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A general description of cylindrical electromagnetic waves propagating in nonlinear and inhomogeneous me-
dia is given by deducing cylindrical coupled-wave equations. Base on the cylindrical coupled-wave equations,
we analyze second-harmonic generation (SHG) of some special cases of inhomogeneity, and find that the inho-
mogeneity of the first and second order polarization can influence on the amplitude of the SHG. From a different
point of view, exact solutions of cylindrical electromagnetic waves propagating in a nonlinear medium with a
special case of inhomogeneity have been obtained previously. We show that cylindrical SHG in an inhomoge-
neous and nonlinear medium also can be deduced from exact solutions. As a verification, we compare the results
obtained from the two different methods and find that descriptions of SHG by the coupled-wave equations are
in good agreement with the exact solutions.

PACS numbers: 42.65.Ky, 03.50.De, 41.20.Jb

I. INTRODUCTION

Nonlinear optics plays a central role in the advancement
of optical science, and significant progress has been made
by using analytical and numerical methods[1–14]. Cylin-
drical nonlinear optics is a burgeoning research area which
describes cylindrical electromagnetic waves propagationin
nonlinear media and some fundamental researches have been
done [15–19]. It is an extremely complicated problem to de-
scribe electromagnetic waves propagation in a medium with
simultaneously inhomogeneous and nonlinear, and such prob-
lem remains poorly studied. Reference [16] has given an exact
solution to describe cylindrical electromagnetic waves prop-
agation in a medium with special polarization asε(E, r) =
dD/dE = ǫ0ε1rβ exp(αE) with ε1, α, β are certain constants
and ǫ0 is the permittivity of free space. This special polar-
ization denotes that the medium considered is nonlinear and
inhomogeneous. The nonlinear factor is exp(αE), and the in-
homogeneous factor isrβ. Using the exact solution obtained,
Ref. [16] has discussed the initial value problem and bound-
ary value problem, to compare the differences between ho-
mogenous and inhomogeneous conditions. However, such de-
scription is not enough because the exact solution can only be
found for few cases. For most cases of inhomogeneity, the
system can not be integrated exactly. Thus, finding general
description of cylindrical electromagnetic waves propagating
in nonlinear and inhomogeneous media is important and use-
ful.

In this article, we give a general description of cylindri-
cal electromagnetic waves propagating in nonlinear and in-
homogeneous media. We deduce coupled-wave equations
which describe the interaction between cylindrical electro-
magnetic waves and nonlinear inhomogeneous media. Us-
ing the coupled-wave equations, we analyze second-harmonic
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generation (SHG) of some special cases of inhomogeneity,
and find that both the inhomogeneity of the first and second
order polarization can influence on the amplitude of the SHG
(E2ω), and the inhomogeneity of the first order polarization
can change the peak values and positions of the peaks ofE2ω.
From a different point of view, we show that cylindrical SHG
in an inhomogeneous and nonlinear medium also can be de-
duced from the exact solutions. We give a full description of
using the exact solutions to deal with the problem of cylindri-
cal SHG in an inhomogeneous and nonlinear medium, and as
a verification, we compare the results obtained from the two
different methods and find that descriptions of SHG by the
coupled-wave equations are in good agreement with the exact
solutions.

The paper is organized as follows. In Sec. II we derive the
coupled-wave equations, and we analyze SHG of some special
cases of inhomogeneity. In Sec. III we use the exact solutions
to investigate cylindrical SHG and show that second-harmonic
generation comes out quite naturally from the exact solutions.
We also compare the results obtained from the two different
methods. In Sec. IV our conclusions are summarized at the
end of this article.

II. COUPLED-WAVE EQUATIONS OF CYLINDRICAL
ELECTROMAGNETIC WAVES PROPAGATING IN AN

INHOMOGENEOUS AND NONLINEAR MEDIUM

In this section, we will deduce the coupled-wave equations
of cylindrical electromagnetic waves propagating in an inho-
mogeneous and nonlinear medium. We start by introducing
our physical model. We assume that the medium possesses
an axis of symmetry, and taken as thez axis of a cylindrical
coordinate system (r, φ, z). A linear light source is placed in
the axis of the nonlinear medium, and cylindrical electromag-
netic waves are emitted. By considering that the fields are
independent ofφ andz, the Maxwell equations can be written
as follows:

∂H
∂r
+

H
r
=
∂D
∂t
,

∂E
∂r
= µ0
∂H
∂t
, (1)
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whereH ≡ Hφ(r, t), E ≡ Ez(r, t) andD(r, t) ≡ ǫ0E + P with P
being the intensity of polarization of the medium. Such model
has been used in some foregoing works [15–19]. Hereafter,
we will focus on electric fields to set up a classical theory
which describes cylindrical electromagnetic waves propagat-
ing in an inhomogeneous and nonlinear medium.

