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Abstract

We introduce a new mechanism for the propulsion and separation by chirality of small ferromag-

netic particles suspended in a liquid. Under the action of a uniform d.c. magnetic field H and an

a.c. electric field E isomers with opposite chirality move in opposite directions. Such a mechanism

could have a significant impact on a wide range of emerging technologies. The component of the

chiral velocity that is odd in H is found to be proportional to the intrinsic orbital and spin an-

gular momentum of the magnetized electrons. This effect arises because a ferromagnetic particle

responds to the applied torque as a small gyroscope.
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I. INTRODUCTION

Recent years have witnessed an explosion of interest in the fabrication of nanoscale objects

[1–4] and their propulsion in liquids mostly due to their application to emerging technologies

[5]. Numerous mechanisms have been proposed to achieve this propulsion ranging from

electrophoresis for platinum rods [6], to beating of flexible magnetic rods resembling flagella

[7]. Some mechanisms take advantage of the lack of center-symmetry in the shape of the

particles and propel them under the action of rotating external fields [1, 8, 9].

In this article we introduce a new mechanism for the propulsion and separation by shape

chirality of small ferromagnetic isomers suspended in a liquid. The separation by chirality is

induced by applying a uniform linearly polarized a.c. electric field E(t) = E sin(2πνt) and a

d.c. magnetic field H. We consider a generic situation in which the particles do not possess

any special symmetries. Because of the anisotropy of the workfunction [10] such particles

must have a nonzero electric dipole moment d, whose magnitude may be estimated as eR

[12]. We emphasize that d 6= 0 does not imply ferroelectricity, which would result in d ∝ R3,

where R is the particle size. Electric dipole moments of non-ferroelectric nanoparticles have

been recently measured [11]. We note that in a given particle the direction of the electric

dipole moment d is unique. In contrast, the magnetic moment M can acquire different

orientations with respect to the crystalline axes. Here we consider particles with an easy

axis magnetic anisotropy. In a suspension of such particles the two possible magnetization

values, M and −M, are realized with equal probabilities. We consider the general case where

d and M are non collinear, and so are E and H. In what follows, we will be interested in

the time-averaged chiral velocity Vch = V	 − V� in a racemic suspension of such particles.

Here V	 and V� are the velocities of the right and left-handed particles, respectively.

The direction of the Vch is defined by the external fields. Due to the oscillatory character

of the electric field it must remain unchanged under E → −E. Since H is an axial vector

and E a polar vector, the most general expression for Vch allowed by symmetry can be

written in the form

Vch = σ1h + σ2(e · h) e + σ3(e · h)[e× h]. (1)

Here h and e are unit vectors in the direction of the magnetic and electric fields respectively.

The phenomenologically introduced coefficients σi depend on the particle shape, frequency

ν, field strengths, temperature etc. and have opposite signs for isomers of opposite chirality.
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Thus, particles of opposite chirality will move in opposite directions.

It is important to note that a ferromagnetic particle possesses an intrinsic angular mo-

mentum associated with the magnetized electrons, Le = M/γ [13]. The gyromagnetic ratio

γ can be estimated as γ ∼ e/mc, where m and e are the electron mass and charge, and c is

the speed of light. The value of Le is relatively small, and it is usually neglected in studies of

the dynamics of small ferromagnetic particles. However the existence of Le 6= 0 means that

the particle responds to external torques as a small gyroscope. This leads to new physical

effects.

We show below that the coefficients σ1 and σ2 in Eq. (1), which describe chiral separation

in the E-H plane, are proportional to Le ≡ |Le|. On the other hand, the coefficient σ3 in the

third term, describing chiral separation perpendicular to the E-H plane, remains finite even

as Le → 0. The vanishing of σ1, σ2 at Le = 0 can be seen from the following consideration.

In the approximation where Le = 0 the magnetic moment affects the particle motion only

via the external torque

τ = M×H + d× E(t). (2)

Thus, in this approximation all terms in the velocity of a particle that are odd in H should

also be odd with respect to M. Consequently, these terms vanish upon averaging over

different realizations of M. On the other hand, since Le ∝M the chiral current can contain

terms which are odd in M and linear in Le, which do not vanish upon averaging over different

realizations of the particle magnetization M.

