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Abstract

We investigate flow structures in rotating Rayleigh-Bénard convection experiments in water using

thermal measurements. We focus on correlations between time series measurements of temperature

in the top and bottom boundaries. Distinct anti-correlations are observed for rapidly rotating

convection, which are argued to attest to heat transport by convective Taylor columns. In support

of this argument, these quasi-geostrophic flow structures are directly observed in flow visualizations,

and their thermal signature is qualitatively reproduced by a simple model of heat transport by

columnar flow. Weakly– and non–rotating convection produces positively correlated temperature

changes across the layer, indicative of heat transport by large scale circulation. We separate these

regimes using a transition parameter that depends on the Rayleigh and Ekman numbers, RaE3/2.
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I. INTRODUCTION

Fluid motions in planetary systems are subject to Coriolis forces resulting from the

planet’s rotation. A strong Coriolis force imposes an organizational influence on other-

wise turbulent flow that is thought to be responsible for, inter alia, the alignment of Earth’s

rotation axis and magnetic dipole. Here, we examine results from a simple experimental

analog of such planetary fluid systems: rotating Rayleigh-Bénard convection.

Rayleigh-Bénard convection (RBC) is a horizontal layer of fluid through which heat is

fluxed from bottom to top. Fluid near the bottom boundary is warmed, expands, and rises

due to gravitational instability. Rotating RBC has an identical setup, but fluid and bound-

aries spin about a vertical axis. Many planetary convection systems are considered rapidly

rotating, meaning that the period of rotation is among the fastest dynamical timescales

present. Rapidly rotating flows are typically described by the so–called geostrophic force

balance, a balance between the Coriolis force and pressure gradient. The curl of this force

balance produces the Taylor–Proudman theorem [1]:

Ωẑ ·∇u = 0; (1)

where Ωẑ and u are the rotation and flow vectors, respectively. Although convective flow

cannot strictly abide by this constraint beyond the lowest order, a strong Coriolis force nev-

ertheless tends to align flow with the axis of rotation in what is considered quasi-geostrophic

convection

Flow in quasi-geostrophic RBC is manifest as a vortex grid of so-called convective Taylor

columns (CTCs) [e.g., 2]. A CTC is a helical vortex with either upward or downward flow

[3]. The sign of vorticity (ω ≡∇×u) in an upward flowing CTC is positive in the lower half

of the layer (z < h/2), and negative in the upper half (z > h/2). Conversely, a downward

flowing CTC will have negative vorticity in the lower half of the layer, and positive vorticity

in the upper half. For both upward and downward flowing CTCs, then, helicity (u · ω) is

positive in the lower half and negative in the upper half. A schematic depiction of CTCs is

shown in figure 1a.

For rapidly rotating convection, roughly equal numbers of upward and downward flowing

CTCs are expected [4]. Vortex-vortex interactions between the CTCs cause them to be

advected laterally about the container [e.g., 5]. This horizontal ‘dance’ of the axial CTCs
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FIG. 1: Flow regimes in rotating RBC. a) An illustration of two convective Taylor columns (CTCs)

in quasi-geostrophic convection. b) An illustration of a large scale circulation typical of turbulent

weakly or non-rotating RBC. c & d) Visualizations of flow regimes in rotating RBC experiments.

A vertical sheet of laser light is projected through the center of a 20 cm tall, uninsulated convection

tank. Both panels show convection in water (plus trace amounts of Kalliroscope particles) driven

by 100 W of heating power and rotated at 4.3 Hz (panel c) and 0.43 Hz (panel d). Approximate

non-dimensional parameters are then: Pr ≈ 7; Rf ≈ 1.1 × 1011; E ≈ 3 × 10−6 (panel c) and

E ≈ 3× 10−5 (panel d).

has been observed in movies of quasi-geostrophic RBC in experiments [6] and numerical

simulations [4, 7].

If a convection system rotates slowly enough or if the vigor of convection is strong enough,

inertial forces can overwhelm the Coriolis force, resulting in weakly rotating convection,

which behaves similarly to non-rotating convection. Experimental work [e.g., 8, 9] has seen

the development of large scale circulation in weakly rotating convection like those typical
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of non-rotating RBC experiments [e.g., 10, 11]. This large scale circulation results from

the interaction of non-linear entrainment processes and the experimental convection tank

geometry [12]. Figure 1b shows a schematic depiction of the flywheel pattern of a large scale

circulation.