With regard to different medium, the connection between
P andE shows in different forms. For the caseP ∝ E, viz.
the medium is linear. We can solve Eq. (1) by the method of
variable separation and the solution isE = ζJ0(kr) exp(−iωt),
whereJm is a Bessel function of the first kind of orderm, ζ is
a constant,k = ω

√
ǫ0ε1µ0 with ω is the frequency of the elec-

tromagnetic wave,ǫ0 is the permittivity of free space,µ0 is the
permeability of free space, andε1 = 1+ χ(1). The real media
are usually nonlinear and inhomogeneous, and we consider
thatP = ǫ0χ(1)g(r)E +

∑∞
n=2 P(n)

NL f (n)(r), whereg(r) means the
inhomogeneity of the linear polarization andf (n)(r) means the
inhomogeneity of thenth-order nonlinear polarization. For
convenience, we define a functionf (1)(r) = [1 + χ(1)g(r)]/ε1,
and the polarization of the medium can be written as:P =
ǫ0[ε1 f (1)(r) − 1]E +

∑∞
n=2 P(n)

NL f (n)(r). Some special cases can
be discussed. Iff (1)(r) = f (n)(r) = 1, then the medium is ho-
mogeneous but nonlinear. Iff (1)(r) = 1 and f (n)(r) = 0, then
the medium is homogeneous and linear. Here, we give a gen-
eral description of the system and considerf (1)(r) and f (n)(r)
can be arbitrary functions. On the basis of Eq. (1) we have:

∂2E
∂r2
+

1
r
∂E
∂r
=

1
v(r)2

∂2E
∂t2
+ µ0

∞
∑

n=2

f (n)(r)
∂2P(n)

NL

∂t2
, (2)

where 1/v(r)2 = ǫ0ε1µ0 f (1)(r), and hereafter,ki = ωi
√
ǫ0ε1µ0.

Following the example of the plane nonlinear optics, we
present the electric field as

E =
1
2

∑

i

E(ωi), PNL =
1
2

∑

q

PNL(ωq) (3)

where E(ωi) = AiJ0(kir) exp(−iωit), E(−ωi) = E∗(ωi),
PNL(ωq) = PqJ0(kqr) exp(−iωqt), PNL(−ωq) = P∗NL(ωq) with
Ai is the amplitude of the cylindrical electromagnetic wave
carry a frequencyωi andPq present the amplitude of the po-
larized cylindrical electromagnetic wave carry a frequencyωq.
It should be noted that the summation runs over all frequen-
cies, includingω > 0 andω < 0. Using these presentations,
we can simplify Eq. (2) and obtain the coupled-wave equa-
tions of cylindrical electromagnetic waves propagating inan
inhomogeneous and nonlinear medium:

∂2E(ωi)
∂r2

+
1
r
∂E(ωi)
∂r

+ k2
i f (1)(r)E(ωi)

= −µ0ω
2
i

∞
∑

n=2

f (n)(r)P(n)
NL(ωq = ωi). (4)

These equations describe cylindrical electromagnetic waves
with frequencyωi propagating in an inhomogeneous and non-
linear medium, which are coupled byPNL and the inhomoge-
neous factorf (r). In what follows, we will use these equations
to study SHG.

We setω1 = ω, ω2 = 2ω and hereaftern=1, 2. Using Eq.
(4) we can obtain:

∂2E(ω)
∂r2

+
1
r
∂E(ω)
∂r

+ k2 f (1)(r)E(ω)

= −µ0ω
2 f (2)(r)P(2)

NL(ωq = ω),

∂2E(2ω)
∂r2

+
1
r
∂E(2ω)
∂r

+ 4k2 f (1)(r)E(2ω)

= −4µ0ω
2 f (2)(r)P(2)

NL(ωq = 2ω). (5)

Here we only consider the second-order nonlinear polariza-
tion of the medium andPNL is used as the secondary nonlinear
polarizationP(2)

NL:

P(2)
NL(ωq = ω) = 2ǫ0χ

(2)(−ω, 2ω,−ω) : E(2ω)E∗(ω),

P(2)
NL(ωq = 2ω) = ǫ0χ(2)(−2ω,ω, ω) : E(ω)E(ω). (6)

Using effective nonlinear optical coefficient, we can rewrite
Eqs. (5) as:

