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A general description of cylindrical electromagnetic wapeopagating in nonlinear and inhomogeneous me-
dia is given by deducing cylindrical coupled-wave equatioBase on the cylindrical coupled-wave equations,
we analyze second-harmonic generation (SHG) of some $peasies of inhomogeneity, and find that the inho-
mogeneity of the first and second order polarization canénfte on the amplitude of the SHG. From fielient
point of view, exact solutions of cylindrical electromagjoevaves propagating in a nonlinear medium with a
special case of inhomogeneity have been obtained preyiod& show that cylindrical SHG in an inhomoge-
neous and nonlinear medium also can be deduced from exatibssl As a verification, we compare the results
obtained from the two dlierent methods and find that descriptions of SHG by the coupbae equations are
in good agreement with the exact solutions.

PACS numbers: 42.65.Ky, 03.50.De, 41.20.Jb

I. INTRODUCTION generation (SHG) of some special cases of inhomogeneity,
and find that both the inhomogeneity of the first and second
) _ ) order polarization can influence on the amplitude of the SHG
Nonlinear optics plays a central role in the advancemerclgm), and the inhomogeneity of the first order polarization
of optical science, and significant progress has been madeyn change the peak values and positions of the pedks,of
by using analytical and numerical methods[1-14]. Cylin-From a diterent point of view, we show that cylindrical SHG
drical nonlinear optics is a burgeoning research area whicty an inhomogeneous and nonlinear medium also can be de-
describes cylindrical electromagnetic waves propagation qyced from the exact solutions. We give a full description of
nonlinear media and some fundamental researches have begdlng the exact solutions to deal with the problem of cylindr
done [15-19). Itis an extremely complicated problem to dea| SHG in an inhomogeneous and nonlinear medium, and as
scribe electromagnetic waves propagation in a medium witly verification, we compare the results obtained from the two
simultaneously inhomogeneous and nonlinear, and such profigferent methods and find that descriptions of SHG by the
lem remains poorly studied. Reference [16] has given antexagoupled-wave equations are in good agreement with the exact
solution to describe cylindrical electromagnetic wavesppr  gglytions.
agation in a medium with special polarization &&.r) = The paper is organized as follows. In Sec. Il we derive the
dD/dE = eoeur” exp@E) with £1,. 4 are certain constants coypled-wave equations, and we analyze SHG of some special
and e is the permittivity of free space. This special polar- cases of inhomogeneity. In Sec. Il we use the exact solsition
ization denotes that the medium considered is nonlinear ang investigate cylindrical SHG and show that second-haimon
inhomogeneous. The nonlinear factor is eXp), and the in-  generation comes out quite naturally from the exact saistio
homogeneous factor i€. Using the exact solution obtained, \we also compare the results obtained from the twitedknt
Ref. [16] has discussed the initial value problem and boundmethods. In Sec. IV our conclusions are summarized at the
ary value problem, to compare thefférences between ho- and of this article.
mogenous and inhomogeneous conditions. However, such de-
scription is not enough because the exact solution can @nly b
found for few cases. For most cases of inhomogeneity, the ||. COUPLED-WAVE EQUATIONSOF CYLINDRICAL
system can not be integrated exactly. Thus, finding general ELECTROMAGNETIC WAVES PROPAGATING IN AN

description of cylindrical electromagnetic waves propama INHOMOGENEOUSAND NONLINEAR MEDIUM
in nonlinear and inhomogeneous media is important and use-
ful. In this section, we will deduce the coupled-wave equations

of cylindrical electromagnetic waves propagating in aroinh
cal electromagnetic waves propagating in nonlinear and inMOYeNeous and nonlinear medium. We start by introducing

homogeneous media. We deduce coupled-wave equatiof&l Physical model. ‘We assume that the medium possesses
which describe the interaction between cylindrical electr an axis of symmetry, and taken as thaxis of a cylindrical

magnetic waves and nonlinear inhomogeneous media. goordinate systenT (¢, 2). A linear light source is placed in