II. CHIRAL SEPARATION IN THE CREEPING-FLOW REGIME

The motion of small particles in a dilute suspension can be described using the formalism

of low Reynolds number hydrodynamics, in which the external forces, F , and torques, τ , are

linearly related to the instantaneous linear and angular velocities, v and ω, by a resistance

matrix [14]  F
τ

 = η

 K̂ Ĉ

Ĉ Ω̂

 v

ω

+

 0

ω × Le

 . (3)

Here η is the liquid viscosity. For a particle of characteristic size R the translation K̂ ∼ R,

coupling Ĉ ∼ R2 and rotation Ω̂ ∼ R3 matrices depend only on the particle’s geometry. The

coupling matrix Ĉ relates pseudo-vectors ω and τ to polar vectors F and v. Therefore it
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vanishes for non-chiral particles. Above, we have tacitly assumed that the resistance matrix

is expressed with respect to a unique fixed point on the particle called the reaction center

which requires that Ĉ is symmetric. The third term in Eq. (3) describes the gyroscopic

effect.

We assume that the particles are uncharged so that the electric field does not exert a

force on them, F = 0. In this case Eq. (3) gives a linear relation between the propulsion

velocity v and ω

v = −K̂−1Ĉω. (4)

This relation expresses the so-called propeller effect. Rotation of chiral particles caused by

the external torques is accompanied by translational motion. Since the coupling matrix

Ĉ has opposite sign for particles with opposite chirality [14] (while K̂ and Ω̂ remain the

same), it is clear that particles of opposite chirality subjected to the same torque will move

in opposite directions.

To describe the rotation of the particle we use body and laboratory axes defined by the

unit vectors x̂1, x̂2, x̂3, and x̂, ŷ, ẑ respectively whose relative orientation is specified by the

three Euler angles φ, θ and ψ [15]. Using this notation, the balance of angular momentum

(3) determines the evolution equation of the Euler angles
φ̇

θ̇

ψ̇

 = Q̂Ω̃−1
e


τx1

τx2

τx3

 . (5)

where Q̂ is the matrix connecting the particle angular velocity with the derivatives of the

Euler angles. Its representation in, for example, the body frame is

Q̂ =
1

sin θ


sinψ cosψ 0

sin θ cosψ − sin θ sinψ 0

− cos θ sinψ − cos θ cosψ sin θ

 (6)

(see [15]). The rotational resistance matrix Ω̃ = η(Ω̂− ĈK̂−1Ĉ) is augmented

(Ω̃e)ij = (Ω̃)ij + εijk(Le)k, (7)

to account for the presence of the intrinsic angular momentum Le.

In general the torques and forces in Eq. (3) consist of the deterministic torques of

Eq. (2) and random torques and forces arising from thermal fluctuations. In this case the
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system can be described by the Fokker-Planck equation for the particle distribution function

f = f(t,o) [16] (
∂

∂t
−RkT Ω̃−1

e R
)
f = RΩ̃−1

e fRU, (8)

and the following expression for the ensemble averaged chiral velocity

Vch = ν

∫ 1/ν

0

dt

∫
d3o b̂ (kTRf + fRU) . (9)

Here T is the temperature, k is the Boltzmann constant, U = −d · E − M · H, b̂ =

− 1
η
Ω̂−1Ĉ(K̂ − ĈΩ̂−1Ĉ)−1Ω̃Ω̃−1

e , o denotes the particle orientation (specified by the Euler

angles), and we have tacitly assumed that the magnetic and electric dipole moments due

to polarization of the particle are small compared to the permanent ones. The tensor and

vector quantities in the integrand must be evaluated in the laboratory frame and are time-

dependent because of the changing orientation of the particle. The operator R is a gradient

in the space of rotations [13, 17] (−iR is the quantum mechanical angular momentum).

Choosing, for example, body frame coordinates, R can be represented in the form
Rx1

Rx2

Rx3

 =


sinψ
sin θ

cosψ − cot θ sinψ

cosψ
sin θ

− sinψ − cot θ cosψ

0 0 1




∂
∂φ

∂
∂θ

∂
∂ψ

 .

These equations describe diffusion in the particle orientation space and the translational

motion associated with its rotation relative to the liquid (we assume that the spatial distri-

bution of particles is uniform).