∂2Eω
∂r2

+
1
r
∂Eω
∂r
+ k2 f (1)(r)Eω

= −2ǫ0µ0ω
2deff f (2)(r)E2ωE∗ω,

∂2E2ω

∂r2
+

1
r
∂E2ω

∂r
+ 4k2 f (1)(r)E2ω

= −4ǫ0µ0ω
2deff f (2)(r)E2

ω, (7)

wheredeff is the effective nonlinear optical coefficient of the
nonlinear medium,Eω = AωJ0(kr) andE2ω = A2ωJ0(2kr). It
is difficult to give analytical results of features of cylindrical
electromagnetic waves propagating in an inhomogeneous and
nonlinear medium by using Eqs. (7). However, equations (7)
can be solved numerically by consideringAω andA2ω are only
functions ofr, then Eqs. (7) become

d2Eω
dr2

+
1
r

dEω
dr
+ k2 f (1)(r)Eω

= −2ǫ0µ0ω
2deff f (2)(r)E2ωE∗ω,

d2E2ω

dr2
+

1
r

dE2ω

dr
+ 4k2 f (1)(r)E2ω

= −4ǫ0µ0ω
2deff f (2)(r)E2

ω. (8)

The initial condition of equations (8) is

Eω|r=0 = Aω(0),
dEω
dr
|r=0 = 0, E2ω|r=0 = 0,

dE2ω

dr
|r=0 = 0.

(9)

It means that atr = 0, there is only cylindrical electromag-
netic wave with fundamental frequencyω whose amplitude is
Aω(0), and equations (8) describe the amplitude of cylindrical
SHG at arbitraryr. In this case, equations (8) is a set of or-
dinary differential equations, which can be solved by Runge-
Kutta method, and one can discuss the features of cylindri-
cal SHG in a nonlinear medium with arbitrary inhomogeneity.
Here, for example, we consider some special cases.
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(i) We consider the inhomogeneity of the medium can be
described by a sine functionf (n)(r) = sin(ω0r), whereω0

is a constant and thenth-order nonlinear polarization of the
medium is fluctuant periodically withr. The spatial period
is 2π/ω0. Such medium with the periodic inhomogeneity is
something like photonic crystal, or nonlinear photonic crys-
tal.

(ii) We consider that the inhomogeneity of the medium
can be described byf (n)(r) = exp(∆nr). Unlike the periodic
case, thenth-order nonlinear polarization of the medium is in-
creased withr when∆n > 0 while decreasing withr when
∆n < 0.

(iii) We consider the inhomogeneity of the medium can be
described by a Gaussian function, viz.f (n)(r) ∝ exp(−r2/R2

n),
whereRn is thenth-order characteristic length.

With regard to inhomogeneity, the types of sine, expo-
nent and Gaussian function are simple but useful cases. Al-
though strict inhomogeneity of materials as sin(ω0r), exp(∆nr)
or exp(−r2/R2

n) can not find in nature, some inhomogeneity
of materials may be approximatively described by sin(ω0r),
exp(∆nr) or exp(−r2/R2

n). On the other hand, a lot of re-
searches have been made theoretically and experimentally
by using various inhomogeneity, and all most inhomogeneity
can be realized by using metamaterials [20–25] and nonlinear
metamaterials [26–32].
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FIG. 1: (Color online) Calculation results of the amplitudes of the
SHG (E2ω) in the medium with different inhomogeneity. We use
Aω(0) = 1, ω = 6 × 108 MHz, χ(1) = 1, ω0 = 10µm−1 anddeff =
0.1. (a) f (1)(r) = 1, f (2)(r) = 1; (b) f (1)(r) = sin(ω0r), f (2)(r) = 1;
(c) f (1)(r) = 1, f (2)(r) = sin(ω0r); (d) f (1)(r) = sin(ω0r), f (2)(r) =
sin(ω0r).

First, we consider the sine function cases. Figure 1 shows
the amplitudes of the SHG (|E2ω|) in the medium with differ-
ent inhomogeneity. Figure 1(a) shows the homogeneous case;
Figure. 1(b) shows the case that the first order nonlinear po-
larization is inhomogeneous but the second order nonlinear
polarization is homogeneous; Figure. 1(c) shows the case that
the first order nonlinear polarization is homogeneous but the