ing the coupled-wave equations, we analyze second—haunon'ihe.ax's of the nonlm_ear medium, af‘d cylmdrlcal eleqtrgma
netic waves are emitted. By considering that the fields are
independent op andz, the Maxwell equations can be written

as follows:
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whereH = Hy(r, t), E = E4(r,t) andD(r,t) = E + P with P We setw; = w, w2 = 2w and hereaften=1, 2. Using Eq.
being the intensity of polarization of the medium. Such mode(4) we can obtain:
has been used in some foregoing works [15-19]. Hereafter,
we will focus on electric fields to set up a classical theory ~ 9°E(w)  19E(w) 5. ()
. ; S : = + Kk fH(r)E(w)
which describes cylindrical electromagnetic waves prapag or? r or
ing in an inhomogeneous and nonlinear medium. - _#szf(z)(r)pﬁa(wq = w),
With regard to diferent medium, the connection between PE(20) . }6E(2w)
or

P andE shows in dfferent forms. For the cade « E, viz.
the medium is linear. We can solve Eq. (1) by the method of ar?
variable s_eparation and the solutiorE_s—_ g\_]o(kr) exp(—ia)t_), = —4p0w2f(2)(r)Pf\‘2,Z(wq =2w). (5)
whereJy, is a Bessel function of the first kind of ordex, ¢ is

a constantk = w\/WWIth w is the frequency of the elec- Here we only consider the second-order nonlinear polariza-
tromagnetic waveg is the permittivity of free spaceg isthe  tion ofthe medlum anéy_ is used as the secondary nonlinear
permeability of free space, ard = 1 + y1. The real media polanzatlonP

are usually nonlinear and inhomogeneous, and we consider

thatP = eyMg(NE + 2, PO £0(r), whereg(r) means the P (wg = w) = 2e0¢P(~w, 20, —w) : E(2w)E*(w),
?nhomogene?ty of the linear polariza_tion aﬁ@)(r)_me_ans the p(2) ) (wq = 2w) = ey ?(~2w, w, w) : E(w)E(w).  (6)
inhomogeneity of thenth-order nonlinear polarization. For

convenience, we define a functiéf(r) = [1 + xVg(r)]/s1,  Using dfective nonlinear optical cdkcient, we can rewrite

+ 42 TD(r)E(2w)

and the polarization of the medium can be written Bs= Egs. (5) as:

eoler FO(r) — 1]E + 12, PY £0(r). Some special cases can

be discussed. IfM(r) = f(r) = 1, then the medium is ho- #’E,  10E, 2O E

mogeneous but nonlinear. #1(r) = 1 andf™(r) = 0, then a2 Trar (N,

the medium is homogeneous and linear. Here, we give a gen- - —260ﬂow2deﬁf(2)(r)E2wEZ,

eral description of the system and considié(r) and f™(r)

2
can be arbitrary functions. On the basis of Eq. (1) we have: 02, 10Ea

or2 +r or
PE 10E _ 1 §E = a°P{) = —deopiow?deg FO(r)E2 @)
£ eff w?
+ o N— @

oz Trar v(r)2 ot? nz;l 6t2

+ 42T D(r)Ey,

wheredgg is the dfective nonlinear optical cdigcient of the

where Jv(r)? = ee1uo f(r), and hereaftek; = w; eéeio. nog_lgealr mediumg, |= Aw‘ll(’(kr)landﬁfw - Ang(}(Zklr_). dlt. |
Following the example of the plane nonlinear optics, we'sI iificult to give analytical results o eat_urre]s of cylindrica q
present the electric field as electromagnetic waves propagating in an inhomogeneous an

nonlinear medium by using Egs. (7). However, equations (7)