The different regimes of rotating convection are often examined using heat transfer mea-

surements in experiments and simulations to distinguish competing influences of buoyancy

and rotation [e.g., 7, 13–20]. Some work, however, is able to connect flow and heat transfer

regimes. Refs. [21, 22], for example, measure heat transfer efficiency and helicity in rotat-

ing RBC simulations, showing that heat transfer and flow structure regimes are linked by

a relationship that depends only on the Prandtl number. Experimentally, it is difficult to

simultaneously characterize flow patterns and heat transfer, as visualization techniques can

compromise thermal control [e.g., 23]. Here, we measure temporal correlations of thermal

signals to infer large scale patterns of convection in rotating RBC experiments. For quasi-

geostrophic convection, in particular, we may expect that the random horizontal dance of

the CTCs should produce significant thermal anomalies nearly simultaneously on stationary,

vertically aligned temperature probes.

II. METHOD

A. Experiments

We conduct rotating convection experiments in water (Pr ≈ 7) and sucrose solution

(Pr ≈ 10) using the rotating magnetoconvection device at UCLA. Figure 2 shows a

schematic depiction of the experimental setup. The convection tank is a 20 cm diame-

ter cylinder whose top and bottom endwalls are 4 cm thick aluminum and 1.3 cm thick

copper blocks, respectively. The fluid is contained by polycarbonate sidewalls with heights

varying between 3.2 cm and 19.7 cm. An electrical heating element is mechanically fixed to

the bottom of the lower endwall. Between 5 and 600 Watts of heat is passed through the

endwalls and fluid, and is removed above the upper endwall by thermostated water flowing

through an aluminum heat exchanger, which is isothermal to within 0.05 K. The convection

tank setup is insulated by closed cell foam, 20 cm thick, to minimize heat losses through the

sidewalls. The experimental apparatus (convection tank setup and diagnostic systems) is
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FIG. 2: A scaled illustration of the experimental apparatus. a) A sideview showing the vertical

structure of the tank setup with a 5 cm sidewall. T top and T bottom show the vertical locations of the

top and bottom thermistors. b) A plan view of the convection tank setup showing the horizontal

orientation of the top and bottom thermistor pairs, T1,...,6.

rotated up to fifty revolutions per minute (5.2 Hz). More detailed descriptions of the device

and experimental method can be found in refs. [24, 25].

We report results from a suite of 64 rotating and 12 non-rotating convection experiments.

These experiments represent a subset of those presented in [7, 25]. Time series from each

experiment have at least 25,000 data points, acquired at 10 Hz for at least 45 minutes. The

control parameters fixed experimentally are tank height, h, rotation rate, Ω, input heat power

Q, as well as fluid properties. The non-dimensional parameters fixed for each convection

experiment are the Prandtl number, Pr, Ekman number, E, flux Rayleigh number, Rf ,

and the tank diameter-to-height aspect ratio, Γ. Table I defines these and other relevant

experimental parameters. In this study, we focus on changes in dynamics as Rf and E vary

over several orders of magnitude.

Figure 1 (c & d) shows frames from video taken in a complementary set of experiments for

qualitative visualization. Here, the insulation is removed from the sidewall of the convection

tank, and Kalliroscope particles in water are illuminated by a vertical sheet of laser light

projected through the center of the tank [e.g., 26]. Such visualizations allow us to check

more directly the existence of CTCs that are indirectly observed using temperature time
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Parameter Definition Experiments