second order nonlinear polarization is inhomogeneous, and
Fig. 1(d) shows the case that the first and second order nonlin-
ear polarizations are both inhomogeneous. It need to mention
that we useAω(0) = 1 in our calculation, which means that
we use the amplitude of the fundamental frequencyω atr = 0
as the unit to compare other oscillations. Figure 1 (also other
figures) shows the amplitudes of the SHG in this unit. So we
use|E2ω/Aω(0)| to represent the values in Fig. 1. It can be
found that bothf (1)(r) and f (2)(r) can influence on the ampli-
tudes of the SHG. On the whole, the amplitudes of the SHG in
Fig. 1(a) and Fig. 1(b) are larger than Fig. 1(c) and Fig. 1(d).
The reason is that SHG comes from the secondary nonlinear
polarization of the nonlinear medium and the existence of an
inhomogeneous factorf (2)(r) ≤ 1 will reduce the amplitude of
the SHG. Comparison of Fig. 1(a) and Fig. 1(b) we find that
the inhomogeneity of the first order nonlinear polarizationcan
change the peak value of|E2ω| while comparison of Fig. 1(c)
and Fig. 1(d) show that the inhomogeneity of the first order
nonlinear polarization can alter the positions of the peaksand
troughs of|E2ω|.
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FIG. 2: (Color online) Calculation results of the amplitudes of the
SHG (|E2ω |) in the medium with inhomogeneity of∆n > 0. We also
useω = 6 × 108 MHz, χ(1) = 1 anddeff = 0.1. (a)∆1 = 0.5µm−1,
∆2 = 0.5µm−1; (b) ∆1 = 0.5µm−1, ∆2 = 1µm−1; (c) ∆1 = 1µm−1,
∆2 = 0.5µm−1; (d) ∆1 = 1µm−1, ∆2 = 1µm−1.

Second, we turn to consider the case that the inhomogene-
ity of the medium is described byf (n)(r) = exp(∆nr) (n=1, 2)
and thenth-order nonlinear polarization of the medium is in-
creased withr, viz. ∆n > 0. Figure 2 shows calculation results
of |E2ω| in the medium. In Fig. 2(a) and Fig. 2(c), the inho-
mogeneity of the secondary nonlinear polarization is the same
while the first order nonlinear polarization is different. Com-
parison of Fig. 2(a) and Fig. 2(c) gives that the larger∆1 leads
a lower|E2ω| on the whole. It means that a larger inhomoge-
neous factorf (1)(r) will reduce the amplitude of the SHG. The
same result can also be obtained from the comparison of Fig.
2(b) and Fig. 2(d). We also can fix the first order nonlinear
polarization and consider different secondary nonlinear polar-
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FIG. 3: (Color online) Calculation results of the amplitudes of the
SHG (|E2ω |) in the medium with inhomogeneity of∆n < 0. We
also useω = 6 × 108 MHz, χ(1) = 1 and deff = 0.1. (a)
∆1 = −0.5µm−1, ∆2 = −0.5µm−1; (b) ∆1 = −0.5µm−1, ∆2 = −1µm−1;
(c) ∆1 = −1µm−1, ∆2 = −0.5µm−1; (d) ∆1 = −1µm−1, ∆2 = −1µm−1.

izations. In Fig. 2(a) and Fig. 2(b), the inhomogeneity of
the first order nonlinear polarization is both∆1 = 0.5µm−1

while the secondary nonlinear polarization is∆2 = 0.5µm−1

and∆2 = 1µm−1 respectively. We can find that the larger∆2

leads a higher|E2ω| on the whole and the change of∆2 takes
less modification of the positions of the peaks and troughs of
|E2ω|.
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FIG. 4: (Color online) Calculation results of the ampli-
tudes of the SHG (|E2ω |) in the medium with inhomo-
geneity of Gaussian profile. We also useω = 6 × 108

MHz, χ(1) = 1 anddeff = 0.1.

Similar results can be obtained for the case of∆n < 0. Fig-
ure 3 shows calculation results of|E2ω| in the medium with
∆n < 0. In Fig. 3(a) and Fig. 3(c), the inhomogeneity of the
secondary nonlinear polarization is the same while the first
order nonlinear polarization is different. Comparison of Fig.
3(a) and Fig. 3(c), as well as the comparison of Fig. 2(b) and
Fig. 2(d), also gives the conclusion that the larger∆1 leads a
lower |E2ω| on the whole. We also can fix the first order non-
linear polarization and consider different secondary nonlinear
polarizations. In Fig. 3(a) and Fig. 3(b), the inhomogeneity of
the first order nonlinear polarization is both∆1 = −0.5µm−1

while the secondary nonlinear polarization is∆2 = −0.5µm−1

and∆2 = −1µm−1 respectively. We can find the similar results
that the larger∆2 leads a higher|E2ω| on the whole and the
change of∆2 takes less modification of the positions of the
peaks and troughs of|E2ω|.