1 . 1 can be solved numerically by consideriig andA,,, are only
-2 Z E(w). P = 2 Z Pru(wq) ) functions ofr, then Egs. (7) become
i q

where E(w) = AJo(kr)expliwit), E(-w) = E*(w), &E,  1dE, | orminE,

PnL(wg) = Pgdo(kgr) expliwgt), Pni(—wq) = Py (wg) with a2 " rodr

A is the amplitude of the cylindrical electromagnetic wave = —ZEOyOa)Zdefff(z)(r)EngZ),
carry a frequencw; andPqy present the amplitude of the po- @*E,, 1dE,,

larized cylindrical electromagnetic wave carry a frequeng 2 YT + 42D (r)Eg,

It should be noted that the summation runs over all frequen- dr r ) @2

cies, includingw > 0 andw < 0. Using these presentations, = —4eouow deg f2(NE,.  (8)
we can simplify Eq. (2) and obtain the coupled-wave equa-

tions of cylindrical electromagnetic waves propagatingim The initial condition of equations (8) is

inhomogeneous and nonlinear medium: dE2
PE@)  19E(w) Eulr=0 = (0) |r =0 =0, Ezulr=0 = ar —=|r=0 = 0.
wi) | 205D es :

It means that at = 0, there is only cylindrical electromag-
netic wave with fundamental frequeneywhose amplitude is
A,(0), and equations (8) describe the amplitude of cylindirica
These equations describe cylindrical electromagneticesav SHG at arbitraryr. In this case, equations (8) is a set of or-
with frequencyw; propagating in an inhomogeneous and non-dinary diferential equations, which can be solved by Runge-
linear medium, which are coupled B, and the inhomoge- Kutta method, and one can discuss the features of cylindri-
neous factoff (r). In what follows, we will use these equations cal SHG in a honlinear medium with arbitrary inhomogeneity.
to study SHG. Here, for example, we consider some special cases.

= —pow? Y VMNP (wq = w).  (4)
n=2
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(i) We consider the inhomogeneity of the medium can besecond order nonlinear polarization is inhomogeneous, and

described by a sine functiof™(r) = sin(woer), wherewg

Fig. 1(d) shows the case that the first and second order nonlin

is a constant and theth-order nonlinear polarization of the ear polarizations are both inhomogeneous. It need to nrentio

medium is fluctuant periodically with. The spatial period

that we useA,(0) = 1 in our calculation, which means that

is 2r/wp. Such medium with the periodic inhomogeneity is we use the amplitude of the fundamental frequanatr = 0
something like photonic crystal, or nonlinear photonicsery as the unit to compare other oscillations. Figure 1 (alseroth

tal.

figures) shows the amplitudes of the SHG in this unit. So we

(i) We consider that the inhomogeneity of the mediumuse|E;,/A,(0) to represent the values in Fig. 1. It can be

can be described bf"(r) = exp(Anr). Unlike the periodic

found that bothf D(r) and f@(r) can influence on the ampli-

case, theith-order nonlinear polarization of the medium is in- tudes of the SHG. On the whole, the amplitudes of the SHG in

creased withr whenA, > 0 while decreasing witl when
Anp < 0.

Fig. 1(a) and Fig. 1(b) are larger than Fig. 1(c) and Fig. .1(d)
The reason is that SHG comes from the secondary nonlinear

(i) We consider the inhomogeneity of the medium can bepolarization of the nonlinear medium and the existence of an

described by a Gaussian function, vizZ0(r) o« exp(-r?/R2),
whereR, is thenth-order characteristic length.

inhomogeneous factdf?(r) < 1 will reduce the amplitude of
the SHG. Comparison of Fig. 1(a) and Fig. 1(b) we find that

With regard to inhomogeneity, the types of sine, expo-the inhomogeneity of the first order nonlinear polarizatan
nent and Gaussian function are simple but useful cases. Afhange the peak value fi,| while comparison of Fig. 1(c)
though strictinhomogeneity of materials as sigi), exp(Anr) and Fig. 1(d) show that the inhomogeneity of the first order
or explr?/R?) can not find in nature, some inhomogeneity nonlinear polarization can alter the positions of the peaids
of materials may be approximatively described by sy,  troughs ofiEz,|.
exp(Anr) or expr?/R2). On the other hand, a lot of re-

searches have been made theoretically and experimental (a) (b)

