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We present a theoretical scheme to calculate the electrophoretic motion of charged colloidal par-
ticles immersed in complex (non-Newtonian) fluids possessing shear-rate dependent viscosities. We
demonstrate that this non-Newtonian rheology leads to an explicit shape- and size-dependence of the
electrophoretic velocity of a uniformly charged particle in the thin-Debye-layer regime, in contrast
to electrophoresis in Newtonian fluids. This dependence is caused by non-Newtonian stresses in the
bulk (electroneutral) fluid outside the Debye layer, whose magnitude is naturally characterized in
an electrophoretic Deborah number.

I. INTRODUCTION

Electrokinetic phenomena arise as electric fields or
hydrodynamic flows drive the ionic clouds that screen
charged surfaces in viscous electrolytes out of equilib-
rium [1, 2]. The field has a rich history dating back two
centuries [3]; today, electrokinetics plays an important
role in colloid science [4], environmental remediation [5],
biomechanics [6], and micro- and nano-fluidics [7, 8].

Surfaces immersed in electrolytes typically acquire an
electrical charge, which is screened by counter-ions in so-
lution, over a distance characterized by the Debye length
λD (e.g. λD ≈ 10nm for monovalent salts at milli-molar
concentration and room temperature). An external elec-
tric field acts on the net charge in this “Debye layer”
to drive an electro-osmotic flow, whose magnitude uEOF

is given by the Helmholtz-Smoluchowski (HS) formula
uEOF ∼ −εζE/η. Here, ε and η are the permittivity
and viscosity of the electrolyte, respectively, and ζ is the
electric (zeta) potential of the surface.

The HS formula assumes that the electrolyte is New-
tonian, i.e. its deviatoric mechanical stress τ is propor-
tional to the rate of strain e, τ = 2ηe, with a viscosity η
that is independent of flow type and shear rate. However,
in microfluidic devices and capillary electrophoresis, for
example, electric fields are routinely used to drive elec-
trokinetic transport in fluids whose rheology does not
follow Newton’s ideal: e.g. polymer solutions [9–13] or
biofluids [14–16]. Indeed, there has been significant re-
cent interest in electro-osmotic flows of such complex,
or non-Newtonian, fluids [17–30]. For example, a sim-
ple non-Newtonian constitutive relation is the power-law
fluid, which possesses a shear-rate dependent viscosity
ηPL = mγ̇n−1, where m is a constant, n is the power-law

index, and γ̇ =
√

1
2e : e is the shear rate. For n < 1

the fluid is shear-thinning (typical of polymer solutions),
n > 1 corresponds to shear thickening, and n = 1 is New-
tonian. The characteristic electro-osmotic flow velocity
of a power law fluid is uPL

EOF ∼ n(−εζE/m)1/n(λD)1−1/n,
in the Debye-Huckel limit ζ . 25mV [11, 21]. (At larger
zeta potentials, nonlinear screening results in a more
complicated expression [26].) This result suggests that
non-Newtonian rheology leads to electro-osmotic flows
that are nonlinear in the applied field and zeta poten-

tial, a marked departure from electro-osmosis in New-
tonian fluids. Pressure-driven streaming potentials and
currents in complex fluids have also been investigated
[31–35]. In these studies non-Newtonian effects result
from a non-linear dependence of the mechanical (Cauchy)
stress on the rate of strain. This is distinct from the
visco-electric effect [36], electro-rheological fluids [37], the
electro-viscous effect [38], and charge-induced thickening
[39]: in the first two cases non-Newtonian rheology orig-
inates from an explicit dependence of the Cauchy stress
on the electric field, in the third it arises from the de-
formation of Debye layers in applied flows, and in the
fourth it is due to a local increase in viscosity due to ion
crowding in the Debye layer at large ζ.

Electrophoresis is the motion of a freely suspended
charged colloid animated by an electric field. Smolu-
chowski calculated that a spherical particle with a uni-
form ζ potential and thin Debye layer translates at an
electrophoretic velocity UEP = εζE/η (without rotat-
ing). Morrison [40] proved that this result is independent
of particle size, shape, and even concentration, provided
all the particles have equal ζ and surface currents in the
Debye layer (characterized by the Dukhin number, Du

[1]) are negligible. This remarkable finding has been ex-
perimentally verified for concentrated suspensions of red
blood cells [41]. Morrison’s proof also has profound im-
plications for particulate separations: e.g. in capillary
electrophoresis of DNA, strands of different length (but
uniform ζ) move at equal velocities in bulk electrolyte
[42], thus requiring a gel matrix or molecular “drag-tags”
[43] to affect separation. Given the recent intense interest
in electro-osmosis of complex fluids, it is natural to ask
how electrophoresis is affected by non-Newtonian rheol-
ogy. In particular, does non-Newtonian rheology endow
the electrophoretic velocity with a size and shape depen-
dence, thereby “breaking” Morrison’s result?