Third, we consider the inhomogeneity of the medium is
Gaussian typef (n)(r) = exp(−r2/R2

n). Figure 4 shows calcula-
tion results of|E2ω| in the medium with different characteristic
lengthRn. We can find that ifR1 is fixed, then a largerR2 leads
larger|E2ω| outside the characteristic lengthR1. We take the
first line of Fig. 4 as an example. In this case,R1 is fixed
as 1.8µm while R2 is chosen as 1.8µm, 2.5 µm and 10000
µm respectively. For largerR2, |E2ω| is enhanced greatly only
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within r ranges from 2 to 4µm, while little difference withinr
ranges from 0 to 2µm. So using the characteristic length fea-
tures, one can enhance or reduce|E2ω| at some specific region
of r. If fixing R2 and changing the value ofR1, one can find
that the positions of the peaks of|E2ω| will also change. As an
example,R2 is fixed as 1.8µm while R1 is chosen as 1.8µm,
2.5µm and 10000µm respectively. WhenR1 = 1.8µm, there
are five peaks of|E2ω| within r ranges from 0 to 4µm; When
R1 = 2.5 µm, there are seven peaks of|E2ω| within r ranges
from 0 to 4µm; WhenR1 = 10000µm, there are ten peaks of
|E2ω| within r ranges from 0 to 4µm.

III. CYLINDRICAL SHG IN AN INHOMOGENEOUS AND
NONLINEAR MEDIUM DESCRIBED BY EXACT

SOLUTIONS

In this section, we will deal with the problem of cylindri-
cal SHG in an inhomogeneous and nonlinear medium from a
different point of view. Reference [15] has presented a new
method for deriving exact solutions and obtained an exact so-
lution to describe the propagation of cylindrical electromag-
netic waves in a nonlinear nondispersive medium. In a recent
work [17] we show that the solution can be used to discuss
the cylindrical SHG in a nonlinear nondispersive medium very
well. Moreover, reference [16] shows that this important tech-
nique can be extended to deal with problems of cylindrical
electromagnetic waves propagating in a medium with nonlin-
ear and inhomogeneous. Here, we will give a full description
of using exact solutions to deal with the problem of cylindri-
cal SHG in an inhomogeneous and nonlinear medium, and as
a verification, we will compare the results obtained from these
two methods.

We begin our discussion by rewrite Eq. (1) in the form

∂H
∂r
+

H
r
= ε(E, r)

∂E
∂t
,

∂E
∂r
= µ0
∂H
∂t
, (10)

whereε(E, r) = dD/dE. In reference [16], the functionε(E, r)
is chosen in the form:

ε(E, r) = ǫ0ε1rβ exp(αE), (11)

whereε1, α, β are certain constants. It has been shown that
such system can be integrated exactly and admits exact solu-
tions in this case. Here we also use the same inhomogeneous
factor. In what follows, we will show that the exact solution
is a new way to deal with SHG.

On account of dimension, the system can be written as

ε(E, r) = ǫ0ε1(r/r0)β exp(αE), (12)

wherer0 is an arbitrary constant with the dimension of length.
If setting r0 = 1, then Eq. (12) go into Eq. (11). We de-
fine ρ = r/a, τ = t(ǫ0ε1µ0)−1/2/a, with a being an constant
with the dimension of length, Considering that if a solution
of the homogenous and linear problem has been obtained and
recorded asE0 andH0 in the form

E0 = E(ρ, τ), H0 = ε
1/2
1 Z−1

0 H(ρ, τ), (13)

whereE andH satisfying the linear system:

∂H
∂ρ
+
H
ρ
=
∂E
∂τ
,

∂E
∂ρ
=
∂H
∂τ
. (14)

then the exact solution can be obtained as [15, 16]

E = E
(

2(a/r0)1+β/2ρ1+β/2eαE/2, (β + 2)(a/r0)τ + g0H
)

,

H =

√
ε1eαE/2

Z0
(a/r0)β/2ρβ/2

×H
(

2(a/r0)1+β/2ρ1+β/2eαE/2, (β + 2)(a/r0)τ + g0H
)

. (15)

The choice ofa andr0 are limited to the case that ifα → 0
andβ→ 0, then the solution will go into the homogenous and
linear case. This implies that:

lim
β→0

2(a/r0)1+β/2 = 1,

lim
β→0

(β + 2)(a/r0) = 1. (16)

Reference [16] useda/r0 = 2−2/(β+2) while in the present work
we usea/r0 = 1/(β + 2). Both of the choices can lead exact
solution of Eqs. (10), however, describe propagation of cylin-
drical electromagnetic waves with different frequencies. If
choosinga/r0 = 1/(β+ 2), it can verify that the exact solution
obtained describes cylindrical electromagnetic waves whose
frequency is the same as propagation in an homogeneous and
linear medium. Then we can obtain:

E = E
(

2(β + 2)−(1+β/2)ρ1+β/2eαE/2, τ + g0H
)

,

H =

√
ε1eαE/2

Z0
(β + 2)−β/2ρβ/2

×H
(

2(β + 2)−(1+β/2)ρ1+β/2eαE/2, τ + g0H
)

. (17)

These expressions give an exact solution of Maxwell equa-
tions in such an inhomogeneous nonlinear medium, and in
what follows, we will give a traveling wave solution which
describes cylindrical wave propagation in an infinite nonlin-
ear and inhomogeneous medium from these expressions.