The strength of thermal fluctuations is characterized by the dimensionless parameters

MH/kT , and dE/kT . We consider an electric field of frequency ν, E(t) = E sin(2πνt).

In this case another important parameter is the ratio of the frequency ν to the rotational

equilibration rate, νηR3/kT .

For MH/kT, dE/kT � 1 Eqs. (8-9) can be solved by perturbation theory. At low

frequencies, νηR3/kT � 1, we obtain

σ1 ∼ σ2 ∼ χRν
Leν

kT

(
dE

kT

)2
MH

kT
, (10)

where χ ∼ K−1C/R is a dimensionless measure of the particle chirality. Because of the

oscillatory character of the electric field, a nonvanishing time-averaged chiral velocity arises
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starting from the first order inMH and second order in dE. Note that σ3 arises only at fourth

order in the perturbation theory, leading to the estimate σ3 ∼ χνRνηR3(dEMH)2/(kT )5.

In the opposite regime, MH/kT, dE/kT, νηR3/kT � 1, thermal fluctuations may be

neglected and the motion of particles is described by the deterministic equations (2), (3)

and (4). In this case, under the influence of E and H the particle orientation changes

periodically with time and traces a cycle in the space of orientations. Relation (4) shows

that propulsion is possible only if this cycle is non-self-retracing. This is the analogue of

the “clam shell” theorem [18] for forced propulsion at low Reynolds numbers. It is worth

noting that although the cycle traced by the linearly polarized electric field is self retracing,

the cycle traced by body orientations is not.

At low frequencies where ν � dE
ηR3 and ν � (MH)2/(dEηR3), the frequency dependence

of the propulsion velocity is linear

σ1,2 ∼ χνR(Le/ηR
3), (11)

in contrast to the quadratic dependence in the strong fluctuation regime (10). The σ3

component of velocity has a superlinear dependence on the frequency, see Eq. (13) below.

Therefore at low frequencies the propulsion velocity is confined to the E-H plane.

The linear frequency dependence of the propulsion velocity is a feature which often arises

in the adiabatic regime, where the orientation of the particle corresponds to instantaneous

equilibrium. This occurs, for example, in the case where the electric field E is circularly

polarized [1, 9].

For a linearly polarized electric field and constant magnetic field, the origin of the linear

dependence on ν in Eq. (11) is more subtle. In this case the adiabatic approximation holds

during most of the oscillation period. During these intervals the particle orientation is

determined by the instantaneous values of E(t) and H, and the trajectory of the particle

is self-retracing. However, the adiabatic approximation is violated at time intervals where

E(t) is approximately zero. During these times the equilibrium orientation of the particle is

not unique: the particle can rotate freely about the axis pointing along M, which is aligned

with H. Most of the particle’s rotation and propulsion occurs near these instances. As

the electric field changes sign the particle rotates about M by an angle π. The direction

of rotation is determined by corrections to the adiabatic approximation, which break the

symmetry between clockwise and anticlockwise rotations, and lead to a non-self retracing
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cycle and non-vanishing propulsion velocity linear in ν. However, if Le = 0, upon reversal

M → −M, the direction of the rotation and propulsion velocity also reverses. Therefore

Vch averaged over realizations of M vanishes. Accounting for the finite value of Le results

in the difference of the resistance tensors Ω̃e in states with ±M, and incomplete cancellation

of contributions to Vch from particles with different values of M. This leads to Eq. (11).
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FIG. 1: (color online) Upper left: time dependence of the electric field and the Euler angles at low

frequencies. The angle ψ increases in a stepwise fashion. Upper right: breakdown of the staircase

at higher frequencies. Lower: log log plot of the averaged-over-M chiral velocity versus frequency.

The frequency exponent of σ1 and σ2 (overlapping straight lines) is 1 at low frequencies and that

of σ3 is (approximately) 5/4 as discussed above Eq. (13). For higher frequencies the motion enters

a non-adiabatic regime which changes the values of the aforementioned exponents, a fact reflected

by cusp-like features in the frequency dependence of the propulsion velocity. Eq. (12) shows an

example of the resistance tensor used in the simulation ([14] sec. 5.4).