II. MODEL DEVELOPMENT

Here, we present a theoretical approach for calculat-
ing electrophoretic motion in non-Newtonian fluids. It
appears that the only previous studies in this area are
from Hsu and co-workers [45–55] who computed the elec-
trophoresis of spherical and rod-shaped particles in shear-
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FIG. 1. (Color online) Electrophoresis of a uniformly charged
particle under an electric field E∞ in a non-Newtonian fluid
with stress σ. (a) Particle motion at rectilinear velocity V

and angular velocity Ω, arising from electro-osmotic slip v
s
|| in

the thin Debye layer (b). (c) Power-law and Carreau models
for the non-Newtonian viscosity η(γ̇) (1).

thinning Carreau fluids using numerical methods. In con-
tradistinction, our approach applies to particles of any
shape in fluids whose viscosity can be shear-thickening or
-thinning (or even both). Specifically, we consider weakly
generalized Newtonian fluids with a shear-rate dependent
viscosity [57]

η(γ̇) = η0 + δη1(γ̇), (1)

where η0 is a “base” Newtonian viscosity, η1 is a non-
Newtonian (shear-rate dependent) “correction,” and δ(<
1) is a generic small parameter.
We consider a uniformly-charged colloidal particle in

a binary symmetric electrolyte (figure 1). The particle
can be of any shape, but we invoke the thin-Debye-layer
limit, whereby λD is much smaller than the local radii of
curvature of the particle. Furthermore, we neglect sur-
face currents in the Debye layer (Du ≪ 1). Given the
disparity between λD and the particle size, it is judicious
to analyze the transport processes in the Debye layer and
electroneutral bulk separately. The particle appears lo-
cally flat on the scale of λD, and the momentum equation
at zero Reynolds number reduces to a balance of tangen-
tial electrical and viscous stresses [4]

∂

∂y

(

η(γ̇)
∂v||

∂y

)

= ε
∂2φ

∂y2
E||, (2)

where y is a Cartesian coordinate normal to the local
surface, v|| and E|| are the tangential velocity and elec-
tric fields, respectively, and φ is the electric potential.
Inserting (1) into (2) the “slip” velocity at the boundary
between the Debye layer and bulk (y → ∞) is to O(δ)

v
s
|| = −εζ

η0
E|| + δ

ε

η0
E||

∫ ∞

0

η1(γ̇0)

η0

dφ

dy
dy, (3)

where the first term is the familiar Helmoltz-
Smoluchowski slip, and the second is due to non-
Newtonian rheology, with the viscosity η1 evaluated using
the Newtonian O(δ0) shear rate γ̇0.
The slip velocity (3) provides the required match-

ing condition on the fluid flow outside the Debye layer.
The bulk fluid is electroneutral and conservation of mo-
mentum requires ∇ · σ = 0, where the hydrodynamic
stress σ = −pI + 2η(γ̇)e, with p the pressure, I the
isotropic tensor, e = 1

2 (∇v + (∇v)T ) the rate of strain,
and v the velocity field. Additionally, the fluid is in-
compressible ∇ · v = 0. We invoke the weakly non-
Newtonian limit (1) by expanding the velocity and pres-
sure as {v, p} = {v0, p0} + δ{v1, p1} + O(δ2). At O(1)
the familiar problem of electrophoresis in a Newtonian
fluid is recovered, namely ∇2

v0 = ∇p0 and ∇ · v0 = 0,
subject to v0 → 0 as |r| → ∞ and the slip condition

v0 = V 0 + Ω0 ∧ r + v
s,0
|| on the particle surface. Here,

v
s,0
|| = −εζE||/η0 is the Newtonian contribution to the

slip velocity in (3), and V 0 andΩ0 are the rectilinear and
angular velocities of the particle, respectively. Finally, we
require that the hydrodynamic force and torque on the
surface enclosing the particle and Debye layer vanishes.
The O(1) problem admits the well-known irrotational
flow solution v0 = −εζE/η0, and V 0 = εζE∞/η0 and
Ω0 = 0, which is valid for any particle shape [40, 61, 62].
Non-Newtonian effects emerge at O(δ), for which