We begin our discussion by considering cylindrical wave
propagation in an infinite medium and the solution of lin-
ear problem is: E(r, t) = ζJ0(kr) cos(ωt) and H(r, t) =
−ζJ1(kr) sin(ωt). Rewriting it in variable (ρ, τ), and using ex-
act solution (17) we can obtain the solution of nonlinear prob-
lem:

E = ζJ0(kr1+β/2eαE/2Ω) cos
(

ωt +
αµ0ωrH
β + 2

)

, (18)

H = −ζ
√
ε1eαE/2

Z0

( r
r0

)β/2

×J1(kr1+β/2eαE/2Ω) sin
(

ωt +
αµ0ωrH
β + 2

)

, (19)

whereΩ = 2(β + 2)−1r−β/20 , and we setr0 = 1µm. The so-
lution shows that the electric field and magnetic field of the
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cylindrical electromagnetic wave in a nonlinear medium are
not separate, but coupling with each other. It is obviously that
if β → 0 exact solutions (18) and (19) will go into the homo-
geneous case, which have been discussed in Ref. [17].

Here, we will justify the calculations with the solution ob-
tained in Ref. [16] and show that the same results can be ob-
tained by using the solution in Ref. [16]. The exact solution
obtained in Ref. [16] is

E = E
(

ρ1+β/2eαE/2, 2
−2
β+2 [(β + 2)τ +

Z0αρH√
ε1

]
)

,

H =

√
ε1eαE/2ρβ/2

Z02
β

β+2

H
(

ρ1+β/2eαE/2, 2
−2
β+2 [(β + 2)τ +

Z0αρH√
ε1

]
)

,

(20)

We also consider the cylindrical wave propagating in an infi-
nite medium and the solution of linear problem is:E(r, t) =
ζJ0(kr) cos(ωt) andH(r, t) = −ζJ1(kr) sin(ωt). Rewriting it
in variable (ρ, τ), and using exact solution (20) we can obtain
the solution of nonlinear problem:

E = ζJ0(kr1+β/2eαE/22β/(β+2))

× cos
(

2−2/(β+2)(β + 2)ωt + 2−2/(β+2)αµ0ωrH
)

,(21)

H = −ζ
√
ε1eαE/2

Z0

( r
r0

)β/2

J1(kr1+β/2eαE/22β/(β+2))

× sin
(

2−2/(β+2)(β + 2)ωt + 2−2/(β+2)αµ0ωrH
)

.(22)

It should be note that the relation between variable (ρ, τ) and
(r, t) are used asρ = r · 22/(β+2) andτ = t(ǫ0ε1µ0)−1/2 · 22/(β+2).
Equations (21) and (22) are very different from Eqs. (18) and
(19). However, if writing 2−2/(β+2)(β + 2) asΛ, then Eqs. (21)
and (22) become

E = ζJ0(Λkr1+β/2eαE/2Ω)

× cos
(

Λωt + Λαµ0ωrH/(β + 2)
)

, (23)

H = −ζ
√
ε1eαE/2

Z0

( r
r0

)β/2

J1(Λkr1+β/2eαE/2Ω)

× sin
(

Λωt + Λαµ0ωrH/(β + 2)
)

. (24)

If defineΛω = ω′, thenk′ = ω′
√
ǫ0ε1µ0 = Λk. So we can

write Eqs. (23) and (24) as follows:

E = ζJ0(k′r1+β/2eαE/2Ω) cos
(

ω′t +
αµ0ω

′rH
β + 2

)

, (25)

H = −ζ
√
ε1eαE/2

Z0

( r
r0

)β/2

×J1(k′r1+β/2eαE/2Ω) sin
(

ω′t +
αµ0ω

′rH
β + 2

)

. (26)

Equations (25) and (26) are exactly the same as Eqs. (18) and
(19) except the frequency of the wave. Both exact solutions
correctly describe cylindrical electromagnetic wave propaga-
tion in an inhomogenous and nonlinear medium. Equations

(18) and (19) describe cylindrical electromagnetic wave with
frequencyω while Eqs. (25) and (26) with frequencyω′.