Numerical solutions of the equations of motion, Eq. (3) confirm this picture. We choose

x̂3 ‖ M, so that the Euler angle ψ(t) corresponds to rotation of the particle about M.

Typical results of numerical solutions of Eq. (3) are presented in Figures 1 and 2. The
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FIG. 2: (color online) Particle trajectories in the laboratory frame for mutually perpendicular H

and E directed along the x and y axes respectively. In this case last two terms in Eq. (1) vanish and

chiral separation occurs only along the H direction. The motion of particles with opposite values

of M are shown in blue and green. The trajectories originate from the same point and move on

average in the positive (blue) and negative (green) x-direction. The trajectories in the background

are calculated with Le = 0. In this case the displacements for opposite M are opposite and the

chiral velocity averaged over realizations of M vanishes. The trajectories in the foreground are

computed with Le 6= 0. In this case the magnitudes of displacements for opposite values of M are

different and averaging over M leads to a finite chiral velocity. Eq. (12) shows an example of the

resistance tensor used in the simulation ([14] sec. 5.4).

resistance matrix used therein acquires, in principal axes, the representation ([14] sec. 5.4)

K̂ =
32

3
c diag[2 + cos2(ζ), 2 + sin2(ζ), 2],

Ĉ =
32

3
ch sin(ζ) cos(ζ) diag[1,−1, 0], (12)

Ω̂ =
32

3
diag[ch2(2 + sin2(ζ) + 2

c2

h2
),

ch2(2 + cos2(ζ) + 2
c2

h2
), 2c3].

The above resistance matrix corresponds to a two-blade propeler-like particle formed by

joining to the ends of a thin rod two circular discs of radius c with center to center spacing

2h. The smaller angle between the planes of the disks is here denoted by ζ.

The time evolution of the angle ψ exhibits a staircase structure, increasing (on average)

linearly with t (see the upper panels in Fig.1). At low frequencies there are two steps per

oscillation period and each step corresponds to a rotation of the particle about M by an
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angle π, as in the upper left of Fig.1. In this regime the σ1 and σ2 components of the

propulsion velocity are linear with respect to the frequency ν, whereas the σ3 component

scales as ν1+α with α ≈ 0.25, as shown in the lower panel in Fig.1. In the absence of

thermal noise σ3 can be expressed as σ3 ∼ χνRf (Ed/MH, νηR3/MH), where χνR is the

characteristic scale for the chiral velocity in the adiabatic regime, and f(x, y) is an unknown

function that describes deviations from adiabaticity and depends on the only dimensionless

parameters in the problem, dE/MH and νηR3/MH. Most of the propulsion occurs near

the instances tn = n/ν, where the electric field changes sign and depends linearly on time,

E(t) ≈ 2πνE(t − tn). Thus we conclude that deviations from adiabaticity depend only

on the product νE. In other words f(x, y) depends only on the products xy. Combining

this with the numerical observation of the power law frequency dependence we obtain the

following estimate for σ3 in the low frequency regime,

σ3 ∼ χνR

[
νηR3dE

(MH)2

]α
. (13)

As the frequency ν increases, the character of the motion undergoes a series of bifurcations:

the step-like character of evolution of ψ(t) is preserved but the steps become separated by

several oscillation periods (see the upper right panel in Fig.1). This leads to cusp-like features

in the frequency dependence of the propulsion velocity (see the lower panel in Fig. 1).

When Le = 0, particles with opposite values of M rotate and move in opposite directions

in the H-E plane, leading to a vanishing planar displacement upon averaging over the

directions of M. In contrast, when Le 6= 0 the in-plane displacement averaged over M is

finite. This is illustrated in Fig. 2 for the case when H and E are perpendicular to each

other.