by using various inhomogeneity, and all most inhomogeneity 006 0.06
can be realized by using metamaterials [20—25] and nonlines _ -
metamaterials [26-32]. <, 004 <, 004
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SHG (E,|) in the medium with inhomogeneity @f, > 0. We also
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FIG. 1: (Color online) Calculation results of the amplitadsf the
SHG (E2,) in the medium with dferent inhomogeneity. We use
A,(0) = 1, w = 6x 10° MHz, YV = 1, wo = 10um™ anddgg =
01. @) D) = 1, fO(r) = 1; (b) fO(r) = sin(or), TA() = 1;
(€) TD(r) = 1, T@(r) = sinor); (d) TA(r) = sin(or), TA(r) =
Sin(wor).

usew = 6 x 10° MHz, y» = 1 anddgg = 0.1. (a)A; = 0.5um?,
Ay = 0.5umy; (b) Ay = 0.5um™, A, = dumt; (€) Ay = Lum?,
Ay = O.5/Jm71; ()AL = ]./,lmil, Ay = ]./,lmil.

Second, we turn to consider the case that the inhomogene-
ity of the medium is described b (r) = expAnr) (n=1, 2)
and thenth-order nonlinear polarization of the medium is in-
creased withi, viz. A, > 0. Figure 2 shows calculation results
of |Ez,| in the medium. In Fig. 2(a) and Fig. 2(c), the inho-
mogeneity of the secondary nonlinear polarization is tineesa

First, we consider the sine function cases. Figure 1 showshile the first order nonlinear polarization isi@dirent. Com-

the amplitudes of the SHGH;,,|) in the medium with dfer-

parison of Fig. 2(a) and Fig. 2(c) gives that the lar§eteads

ent inhomogeneity. Figure 1(a) shows the homogeneous casajower|E,,| on the whole. It means that a larger inhomoge-
Figure. 1(b) shows the case that the first order nonlinear paeous factof M(r) will reduce the amplitude of the SHG. The
larization is inhomogeneous but the second order nonlineasgame result can also be obtained from the comparison of Fig.
polarization is homogeneous; Figure. 1(c) shows the cade th2(b) and Fig. 2(d). We also can fix the first order nonlinear
the first order nonlinear polarization is homogeneous beit th polarization and considerfiiérent secondary nonlinear polar-
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(a) (b) izations. In Fig. 2(a) and Fig. 2(b), the inhomogeneity of
0.06 0.04 the first order nonlinear polarization is both = 0.5um?
= = 003 while the secondary nonlinear polarizationAs = 0.5um™
:3 0.04 :3 0.02 andA; = 1um ! respectively. We can find that the larger
~3 0.02 ~3 leads a highejE,, | on the whole and the change &4 takes
= = 0.01 less modification of the positions of the peaks and troughs of
[E20-
% 5 10 % 5 10
r (M m) r (4 m)
© (d)
0.2 0.08
= 0.15 = 0.06
3 3
< 041 < 0.04
& S
2 0.05 = 0.02
% 5 10 % 5 10
r(Hm) r(Hm)
FIG. 3: (Color online) Calculation results of the amplitadef the
SHG (E.|) in the medium with inhomogeneity o, < 0. We
also usew = 6 x 10° MHz, ¥ = 1 andd.gs = 0.1. (@)
A = —O.5/Jmil, A = —O.5/Jmil; (b) Ay = —0.5um™, A, = —]./Jmil;
(©) Ay = =1um L, Ay = —0.5um™%; (d) Ay = =M™, Ay = —1um 2,
R,=1.8 m, R =1.8 jim R =1.8 um, R,=2.5 pm R,=1.8 jim, R,=10000 hm
0.06 0.1 02
g, 00t
< 0.05 0.1
30.02
5
% 2 s % 2 s % 2 4
R =25 im, R =1.8 im R =2.5 pm, R =2.5 pm R =2.5 pm, R =10000 pm
008 0.06 02
S 0.04 0.04 FIG. 4: (Color online) Calculation results of the ampli-
<\c3 ' ' 0.1 tudes of the SHG|Ey,|) in the medium with inhomo-
m§ 0.02 0.02 geneity of Gaussian profile. We also use= 6 x 10°
= MHz, y® = 1 anddgg = 0.1.
% 2 s % 2 s % 2 4 X eff
R =10000 pm, R =1.8 im R =10000 pm, R,=2.5 um R =10000 pm, R =10000 pim
_0.06 0.06 0.06
83 0.04 0.04 0.04
<
30.02 0.02 0.02
5]
% 2 s % 2 s % 2 4
r(Hm) r(Hm) r(Hm)