In what follows, we will show that SHG comes out quite
naturally from the exact solution and the descriptions of SHG
by the exact solution are in good agreement with the coupled-
wave equations. Consideringα is small, thenH can be ap-
proximately written as

H ≈ −ζ
√
ε1

Z0
rβ/2J1(kr1+β/2Ω) sin(ωt), (27)

Substitution Eq. (27) into Eq. (18) and using the approxima-
tion J0(xeαE/2) ≈ J0(x) − αExJ1(x)/2 leads:

E ≈ ζJ0(kr1+β/2Ω) cos(ωt) − ζJ0(kr1+β/2Ω)Θ cos(2ωt), (28)

where

Θ =
ζαµ0ωr
β + 2

√
ε1

Z0
rβ/2J1(kr1+β/2Ω), (29)

and higher-harmonic generation (for example, 3ω) are ig-
nored. From Eq. (28) we can find that SHG comes out quite
naturally from exact solution and the inhomogeneity of the
medium can influence on the efficiency of the SHG. The am-
plitudes of the fundamental frequency and SHG then reads

Eω = ζJ0(kr1+β/2Ω),

E2ω = ζJ0(kr1+β/2Ω)Θ, (30)

soΘ = E2ω/Eω describes the efficiency of SHG. In what fol-
lows, we will give comparison of using coupled-wave equa-
tions and exact solution to describe SHG.

0 1 2 3 4 5
0

0.2

0.4

β=
0

0 1 2 3 4 5
0

0.2

0.4

β=
0
.5

0 1 2 3 4 5
0

0.2

0.4

r (µ m)

β=
1

exact solutions

coupled-wave equations

FIG. 5: (Color online) Efficiencies of cylindrical SHG in an inho-
mogeneous and nonlinear medium based on coupled-wave equations
and exact solutions.

Usingε(E, r) = dD/dE = ǫ0ε1rβ exp(αE), we obtain:

P = P0 + ǫ0(ε1rβ − 1)E +
ǫ0ε1rβα

2
E2 + · · · , (31)
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whereP0 =
ǫ0ε1rβ

α
[1+C(r)] with C(r) is the constant of integra-

tion. Thendeff = χ
(2)/2 = α/2, f (1)(r) = rβ and f (2)(r) = rβ.

Figure 5 shows the efficiencies of cylindrical SHG in an inho-
mogeneous and nonlinear medium based on the coupled-wave
equations (we use Runge-Kutta method to solve Eq. (8) and
plot |E2ω/Eω|) and the exact solutions (we use the expression
of Θ, viz. Eq. (29) which describes the efficiency of SHG,
and plot|Θ|). We useω = 6× 108 MHz, χ(1) = 1, ζ = 1 and
deff = 0.1, as same as in Fig. 1 and Fig. 2. From Fig. 5 we can
find that descriptions of SHG by the coupled-wave equations
are in good agreement with the exact solutions. There are
some peaks on the curve of using the coupled-wave equations
method. In what follows, we will give an analysis on the ori-
gin of these peaks. Figure 6 shows amplitudes of fundamen-
tal frequency and cylindrical SHG in an inhomogeneous and
nonlinear medium based on the coupled-wave equations and

Eq. (30) which derived from the exact solutions. We can find
that descriptions of both|Eω| and |E2ω| by the coupled-wave
equations are in good agreement with the exact solutions, and
these peaks are completely absent. However, Figure 5 shows
that when we plot|E2ω/Eω|, these peaks occur. To further an-
alyze the origin of these peaks, we plot amplitudes of funda-
mental frequency and cylindrical SHG and the efficiencies of
cylindrical SHG based on the coupled-wave equations in Fig.
7. We can find some features of these peaks. First, around
a zero point of|Eω|, both |Eω| and |E2ω| → 0. Second, these
peaks appear at the fixed points. From both Fig. 5 and Fig. 7
we can find that these peaks appear at every peak of the effi-
ciencies. Third, these peaks appear at|Eω| = 0. This fact can
be found in Fig. 7. We take Fig. 7(b) as an example. We point
out the five peaks, and we can find that them indeed appear at
|Eω| = 0.
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0.5

1

(a)

β=0
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ω
|/
ζ exact solutions

coupled-wave equations
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FIG. 6: (Color online) Amplitudes of (a) fundamental frequency and (b) cylindrical SHG in an inhomogeneous and nonlinear medium based
on coupled-wave equations and exact solutions.