η0∇2
v1 −∇p1 = 2∇ · [η1(γ̇0)e0] , ∇ · v1 = 0, (4)

subject to v1 → 0 as |r| → ∞ and v1 = V 1+Ω1∧r+

v
s,1
|| on the particle surface, where the O(δ) slip velocity

v
s,1
|| is the second term in (3). Here, V 1 and Ω1 are the

non-Newtonian contributions to the rectilinear and an-
gular velocities of the particle, respectively. At O(δ) the
flow satisfies the inhomogeneous Stokes equations with a
“non-Newtonian body force” 2∇ · [η1(γ̇0)e0] arising from
gradients in the Newtonian velocity field. In principle,
one can obtain the O(δ) particle motion, V 1 and Ω1,
by solving (4) subject to zero force and torque on the
particle. However, for even the simplest non-Newtonian
model of η(γ̇) the forcing term in (4) necessitates numer-
ical evaluation of the velocity v1 and pressure p1 fields.
Remarkably, one does not need these fields to compute
the O(δ) particle motion. Instead, we employ the Lorentz
reciprocal theorem, which has been used to calculate par-
ticle dynamics in weakly non-Newtonian fluids under ex-
ternal forces [56–58] and imposed fluid flows [59, 60].
Let vaux and σaux be the velocity field and stress ten-

sor, respectively, belonging to an “auxiliary” Stokes flow
around the particle. Evidently,

∫

V

vaux · (∇ · σ1) dV =

∫

V

v1 · (∇ · σaux) dV (5)

where the integral is over the fluid volume outside the
Debye layer and σ1 = −p1I + 2η0e1 + 2η1(γ̇0)e0 is the
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O(δ) stress. Manipulation of (5) yields

V 1 · F aux +Ω1 ·Laux =

∫

S

v
s,1
|| · (σaux · n) dS

+ 2

∫

V

η1(γ̇0)e0 : ∇vaux dV,(6)

where F aux and Laux are the force and torque on the
particle in the auxiliary problem, which we are free to
choose, thereby providing the requisite number of equa-
tions to determine V 1 and Ω1. In (6) the first integral is
over the surface S enclosing the particle and Debye layer
and represents the contribution due to non-Newtonian
electro-osmosis in the Debye layer. The second integral
arises from non-Newtonian stresses in the bulk. Finally,
note that (6) is valid for a particle of arbitrary shape.

III. RESULTS

In this study, (6) is applied to a spherical particle

of radius R, for which v0 = εζ
2η0

(R/r)3(3r̂r̂ − I) · E∞,

where r = |r|, r̂ = r/r, and r is the position vector
[61]. We select the auxiliary flow to be that produced by
a torque-free sphere translating under an imposed force
F aux. Hence, (6) reduces to

V 1 =
εζ

η0

(

I

∫ ∞

0

η1(γ̇0)

η0
e−ŷ dŷ +

3

4π

∫

V

η1(γ̇0)

η0
F dV̂

)

·E∞.

(7)
In deriving (7) we have used φ = ζe−ŷ in the Debye-

Huckel limit (ŷ = y/λD), dV̂ = dV/R3, and F = (3r̂−6−
2r̂−8)r̂r̂ − r̂−8

I, where r̂ = r/R. The first and second
dimensionless integrals in (7) are the contributions from
the Debye layer and bulk, respectively.
We first consider a power-law viscosity correction

η1(γ̇0) = mγ̇n−1
0 . By symmetry, V 1 is colinear with the

applied field, hence let V 1 = (V1,D + V1,B)V0Ê∞, where

V0 = εζE∞/η0, E∞ = E∞Ê∞, and V1,D and V1,B are
the dimensionless contributions to the O(δ) velocity from
the Debye layer and bulk, respectively. Adopting a spher-
ical coordinate system attached to the particle centroid,
and taking E∞ to be along the symmetry axis, from (7)
it is found

V1,D = − 1

n

m

η0

(

εζE∞

η0λD

)n−1

, (8)