Similar results can be obtained for the cas&pk 0. Fig-  andA, = —1um respectively. We can find the similar results
ure 3 shows calculation results {&;,| in the medium with  that the larger\; leads a highelE,,| on the whole and the
An < 0. In Fig. 3(a) and Fig. 3(c), the inhomogeneity of the change ofA, takes less modification of the positions of the
secondary nonlinear polarization is the same while the firspeaks and troughs ¢,,|.
order nonlinear polarization is fiierent. Comparison of Fig. ] ] ) ] ] )
3(a) and Fig. 3(c), as well as the comparison of Fig. 2(b) and Thqu, we consider the mhomog(_aneny of the medium is
Fig. 2(d), also gives the conclusion that the largeleads a  Gaussian typé(”)(r_) = exp(—r_z/Rﬁ)._Flgure 4 shows calcula-
lower |E;,,| on the whole. We also can fix the first order non- fion results ofEx, | in the medium with dferent characteristic
linear polarization and considerftiirent secondary nonlinear €ngthR,. We canfind that iR, is fixed, then a largeR; leads
polarizations. In Fig. 3(a) and Fig. 3(b), the inhomogeneit  larger|Ea,| outside the characteristic leng®. We take the
the first order nonlinear polarization is bath = —0.5um first line of Fig. 4 as an example. In this ca$y, is fixed

while the secondary nonlinear polarizatiomis= —0.5umt @S 1.8um while R; is chosen as 1.gm, 2.5um and 10000
umrespectively. For largeRy, |Ez,| is enhanced greatly only



within r ranges from 2 to 4m, while little difference withirr where& andH satisfying the linear system:

ranges from 0 to Zzm. So using the characteristic length fea-

tures, one can enhance or redi{igg,| at some specific region 51’ + ﬂ _ 5_8 5_8 _ 51{ (14)
of r. If fixing R, and changing the value &%, one can find op p O op It

that the positions of the peaks|&,,| will also change. As an
exampleR; is fixed as 1.&im while R; is chosen as 1.8m,
2.5umand 1000Qum respectively. Wheitr; = 1.8 um, there
are five peaks ofE,,| within r ranges from 0 to 4m; When E= 8(2(3/fo)“ﬁ/zplwze“E/z, B+ 2)@/ro)r + goH),
Ry = 2.5um, there are seven peaks |&,| within r ranges nE/2

from 0 to 4um; WhenR; = 10000um, there are ten peaks of H = ‘/‘g_l—(a/ro)ﬁ/Zpﬁ/Z

|E2,| within r ranges from O to 4m. Zo

then the exact solution can be obtained as [15, 16]

xﬂ(2(a/r0)1+5/2p1+5/2e“E/2, B+ 2)@/ro)r + goH). (15)

I11. CYLINDRICAL SHG IN AN INHOMOGENEOUSAND . . .
NONL INEAR MEDIUM DESCRIBED BY EXACT The choice ofa andrg are limited to the case thatif — 0

SOLUTIONS andB — 0, then the solution will go into the homogenous and
linear case. This implies that:

In this section, we will deal with the problem of cylindri- lim 2(a/ro) /2 = 1
cal SHG in an inhomogeneous and nonlinear medium from a B—0 ’

difterent point of view. Reference [15] has presented a new lim(8 + 2)(a/ro) = 1. (16)
method for deriving exact solutions and obtained an exact so p=0

lution to describe the propagation of cylindrical electagm Reference [16] useal/ro = 2-2/¢*2 while in the present work

netic waves in a nonlinear nondispersive medium. In a recent ~ .
work [17] we show that the solution can be used to discuss usea/ro = 1/(8 +2). Both of the choices can lead exact

the cylindrical SHG in a nonlinear nondispersive mediunyver solution of Egs. (10), however, describe propagation dhey!