All these features of these peaks can be explained by Eqs.
(30) which deduced from the exact solutions. First, Equations
(30) shows that when|Eω| = 0 then|E2ω| = 0. However, the
efficiency |E2ω/Eω| at these points is finite, which described
by the expression ofΘ, viz. Eq. (29). Second, one can find
that |Θ| reaches its maximums at the position|Eω| = 0. This
result can be obtained by solving the equationdΘ/dr = 0
with Θ is given in Eq. (29). We consider that according to the
definition of SHG efficiency|E2ω/Eω|, a zero point of|Eω|will
cause significant distortions because the numerical calculation
provides extreme sensitivity through a small range around the
zero point. For example, around a zero point of|Eω|, both|Eω|
and |E2ω| → 0. If |Eω| is small enough that|Eω| is recorded
as 0 while|E2ω| is recorded as a nonzero number in computer,
then a peak arises. So we can see that these peaks appear at
every zero points of|Eω|, which also corresponding to every
peak of the efficiencies.

IV. CONCLUSION

In conclusion, we have used two methods to deal with the
problem of SGH of cylindrical electromagnetic wave prop-
agating in an inhomogeneous and nonlinear medium. One
method is using traditional coupled-wave equations. We have
set up coupled-wave equations of cylindrical electromagnetic
waves interacting with nonlinear and inhomogeneous media.
Using the coupled-wave equations we have analyzed features
of cylindrical SHG. The other method is using exact solutions
of the Maxwell equations. We use a simple method to de-
duce SHG from this exact solution and found that the results
are in good agreement with which are obtained by using the
coupled-wave equations.
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FIG. 7: (Color online) Amplitudes of fundamental frequency, cylin-
drical SHG and efficiencies of cylindrical SHG in an inhomogeneous
and nonlinear medium based on coupled-wave equations. (a)β = 0,
(b) β = 0.5, (c)β = 1.

Acknowledgments

The work was supported in part by the National Sci-
ence Foundation (NSF) of China (Grant Nos. 10874050,
10975054, and 91021011),the National Fundamental Re-
search Program of China (Grant No. 2012CB922103) and
the Research Fund for the Doctoral Program of Higher Ed-
ucation of China (Grant No. 200804870051). H. X. and C.
D are also sponsored in part by the Scholarship Award for
Excellent Doctoral Student granted by the Ministry of Educa-
tion China, Doctorate Innovation Foundation, and the Grad-
uate Practice Base of Innovation and Enterprise (Grant No.
HF-09-05-2011-012) of the Huazhong University of Science
and Technology.

[1] P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich, Phys.
Rev. Lett.7, 118 (1961).

[2] J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Per-
shan, Phys. Rev.127, 1918 (1962).

[3] N. Bloembergen and P. S. Pershan, Phys. Rev.128, 606 (1962).
[4] N. Bloembergen, Rev. Mod. Phys.54, 685 (1982).
[5] Y. R. Shen,Principles of Nonlinear Optics (Wiley, New York,

1984).
[6] Y. Nakayama, P. J. Pauzauskie, A. Radenovic, R. M. Ono-

rato, R. J. Saykally, J. Liphardt, and P. Yang, Nature447, 1098
(2007).

[7] M. A. Belkin, F. Capasso, A. Belyanin, D. L. Sivco, A. Y. Cho,
D. C. Oakley, C. J. Vineis, and G. W. Turner, Nature Photonics
1, 288 (2007).

[8] H. Suchowski, D. Oron, A. Arie, and Y. Silberberg, Phys. Rev.
A 78, 063821 (2008).

[9] L. Fu, G. Ma, and E. C. Y. Yan, J. Am. Chem. Soc.132, 5405
(2010).

[10] N. Ji, V. Ostroverkhov, C. S. Tian, and Y. R. Shen, Phys. Rev.
Lett. 100, 096102 (2008).

[11] Y. R. Shen, Nature337, 519 (1989).
[12] T. C. Anglin and J. C. Conboy, Biochemistry48, 10220 (2009).
[13] Yan Fu, H. Wang, R. Shi, and J.-X. Cheng, Biophysical Journal

92, 3251 (2007).
[14] X. Lu, N. Shephard, J. Han, G. Xue, and Z. Chen, Macro-

molecules41, 8770 (2008).
[15] E. Y. Petrov and A. V. Kudrin, Phys. Rev. Lett.104, 190404

(2010).
[16] H. Xiong, L.-G. Si, P. Huang, and X. Yang, Phys. Rev. E82,

057602 (2010).
[17] H. Xiong, L.-G. Si, J. F. Guo, X.-Y. Lü, and X. Yang, Phys. Rev.
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