V1,B =
3m

2η0

(

3εζE∞

2η0R

)n−1 ∫ π

0

∫ ∞

1

h(r̂, θ;n) dr̂dθ, (9)

where θ is the polar angle and h(r̂, θ;n) =

(
√
1 + 2 cos2 θ/r̂4)n−1[(3r̂−6−2r̂−8) cos2 θ−r̂−8] sin θ. As

expected, V1,D and V1,B vanish for a Newtonian fluid
n = 1. For a non-Newtonian fluid both contributions are
non-linear in the zeta potential and applied field, rem-
iniscent of electro-osmosis in power-law fluids [11, 21].
Moreover, V1,B ∼ R1−n, demonstrating that the elec-
trophoretic velocity has an explicit particle-size depen-
dence, originating from the bulk electrolyte. However,
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FIG. 2. Non-Newtonian Debye layer V1,D (a) and bulk V1,B

(b) velocity contributions versus Carreau index n.

h ∼ r̂−4n at large distances, r̂ ≫ 1; hence, the integral
in (9) diverges at n = 1

4 . This is unsurprising in hind-
sight, since the power-law model for shear-thinning flu-
ids (n < 1) has the unphysical feature of an unbounded
viscosity as γ̇ → 0 (figure 1(c)). Hence, η1 diverges at
low shear rates (large distances) for n < 1, clearly in-
validating the premise that non-Newtonian effects are a
correction to the base viscosity η0 (1). (Note, a similar
calculation for sedimentation in a power-law fluid would
yield a divergence at n = 1

2 , cf. [57].)
Therefore, we now consider a bounded viscosity cor-

rection of the Carreau type

η1(γ̇) = η0

[

(1 + (τ γ̇)2)
n−1

2 − 1
]

, (10)

where τ is a fluid timescale. For n < 1 the viscosity
thins from a zero-shear Newtonian plateau to another
plateau at large shear rates, whereas for n > 1 the vis-
cosity grows monotonically with shear rate (figure 1(c)).
Substituting (10) into (7) yields

V1,D = 1−
∫ ∞

0

(1 +De2De−2ŷ)
n−1

2 e−ŷ dŷ, (11)

V1,B =
3

2

∫ π

0

∫ ∞

1

[

1 +
(

3
2DeB

)2 1 + 2 cos2 θ

r̂8

]

n−1

2

((3r̂−6 − 2r̂−8) cos2 θ − r̂−8) sin θ dr̂dθ, (12)

where DeD = τV0/λD and DeB = τV0/R are Deborah
numbers for the fluid in the Debye layer and bulk re-
spectively. The Deborah number is the ratio of the fluid
timescale τ to the flow timescale, λD/V0 for the Debye
layer and R/V0 for the bulk, and characterizes the im-
portance of non-Newtonian rheology. The particle size
(R) dependence enters through the bulk Deborah num-
ber DeB .
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Figure 2 plots the bulk and Debye layer contributions
to the velocity as a function of n at various Deborah
numbers. Importantly, the bulk contribution no longer
diverges for n < 1, as the Carreau model has a finite
zero-shear rate viscosity. Both contributions are pos-
itive(negative) for n < 1(> 1), corresponding to an
increase(decrease) in the particle velocity in a shear-
thinning(thickening) fluid, which is intuitively sensible.

Figure 3 plots the two contributions as a function of ap-
propriate Deborah number for various n. At small Deb-
orah numbers the fluid approaches its Newtonian zero
shear-rate viscosity η0 and hence V1,D and V1,B vanish as

V1,D ∼ 1−n
6 De2D and V1,B ∼ 9(1−n)

65 De2B to leading order
as DeD → 0 and DeB → 0, respectively. (The two contri-
butions also vanish in the trivial Newtonian case n = 1).
For n > 1 the monotonic shear-thickening of the Carreau
model results in both contributions being negative and
decreasing with increasing Deborah numbers: i.e. the
particle velocity is smaller than in a Newtonian fluid. In
contrast, for n < 1 the Debye layer contribution V1,D is
positive and increasing, corresponding to an increase in
particle velocity, until a common plateau is reached at
large DeD. This plateau occurs since at very large shear
rates η → η0(1− δ); the reduced viscosity drives a faster
electro-osmotic flow in the Debye layer (by a factor of
1+ δ+O(δ2)), leading to a concomitant increase in V1,D.
The bulk contribution V1,B for n < 1 goes through a
maximum before decaying to zero as DeD → ∞. This is
expected as V1,D is driven by non-Newtonian stresses in
the bulk, which vanish as DeD → ∞, where the Carreau
fluid attains a high-shear rate Newtonian plateau.

