEM Model for Ocean Wave/Sea Ice Interactions 

 The set of parameters described in Section III was used in simulations of wave/ice 

interactions, where an ice field of length L  and a uniform thickness 1h m=  is assumed to 

float over ocean water of depth 100H m= . We considered the wave/ice interactions through 

the reflection and transmission of waves at the edge of sea ice [1, 21]. It has been observed 

that both reflection and transmission are dependent on the period Ω  of the incident wave, the 

thickness h of sea ice, the ice mechanical properties including the Young’s modulus E and 

Poisson ratio v, the sea water density wρ  and ice density iρ , and the water depth H over 

which the ice is covering [1, 21, 23]. Intuitively, a thinner ice permits a greater transmission, 

and a thicker ice leads to a larger reflection at the ice edge. Reflection and transmission 

coefficients R and T can be defined in terms of the amplitudes of surface displacement for 

incoming, reflecting, and transmitting waves,  

1 1R B A=  and 2 1T A A= ,       (14) 
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where 1A  is the amplitude of the incoming displacement wave 1( )
1

i k x t
i A e ωφ −= . The reflected 

wave is given by 1( )
1

i k x t
r B e ωφ −= , and the transmitted wave is defined as 2( )

2
i k x t

t A e ωφ −= , with  

1B  and 2A  being the amplitudes. 1k  and 2k  are wave numbers of incident and transmitted 

waves. 

 Fox and Squire [21] proposed a mathematical model for the reflection and transmission 

coefficients at the edge of sea ice, where the sea ice is modeled as a continuous, thin and 

elastic plate of uniform thickness. We use the Bernoulli-Euler theory for an elastic thin plate 

to describe the flexural-gravity wave propagation in sea ice. Through the matching of 

solutions at the interface between open water and the water covered with sea ice, the model is 

able to compute R and T with any given wave period Ω . Figure 4 shows the variation of 

coefficients R and T with period Ω  of the incident wave, a reprint from Fox and Squire’s 

work in [21]. 

 We use the DEM model to study the interaction between ocean waves and sea ice. 

Specifically, we study the effect of amplitude and period of an ocean wave on the fracturing 

of sea ice. In general, an ocean wave with larger amplitude 2A  and smaller wavenumber 

2k has a greater potential to break the ice floe than a wave with smaller amplitude and larger 

wavenumber. Furthermore, incident waves with shorter periods result in transmitted waves 

with smaller transmitted coefficients T but larger wavenumber 2k .  

 In the DEM simulations, a two-dimensional ice floe was generated as shown in Fig. 5. 

The amplitude 2A  and the wavenumber 2k  for transmitted wave tφ  are calculated from the 

incident wave iφ  according to Fox and Squire [21], and are used to apply load in the DEM 

model. Implementation of boundary conditions on complex stationary or moving boundaries 
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is challenging for particle methods [20]. The phase-field approach [24, 25] is based on the 

concept of diffuse interface and can be used to provide an accurate way to represent 

boundaries for particle methods. In this study, difficulties associated with the boundaries are 

removed as we do not explicitly model the interaction between water and ice. In order to 

generate a displacement field with the form of ( ) 2 2, cos( )u x t A k x tω= −  (the real part of tφ ), 

the ice floe was first slowly deformed to an initial deformation of ( ) 2 2cos( )u x A k x= . A 

prescribed velocity ( ) 2 2, sin( )v x t A k x tω ω= −  in y direction was applied to all DEM particles 

to deform the ice floe and generate the desired displacement field ( ),u x t .  

 In summary, to simulate deformation of the ice due to wave/ice interaction, a vertical 

velocity (in y direction) ( ) 2 2, sin( )v x t A k x tω ω= −  is applied to all DEM particles forming 

the ice floe. The amplitude 2A  and the wavenumber 2k  for transmitted wave tφ  with given 

period Ω  (or angular frequency ω ) are found from the amplitude À , the wavenumber 1k  

and the period Ω  of the incident wave.  

 We perform two sets of numerical experiments to simulate the response of the sea ice 

subjected to incident waves with different wave periods Ω  and amplitudes 1A . Each set 

includes 7 simulations with various wave amplitudes. Table 1 summarizes parameters used in 

all simulations. In the first set of experiments, the sea ice is subjected to an incident wave 

with longer period than the second set.  

  

V. Results and Discussion 

 As shown in Fig. 5, a total number of ~10,000 DEM particles with an average size of 

(D=0.1m) are used to model the ice with a uniform thickness of 1h m=  and a length of 
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22L kπ= . The length L is chosen so that at least one entire wavelength of transmitted wave 

can be investigated. 

       A periodic boundary condition is applied in x direction and a free boundary is used for 

the top and bottom surface in all numerical simulations. The traveling transmitted wave is 

generated in the sea ice structure by prescribing velocity field ( ) 2 2sin( )i iv t A k x tω ω= − , 

where iv  is the vertical velocity of particle i and xi is x-component of the vector position of 

particle i. This leads to inhomogeneous deformation and stress fields in the sea ice. The 

mechanical bonds between DEM particles are allowed to break where the local deformation 

produces stress exceeding the critical stress of the ice. The passing transmitted wave gives 

rise to a complicated and inhomogeneous stress distribution because the dynamic bond-

breaking process can redistribute the stress field (stress is relaxed near to the broken bonds). 