We now estimate the magnitude of the above effect. Assuming that a single domain fer-

romagnetic particle is roughly spherical, we get an estimate for the dimensionless parameter

characterizing the magnitude of the gyroscope effect,

Le

Ω̃
∼ s~n

6η
, (14)

independent of the particle size. Here n is the volume density of magnetic atoms, ~ is

Planck’s constant, and s is the spin per atom (in units of ~), which in different materials

can lie in the range 1 − 10−2. Using the viscosity of water at normal conditions, η ∼

10−2g/cm·s, and n ∼ 1023cm−3 we get Le/Ω̃ ∼ (s/6) × 10−2. The estimate Eq. (11) holds
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provided the inequalities ν < dE/(ηR3), ν < (MH)2/(ηR3dE) and dE,MH > kT are

satisfied. In modern experiments [19] electric fields in excess of 106 V/m at frequencies 1

MHz have been realized in aqueous solutions. Estimating d ∼ eR [11, 12] we see that the

required inequalities are satisfied for a particle size R ∼ 100 nm. The magnetic restriction,

MH/kT � 1, is satisfied even in weak magnetic fields for a ferromagnetic particle of this

size. Assuming that the degree of chirality is χ ∼ 0.1, H ∼ 10 Gauss and d ∼ 104D and

using Eqs. (11) and (13) with the aforementioned electric fields and frequencies we get the

estimates

σ1,2 ∼ (0.1− 10)µm/s, σ3 ∼ 1 mm/s, (15)

which show that the effect is detectable.

Finally, we point out the existence of another class of effects that are generically related to

the one discussed above. These are realized by replacing the linearly polarized a.c. electric

field E with either a gradient of temperature ∇T , pressure ∇P , or an oscillating magnetic

field H̃ = H̃h̃, where H̃ = a sin(2πνt). To describe these effects on the phenomenological

level one should make the following changes in Eq. (1): e → ∇T , e → ∇P , and e → h̃

respectively. Calculating the corresponding coefficients which are analogues of the σ1,2,3 in

Eq. (1) is beyond the scope of the present article.

Acknowledgments: We are grateful to E. Ivchenko for useful discussions. This work was

supported by DOE grant DE-FG02-07ER46452 (EK and AVA) and NSF grant DMR-0704151

(BS).

[1] A. Ghosh and P. Fischer, Nano Letters, 9(6):2243–2245, 2009.

[2] D. Zerrouki et al., Nature, 455:07237, 2008.

[3] L. Zhang et al., Appl. Phys. Lett., 94(6), 2009.

[4] M. S. Sakar et al., Appl. Phys. Lett., 96(4):043705, 2010.

[5] J.-H. Lee et al., Nature Med., 13(1):95, 2007. R. Weissleder and M. J. Pittet, Nature,

452(7187):580, 2008. R. Weissleder Science, 312(5777):1168, 2006. C. Alexiou et al., Jl of

Magn.and Magn. Mat., 293(1):389, 2005.

[6] W.F. Paxton et al., Jl of the Am. Chem. Soc., 126(41):13424–13431, 2004.

[7] R. Dreyfus et al., Nature, 437(7060):862–865, 2005.

10



[8] U.K. Cheang et al., Appl.Phys.Lett. , 97(21):213704, 2010.

[9] N.B. Baranova and B.Y. Zeldovich, Chem. Phys. Lett., 57(3):435–437, 1978.

[10] L. D. Landau and E. M. Lifshitz. Electrodynamics of Continuous Media. Course of Theoretical

Physics, Vol. 2. Pergamon Press, Oxford, 1984

[11] M. Shim and P. Guyot-Sionnest, Jl. Chem. Phys., 111:6955, 1999.

[12] A.V. Shytov and M. Pustilnik, Phys. Rev. B, 76:041401, 2007.

[13] L. D. Landau and E. M. Lifshitz. Quantum mechanics: non-relativistic theory. Course of

Theoretical Physics, Vol. 3. Pergamon Press, Oxford, 1958

[14] J. Happel and H. Brenner. Low Reynolds number hydrodynamics with special applications to

particulate media. Prentice-Hall Inc., Englewood Cliffs, N.J., 1965.

[15] L. D. Landau and E. M. Lifshitz. Mechanics. Course of Theoretical Physics, Vol. 1. Pergamon

Press, Oxford, 1960.

[16] M. Makino and M. Doi, Jl. Phys. Soc. Japan. (10), 73:2739–2745, 2004.

[17] L. D. Favro, Phys. Rev. (2), 119:53–62, 1960.

[18] E. M. Purcell, Am. Jl of Phys., 45(1):3–11, 1977.

[19] M. Washizu and O. Kurosawa IEEE Trans. Industry Appl., 26(6):1165–1172, 1990.

11