well. Moreover, reference [16] shows that this importaghte drical electromagnetic waves withftérent frequencies. If

nigue can be extended to deal with problems of cylindricaIChoosmga/rO = 1/(B+2), itcan verify that the exact solution

; S . ; - “obtained describes cylindrical electromagnetic wavessgho
electromagnetic waves propagating in a medium with nonlins

. i .. frequency is the same as propagation in an homogeneous and
ear and inhomogeneous. Here, we will give a full descriptio q y propag 9

of using exact solutions to deal with the problem of cylirdri qlnear medium. Then we can obtain:

cal SHG in an inhomogeneous and nonlinear medium, and as

_ —(14+B/2) 1+B/2 j0E/2
a verification, we will compare the results obtained fronsthe E= S(Z(B +2) p e goH),

two methods. JETEE/2
We begin our discussion by rewrite Eq. (1) in the form H= T(ﬂ +2) F2pfl?
oH H oE oE oH —(1+8/2) 1+B/2 2 E/2
oH H_ 0E  OE _ OH xﬂ(2(ﬁ+2) L8/ 2gh ,T+goH). 17)
o 7 = eENS o =~ Mo (10)
wheres(E, r) = dD/dE. Inreference [16], the functics(E, r) These expressions give an exact solution of Maxwell equa-
is chosen in the form: tions in such an inhomogeneous nonlinear medium, and in
what follows, we will give a traveling wave solution which
£(E, 1) = eoe1r” expE), (11) describes cylindrical wave propagation in an infinite noenli

_ ear and inhomogeneous medium from these expressions.
wheree, @, are certain constants. It has been shown that We begin our discussion by considering cylindrical wave

such system can be integrated exactly and admits exact solgropagation in an infinite medium and the solution of lin-
tions in this case. Here we also use the same inhomogeneogar problem is: &(r,t) = ¢Jo(kr) cos@t) and H(r,t) =

factor. In what follows, we will show that the exact solution —;J, (kr) sin(wt). Rewriting it in variable 4, 7), and using ex-

is a new way to deal with SHG. act solution (17) we can obtain the solution of nonlineabgro
On account of dimension, the system can be writtenas  |em:

e(E, 1) = eea(r/ro) exp@E), (12) E = £ Jo(krHA2erE120)) Cos(wt " L‘O“”H) (18)
B+2 )
whererg is an arbitrary constant with the dimension of length. JETeE2

B2
If settingro = 1, then Eq. (12) go into Eq. (11). We de- H = _g—(L)
finep = r/a, v = t(eos1o) Y?/a, with a being an constant Zo fo

with the dimension of Iength, Considering that if a sc_)lution x J1 (kr LB/2e0E /20 sir(a)t N apowrH ) (19)
of the homogenous and linear problem has been obtained and B+2

recorded agg andHg in the form )
whereQ = 2(8 + 2)‘1r6/3/ , and we sety = lum. The so-
Eo=&(p,7),  Ho=&7Zy*H(p, 1), (13)  lution shows that the electric field and magnetic field of the




cylindrical electromagnetic wave in a nonlinear medium arg(18) and (19) describe cylindrical electromagnetic waviawi

not separate, but coupling with each other. Itis obviousfyt frequencyw while Egs. (25) and (26) with frequeney .

if B — 0 exact solutions (18) and (19) will go into the homo-  In what follows, we will show that SHG comes out quite

geneous case, which have been discussed in Ref. [17]. naturally from the exact solution and the descriptions oGSH
Here, we will justify the calculations with the solution ob- by the exact solution are in good agreement with the coupled-

tained in Ref. [16] and show that the same results can be olwave equations. Consideringis small, thenH can be ap-

tained by using the solution in Ref. [16]. The exact solutionproximately written as

obtained in Ref. [16] is

Vel .
- H ~ —¢——=rP23, (ke ¥*P12Q) sin(wt), 27
E= a(p“ﬁ/zeﬂE/z, 272[(B + 2)7 + ZO“_;H]), ¢ Z 1( ) sinwt) (27)