Redistribution of the stress field, in turn, affects the bond breaking (the micro-fracture 

distribution) in the ice structure. The sea ice can eventually break apart depending on the 

amplitude and period of the incident ocean wave.  

 We first present the time evolution of the number of broken bonds that is used to 

quantitatively describe the extent of damage in the sea ice. In all four cases, the fraction of 

broken bonds α  is monitored against the normalized simulation time τ . The parameters  α  

and τ  are defined as,  

broken totalN Nα = ,       (15) 

2tτ = Ω ,        (16) 

where Ω is the period of the transmitted wave. brokenN  and totalN  denote the number of 

broken bonds and total bonds in the DEM model. Figures 6 and 7 show the variation of 
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α with dimensionless simulation time τ  for the simulation sets 1 and 2, respectively. As 

expected, α  (the fraction of broken bonds) is monotonically increasing to an asymptotic 

value, which is reached at 2τ =  when the transmitted wave travels by one wave period Ω  in 

all simulations. The final value maxα  is significantly different for each case depending on the 

incident wave period and amplitude. Figure 8a) shows the variation of maxα  with input wave 

amplitudes and periods. In general, there is only a negligible damage caused in sea ice by 

incoming waves with small amplitudes (1.125m for Case 1-6, 0.75m for Case 1-7, 2.25m for 

Case 2-6, and 1.5m for Case 2-7). A significant increase in damage will be observed for 

waves with larger amplitudes (1.5m for Case 1-5 and 3.0m for Case 2-5). After the initial 

incubation stage, the damage parameter maxα  is increasing almost linearly with the incoming 

wave amplitude. For waves with largest amplitudes (3.0m for Case 1-1 and 6.0m for Case 2-

1), α  reaches almost 8%. It was also shown that waves with same amplitudes but longer 

periods will cause much more damage than waves with shorter periods.  

 If the sea ice is assumed to break apart into fragments with a uniform length l (the 

assumption is valid for a traveling transmitted wave that is periodic in both space and time), 

then the relationship ( )10 totall L Nα=  can be obtained, where 10 is the average broken 

bonds needed to break the ice floe in thickness direction. It is clear that average fragment size 

(l) is inversely proportional to α . Figure 8b) shows the dependence of average fragment size 

l on the incoming wave amplitudes and periods. In general, l is decreasing with increasing 

amplitude. A minimum fragment size 0.7l m≈ is obtained with the largest amplitudes for 

both sets of simulations.  

 In order to examine the overall response of the sea ice to transmitted waves, the 

deformation patterns for Case 1-1 and Case 2-5 are shown in Fig. 9 and Fig. 10. The 
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snapshots were taken at times 0.5τ = , 1.0, 1.5 and 2.0. The color scale (online only) 

represents the distribution of stress ( xxσ , normalized by the ice Modulus E) with blue 

(positive) indicating the region under tension and red (negative) the region under 

compression. In both figures, the generated displacement wave is progressively propagating 

from the left to the right side. The induced stress wave is also continuously propagating 

through the entire sea ice structure, and subjecting the ice to repeated bending mode (tensile-

compressive-tensile-compressive….). A similar fatigue process was observed in [2]. Fig. 11 

shows the stress and fracture distribution, resulting from the repeated bending, for Case 1-1 

at 2.5τ =  in the entire ice floe. Fig. 11 also shows zoomed-in pictures around the location 

with maximum stress. The micro-fractures (broken bonds), denoted by small black arrows, 

are almost evenly distributed throughout the entire ice floe. The bottom picture in Fig. 11 

clearly indicates that macroscopic cracks are almost always in the vertical direction due to 

the tensile failure. The top picture in Fig. 11 also shows the localized stress due to the 

generation of micro-fractures in more detail, where the stress is relaxed around the micro-

fractures.   

    The distributions of micro-fractures and the corresponding stress distributions for Cases 1-

5, Case 2-5, and Case 2-7 are also shown in Figs. 12-14. As expected, the micro-fractures 

generated in Cases 1-5 and 2-5 are much fewer, and the average distances between macro-

cracks are larger than that in Case 1-1. As a result, larger ice fragments can be formed in 

Cases 1-5 and 2-5 relative to the Case 1-1. Because of the combined effects of the small 

amplitude and the large wavenumber, no micro-fractures or broken bonds are observed in 

Case 2-7.  
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VI. Conclusion 

 A discrete element method (DEM) model was used to simulate the mechanical behavior 

of sea ice subjected to a passing ocean wave. In the DEM model, an ice floe is represented by 

densely packed circular particles. To simulate the deformation of sea ice floe due to ocean 

wave/ice interaction, a velocity field ( ) 2 2, sin( )v x t A k x tω ω= − is applied to each DEM 

particle forming the ice floe. The amplitude 2A  and the wavenumber 2k  are found from the 

amplitude 1A , the wavenumber 1k , and the period of the incident wave. The fracturing of sea 

ice was modeled by computing stresses in bonds connecting adjacent particles. When stresses 

exceed critical values, bonds are removed and fractures are formed. We demonstrated that the 

fraction of broken bonds, α , increases with increasing amplitude. In contrast, the ice 

fragment size l decreases with increasing amplitude. The expected fragment size l ( α∝ ) is 

shown to be highly dependent on the incoming wave period and the amplitude. For example, 

an increase of amplitude from 1.5m to 3.0m leads to a 75% decrease in size l.  As an attempt 

to apply the DEM model to wave/ice interaction, our results show that the DEM model can 

be used to quantitatively investigate the interactions between sea ice and ocean waves.  
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Table.1. List of parameters for eight simulation scenarios.  