Figure 4(a) shows that for n < 1 the maximum in V1,B

(V max
1,B , say) is of O(0.1) and also plots the bulk Deborah

number, Demax
B , at which the maximum occurs. Hence

n
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FIG. 4. (a) Maximum of the bulk velocity contribution, V max

1,B

(circles), versus n for shear thinning fluids, n < 1. Also shown
is the bulk Deborah number, Demax

B (squares), at which the
maximum occurs. (b) Ratio of bulk to Debye layer velocity
contributions V1,B/V1,D versus n, at DeD = 103 and DeB =
1, 10, and 100.

δV1,B ∼ O(10−1δ) for Demax
B . Note that τ can be on

the order of seconds; hence taking τ = 1s, λD = 10nm,
R = 1µm, and V0 = 10µm/s yields DeD ∼ O(103) and
DeB ∼ O(10) (which is close to Demax

B ). This suggests
that appreciable Deborah numbers can be attained in
experiments. Furthermore, figure 4(b) plots the ratio
V1,B/V1,D versus n, at DeD = 103 and DeB = 1, 10,
and 100. The ratio is O(10−1), from which it is con-
cluded that V1,B and V1,D are comparable at these real-
istic conditions. Note, the difference between DeD and
DeB (namely, DeB/DeD = λD/R) is due to the dispar-
ity in λD and R; physically, the shear rate in the Debye
layer is O(R/λD) larger than the bulk.

IV. CONCLUDING REMARKS

We have developed a general framework to compute
the electrophoretic velocity of a colloidal particle (of any
shape) suspended in a non-Newtonian fluid whose vis-
cosity is a function of shear rate. We find that non-
Newtonian rheology endows the velocity with an explicit
dependence on particle size, in contrast to electrophore-
sis in a Newtonian fluid. We anticipate our work will
be valuable to capillary electrophoresis and microfluidics,
wherein electric fields are routinely used to transport par-
ticles in non-Newtonian fluids. Admittedly, we do not ac-
count for physicochemical changes to the Debye layer due
to the micro-structural entities (e.g. polymer molecules)
comprising the complex fluid: e.g. alterations in the zeta
potential due to polymer adsorption, depletion of poly-
mers in the Debye layer, or transient polymer-particle
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collisions, each of which may play a role in the Debye-
scale electrokinetics. However, of equal importance, the
predicted size-dependence of the electrophoretic veloc-
ity arises from non-Newtonian stresses in the bulk (elec-
troneutral) electrolyte; hence, we expect this central con-
clusion to be robust to the aforementioned effects.
The perturbation scheme adopted here dictates that

the non-Newtonian contributions to the instantaneous

electrophoretic motion are modest in magnitude. How-
ever, one is often interested in particle motion relative
to another particle or boundary, over a period of time.
In this case, the instantaneous deviation from Newtonian
behavior calculated herein may lead to an appreciable cu-
mulative effect. To illustrate this, consider two spherical
particles with radii 0.1µm and 1µm, respectively, each
with a zeta potential of ζ = 25mV and Debye length
λD = 10nm, undergoing electrophoresis in a Carreau
fluid with η0 = 0.113Pa.s (approximately one hundred
times that of water), n = 0.468 and τ = 11.9s [63]. For
these parameters, V0 = 1.5µm/s in an applied field of
strength 100V/cm, leading to DeD = 1785, DeB = 178.5
(0.1µm particle), and DeB = 17.85 (1µm particle). This
gives the dimensionless non-Newtonian velocity correc-
tions: V1,D = 0.9768, V1,B = 0.0381 (0.1µm particle),
and V1,B = 0.0745 (1µm particle). Thus, our theory pre-

dicts for δ = 0.05 that the particles will separate by one
micron, i.e. ten (smaller) particle lengths, in approxi-
mately six minutes.

The present study suggests several future directions.
For instance, our approach can be extended to non-
spherical or multiple particles. In the latter case, two
particles with equal ζ move at the same velocity in a
Newtonian fluid; we expect relative electrophoretic mo-
tion in a non-Newtonian fluid — do the particles attract
or repel? How does this depend on the fluid rheology
(thinning versus thickening)? Moreover, a shear rate de-
pendent viscosity is but one non-Newtonian trait; com-
plex fluids also often posses normal stress differences,
which our approach can readily be adapted to account
for. We will, however, leave these interesting issues for
future studies.
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