Substitution Eq. (27) into Eq. (18) and using the approxima-

E/2 /2
H= Mw(plw/zeaaz, 275 [(B+2)+ ZoapH ]), tion Jo(xe"E/2) ~ Jo(X) — @ExJ1(X)/2 leads:
2,277 1

20)  E~ {3o(krt*2Q) cos@t) — £ Jo(krH*#2Q)@ cos(2ut), (28)

We also consider the cylindrical wave propagating in an infi-where
nite medium and the solution of linear problem &fr,t) = Lopowr \EL
£ Jo(kr) coset) and H(r, t) = —¢Ji(kr) sin@t). Rewriting it @ = L2HOYT NTL 52y, (kr1/20y), (29)
in variable p, 7), and using exact solution (20) we can obtain B+2 Zo
the solution of nonlinear problem: and higher-harmonic generation (for example;) 3re ig-
E- gJO(erﬁ/geaE/zzﬁ/erg)) nored. From Eq. (28) we can find that_SHG comes_out quite
naturally from exact solution and the inhomogeneity of the
> 005(2—2/(ﬁ+2)(5 + 2wt + 2‘2/(ﬁ+2)ay0er)(21) medium can influence on théheiency of the SHG. The am-
plitudes of the fundamental frequency and SHG then reads
VE1€2 (1 /2 148/2 2208/ (B+2)
H = —é’T(E) Jl(kr B e” Zﬁ * )

x sir(Z’z/(ﬂ*z)(ﬂ + 2t + 2*2/<ﬂ+2>aﬂoer)(22)

E, = ¢Jo(krHP12Q),
Ezw = {Jo(kr*#2Q)@, (30)

s0@ = E,,/E, describes theficiency of SHG. In what fol-
It should be note that the relation between variapleXand  lows, we will give comparison of using coupled-wave equa-
(r,t) are used ag = r - 22/ andr = t(eoe1uo) Y2 - 22/6+2.  tions and exact solution to describe SHG.
Equations (21) and (22) are veryidirent from Eqgs. (18) and
(19). However, if writing 22/¢+2(3 + 2) asA, then Egs. (21)

and (22) become 04 — exact solutions
=) ----coupled-wave eq],lations 5 7
E = {Jo(Akr#12e7E/2Q)) & 02
x cos(Awt + AapowrH/(B + 2)), (23) 0 : : : ; .
/2 (/2 04
H= _{\/s—l_(L) J1(Akr /2 E20)) -
Zo  \ro g 02
xsifAwt + AapowrH/ (5 +2)).  (24) . ‘
0 1 2 3 4 5
If define Aw = o, thenk’ = «’ \éoe1io = Ak. So we can 04 ‘ b LA
write Egs. (23) and (24) as follows: T ool | } :
'rH
E = £3o(KT#2"E/20) codu/t + 07T, (25) 0. i ; ; ; !
B+ r(um)

H - _g vg—lzeo(yE/Z(rLo)ﬁ/z

x 3y (K T YA/2erEI2 Q) sin(w’t +

FIG. 5: (Color online) Hiciencies of cylindrical SHG in an inho-
mogeneous and nonlinear medium based on coupled-wave@tpiat

auow'rH
) (26) and exact solutions.

B+2 /)

Equations (25) and (26) are exactly the same as Eqgs. (18) and Using&(E, r) = dD/dE = eperr” exp@E), we obtain:
(19) except the frequency of the wave. Both exact solutions
correctly describe cylindrical electromagnetic wave @mg-

6081["30'
tion in an inhomogenous and nonlinear medium. Equations P = Po +efear’ ~ 1)E+ ——5—