 

 
Length L 

(m) 

Incident wave iφ  Transmitted wave tφ  

Period Ω (s) 
Frequency 

ω  (1/s) 

Amplitude 

1A  (m) 

Wavenumb

er 

2k  (1/m) 

Amplitude 

2A  (m) 

Case1-1 

104.7 6.28 1 

3.00 

0.06 

1.00 

Case 1-2 2.625 0.875 

Case 1-3 2.25 0.750 

Case1-4 1.875 0.625 

Case 1-5 1.5 0.5 

Case 1-6 1.125 0.375 

Case 1-7 0.75 0.25 

Case 2-1 

69.8 3.14 2 

6.00 

0.09 

0.48 

Case 2-2 5.25 0.42 

Case 2-3 4.50 0.36 

Case 2-4 3.75 0.30 

Case 2-5 3.00 0.24 

Case 2-6 2.25 0.18 

Case 2-7 1.50 0.12 
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Figure 1. A schematic representation of interaction forces between DEM particles A and B. 

The gray square represents the mechanical bond between particles A and B. 

 

Figure 2. The stress-strain curve from a DEM uniaxial tensile simulation with a tensile 

strength (the maximum tensile stress) of 2.7t MPaσ = . 

 

Figure 3. The stress-strain curve from a DEM uniaxial compressive simulation with a 

compressive strength (the maximum compressive stress) of 9.5c MPaσ = . 

 

Figure 4. The variation of coefficients R and T as functions of wave period Ω  for ice 

thickness of 0.5m, 1m, 2m, and 5m at 100m water depth. (C. Fox and V. A. Squire, J. 

Geo.Res. Vol. 95  pp. 11636, Copyright 1990, reproduced or modified by permission of 

AGU).[21] 

 

Figure 5. The geometry of a model sea ice and the DEM particle model. 

 

Figure 6. (color online) The variation of broken bond fraction α with dimensionless 

simulation time τ for seven simulation cases in simulation set 1. 

 

Figure 7. (color online) The variation of broken bond fraction α with dimensionless 

simulation time τ for seven simulation cases in simulation set 2. 
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Figure 8a). The variation of maximum broken bond fraction αmax with the amplitude A1 of 

incoming wave for all simulation cases. 

 

Figure 8b). The variation of average fragment length l with the amplitude A1 of incoming 

wave for all simulation cases. 

 

Figure 9. (color online) The overall response of sea ice for simulation Case 1-1 (an incident 

wave with 6.28sΩ =  and 1 3A m= ). Color represents the stress xxσ  in x direction normalized 

by the ice modulus. 

 

Figure 10. (color online) The overall response of sea ice for simulation Case 2-5 (an incident 

wave with 3.14sΩ =  and 1 3A m= ). Color represents the stress xxσ  in x direction normalized 

by the ice modulus.  

 

Figure 11. (color online) A snapshot at the end of simulation for Case 1-1 (an incident wave 

with 6.28sΩ =  and 1 3A m= ) showing the spatial distribution of micro-fractures (black 

arrows) and xxσ . Color represents the stress xxσ  in x direction normalized by the ice 

modulus. 

 

Figure 12. (color online) A snapshot at the end of simulation for Case 1-5 (an incident wave 

with 6.28sΩ =  and 1 1.5A m= ) showing the spatial distribution of micro-fractures (black 

arrows) and xxσ . Color represents the stress xxσ  in x direction normalized by the ice 

modulus. 
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Figure 13. (color online) A snapshot at the end of simulation for Case 2-5 (an incident wave 

with 3.14sΩ =  and 1 3A m= ) showing the spatial distribution of micro-fractures (black 

arrows) and xxσ . Color represents the stress xxσ  in x direction normalized by the ice 

modulus. 

 

Figure 14. (color online) A snapshot at the end of simulation for Case 2-7 (an incident wave 

with 3.14sΩ =  and 1 1.5A m= ) showing the spatial distribution xxσ  (no micro-fractures 

observed for this case). Color represents the stress xxσ  in x direction normalized by the ice 

modulus. 
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Fig.1. 
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Fig. 2. 
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Fig. 3. 
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Fig. 4. 
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Fig. 5. 
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Fig. 6. 
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Fig. 7 
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Fig. 8 
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Fig. 9. 
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Fig. 10. 
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Fig. 11. 
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Fig. 12. 
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Fig. 13. 
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Fig. 14. 
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