Dimensional

h tank height 0.032 m ≤ h ≤ 0.197 m

Q heat power 5 W ≤ Q ≤ 600 W

Ω rotation rate 0 Hz ≤ Ω ≤ 5.2 Hz

ν viscous diffusivity 7.2× 10−7 m2/s ≤ ν ≤ 1.5× 10−6 m2/s

κ thermal diffusivity 1.4× 10−5 m2/s

αT thermal expansivity 0.002 K−1 ≤ αT ≤ 0.0043 K−1

k thermal conductivity 0.6 W/mK

A cross-sectional area 0.0314 m2

∆T temperature difference 2.2 K ≤ ∆T ≤ 45 K

Dimensionless

Aspect Ratio Γ ≡ (4A/(πh2))1/2 1 ≤ Γ ≤ 6.2

Prandtl number Pr ≡ ν/κ 4.8 . Pr . 11

Ekman number E ≡ ν/(2Ωh2) 2.5× 10−6 . E .∞

flux Rayleigh number Rf ≡ (αT gQh
4)/(Aνκk) 8.8× 106 . Rf . 5.3× 1011

Rayleigh number Ra ≡ (αT g∆Th3)/(νκ) 106 . Ra . 5.5× 109

Nusselt number Nu ≡ (Qh)/(Ak∆T ) 6.2 . Nu . 96.2

TABLE I: Relevant experimental parameters.

series measurements in thermally insulated experiments.

The prime diagnostic of interest here is temperature time series measurements. We use

these measurements to distinguish the two flow regimes depicted in figure 1. To accomplish

this goal, we place six thermistors within the solid bottom endwall, 2 mm below the fluid, and

another six thermistors within the solid top endwall, 2 mm above the fluid (see figure 2a).

The probes are arranged to form six vertically aligned pairs, equally spaced in azimuth (see
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FIG. 3: An example of temperature time series data from a rotating RBC experiment (Rf =

1.1× 1011, E = 3× 10−6). The top panel shows measurements from a single thermistor in the top

endwall (T top
1 (t)), and the bottom panel shows measurements from a thermistor below the fluid

(T bottom
1 (t)).

figure 2b). Figure 3 shows an example of temperature time series measurements from a

thermistor within each of the top and bottom endwalls. These temperature measurements

are denoted T top
i (t) and T bottom

i (t), where i = 1, ..., 6, corresponding to azimuthal location

(see figure 2b). The temperature cross-correlation is calculated using temperature time

series measurements of top and bottom thermistors at the same location in azimuth:

Ctop−bottom
i (m) =

N−|m|−1∑
t/dt=0

(
T top
i (t)−

〈
T top
i (t)

〉
t

) (
T bottom
i (t+mdt)−

〈
T bottom
i (t)

〉
t

)
; (2)

where t is the measurement time and dt is the inverse of the data acquisition frequency such

that t/dt = 0, 1, ..., N , where N is the total number of data points acquired in time, and

integers m = 1−2N, ..., 2N −1 represent the correlation lag. Ci(m) is then normalized such

that the auto-correlation at zero lag, Ctop−top
i (m = 0), is unity.

The mean, zero-lag correlation of the six pairs can be calculated such that a single
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correlation coefficient is produced for each convection experiment:

C =
6∑
i=1

Ctop−bottom
i (m = 0). (3)

This quantity allows us to gauge the nature of flow structures as a function of our changing

parameters for all 76 experiments conducted.

III. RESULTS

Figure 1 shows visualizations of quasi-geostrophic (panel c) and weakly rotating (panel

d) convection in uninsulated experiments. We quantify the relative influence of rotation

and buoyancy using the transition parameter of ref. [25]. The transition between quasi-

geostrophic and weakly rotating convection regimes is argued to be controlled by the relative

thicknesses of the thermal and Ekman boundary layers [7], and the ratio of their thicknesses

can be characterized by a transition parameter RaE3/2. We show in [25] that the thermal

boundary layer becomes thinner than the Ekman boundary layers when RaE3/2 & 20,

which coincides with a transition from quasi-geostrophic to weakly rotating heat transfer

behavior. The quasi-geostrophic experiment shown in figure 1c has RaE3/2 ≈ 8, and the

weakly rotating experiment shown in panel d has RaE3/2 ≈ 280. The former experiment

reveals the existence of container-high CTCs in the more rapidly rotating case (c), but, in

order to expose the fluid for visualization, are not well controlled thermally.

Figure 4 a and b show measurements of Ctop−bottom
i from quasi-geostrophic convection

experiments for each of the six thermistor pairs (i = 1, ..., 6). Panel a has Rf = 2× 108, and

E = 4.4×10−5. Panel b has Rf = 1.1×1011, and E = 3×10−6 (identical to the experiments

shown in figure 1c). These convection experiments are considered quasi-geostrophic, as they

have RaE3/2 ≈ 5 and RaE3/2 ≈ 8, respectively, and transport heat less efficiently than

non-rotating, but otherwise identical experiments (by 30% and 10%, respectively). The

instantaneous (m = 0) thermal variations are vertically anti-correlated.