E2+..., (31)
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wherePg = #[HCU)] with C(r) is the constant of integra- Eqg. (30) which derived from the exact solutions. We can find
tion. Thendgg = x?/2 = /2, fO(r) = rf and fA(r) = 18, that descriptions of bottE,| and|E,,| by the coupled-wave
Figure 5 shows thefciencies of cylindrical SHG in an inho- equations are in good agreement with the exact solutioms, an
mogeneous and nonlinear medium based on the coupled-watfkese peaks are completely absent. However, Figure 5 shows
equations (we use Runge-Kutta method to solve Eq. (8) anthat when we plofE,,/E,|, these peaks occur. To further an-
plot |E,,/E,|) and the exact solutions (we use the expressiorlyze the origin of these peaks, we plot amplitudes of funda-
of ®, viz. Eq. (29) which describes thdfieiency of SHG, mental frequency and cylindrical SHG and tifBaencies of

and plot|®[). We usew = 6 x 108 MHz, y¥ = 1,7/ =1 and cylindrical SHG based on the coupled-wave equations in Fig.
defr = 0.1, as same as in Fig. 1 and Fig. 2. From Fig. 5we carY- We can find some features of these peaks. First, around
find that descriptions of SHG by the coupled-wave equationg zero point ofE,|, both|E,| and|Ez,| — 0. Second, these
are in good agreement with the exact solutions. There areaks appear at the fixed points. From both Fig. 5 and Fig. 7
some peaks on the curve of using the coupled-wave equatiotée can find that these peaks appear at every peak offihe e
method. In what follows, we will give an analysis on the ori- Ciencies. Third, these peaks appedi&at = 0. This fact can

gin of these peaks. Figure 6 shows amplitudes of fundamerie found in Fig. 7. We take Fig. 7(b) as an example. We point
tal frequency and cylindrical SHG in an inhomogeneous andut the five peaks, and we can find that them indeed appear at
nonlinear medium based on the coupled-wave equations anB.| = 0.

(2) (b)

p=0 B=0
1 T T T T T
~ — exact solutions ~ — exact solutions
=305 \ 7 coupled-wave equations %@l .05 o - coupled-wave equations |
= =)
00 1 2 3 4 5 O0 1 2 3 4 5
p=0.5 B=0.5
1
~ Y
=305 =z 0.05
= =)
00 1 2 3 4 5 00 1 2 3 4 5
p=1 -
1
Y 4 L
=305} —3 005
= ud
00 1 2 3 4 5 O0 1 2 3 4 5
r (M m) r(Hm)

FIG. 6: (Color online) Amplitudes of (a) fundamental frequg and (b) cylindrical SHG in an inhomogeneous and nontineedium based
on coupled-wave equations and exact solutions.

All these features of these peaks can be explained by Eqgs. IV. CONCLUSION
(30) which deduced from the exact solutions. First, Equmatio
(30) shows that whelk,| = 0 then|Ez,| = 0. However, the
efficiency|E,,/E,| at these points is finite, which described
by the expression a®, viz. Eq. (29). Second, one can find
that|@| reaches its maximums at the positi@),| = 0. This
result can be obtained by solving the equati®y/dr = 0
with @ is given in Eq. (29). We consider that according to the
definition of SHG diciency|E,,/E,|, a zero point ofE,, | will problem of SGH of cylindrical electromagnetic wave prop-
cause significant distortions because the numerical aloul agating in an inhomogeneous and nonlinear medium. One
provides extreme sensitivity through a small range arobed t \ethod is using traditional coupled-wave equations. Wehav
zero point. For example, around a zero poinEofl, both|E,|  get up coupled-wave equations of cylindrical electroméigne
and|Ez,| — 0. If |E,| is small enough thaE,| is recorded  \yayes interacting with nonlinear and inhomogeneous media.
as 0 whilejE,, | is recorded as a nonzero number in computerysing the coupled-wave equations we have analyzed features
then a peak arises. So we can see that these peaks appeag@ly|indrical SHG. The other method is using exact soluion
every zero points ofE,|, which also corresponding to every qf the Maxwell equations. We use a simple method to de-
peak of the giciencies. duce SHG from this exact solution and found that the results

are in good agreement with which are obtained by using the
coupled-wave equations.

In conclusion, we have used two methods to deal with the
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