The anti -correlation of these quasi-geostrophic temperature signals is perhaps counterin-

tuitive. Upward flowing CTCs transport warm material from bottom boundary to top, and

downward flowing columns bring cold material from top to bottom. The CTCs are then

either anomalously hot or cold, and measurements of temperature on vertical pairs of ther-

mistors within the fluid should exhibit positive correlations. Our measurements, however,
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FIG. 4: Temperature correlations from vertical thermistor pairs, Ctop−bottom
i , versus correlation

lag, m× dt, as defined in (3). Case a has h = 4.7 cm and Q = 50 W, and therefore Rf = 2× 108.

Cases b-d have h = 0.197 m and Q = 100 W, and therefore Rf = 1.1 × 1011. a) Rotating

convection with Ω = 5.3 Hz, E = 4.4 × 10−5, RaE3/2 ≈ 5. b) Rotating convection with Ω = 4.3

Hz, E = 3 × 10−6, RaE3/2 ≈ 8. c) Rotating convection with Ω = 0.43 Hz, E = 3 × 10−5,

RaE3/2 ≈ 280. d) Non-rotating convection.

are taken in the tank’s endwall, not in the fluid, and this difference is important in producing

the anticorrelated thermal signals. Convective heat transfer can be parameterized locally

as uT ′, where T ′ is the local temperature anomaly [e.g., 27]. Both warm, upward flowing,

and cold, downward flowing CTCs transport heat upward. Vertical conduits of heat such as

CTCs will simultaneously cool the bottom boundary and warm the top boundary.

Negative correlations in temperature variations measured in the endwalls therefore corre-
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spond to positive correlations in local vertical heat transport. As a control case, temperature

correlations are calculated for thermistor pairs with both vertical and lateral separation.

Discussed in detail in the appendix, these horizontally separated temperature correlations

produce significantly less coherent behavior than the purely vertically separated pairs for

quasi-geostrophic convection, in support of the interpretation of heat transfer by roughly

vertical CTCs. This interpretation is further supported by a simple heat transfer model

presented in section IV.

Correlation data for weakly rotating and non-rotating convection are shown in figure 4

c and d. Both cases have Rf = 1.1 × 1011. The case shown in panel c has E = 3 × 10−5,

and the data in panel d come from a non-rotating convection experiment. Temperature

correlations in the absence of dominant rotation (panels c and d) produce different thermal

signatures from quasi-geostrophic convection (panel a and b). We observe broader, slightly

positive correlation patterns in weakly and non-rotating convection experiments. This ther-

mal signature is likely due to the development of large scale circulations as the influence of

rotation wanes.

Large scale circulations have been found to produce positive thermal correlations in verti-

cal thermistor pairs in non-rotating RBC experiments [e.g., 10]. In contrast to heat transport

by CTCs, large scale circulations will typically produce vertically anti-correlated vertical heat

flux, and therefore positively correlated temperature signals within the boundaries. In other

words, the thermal boundary layers are thickest where the large scale circulation departs

from the boundary (top left and bottom right corners of the cell depicted in figure1b), and

thinnest where it impinges (top right and bottom left). The right half of a counterclockwise

large scale circulation is anomalously warm, and the left half cold, and so produces positive

vertical correlations and negative horizontal correlations [e.g., 28].

We may therefore interpret positively correlated thermal signals as evidence for the de-

velopment of large scale circulations. In fact, visualizations in an uninsulated, non-rotating

experiment with identical parameters as that shown in figure 4d confirm the existence of

an large scale circulation. The detailed dynamics of large scale circulations are discussed

elsewhere [e.g., 8, 11, 12], and so we will not focus on this flow regime here. The inferred

presence of these strongly three-dimensional flow patterns, however, indicates the breakdown

of quasi-geostrophic flow.

We should also note that the normalization used to calculate these correlations (2) inher-
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FIG. 5: Vertical temperature correlation coefficient at time lag m=0 (C) as defined in (2), versus

RaE3/2. Errorbars represent one standard deviation among the six thermistor pairs for each case.

Rightmost data are from non-rotating experiments, for which the x-coordinate is arbitrary.

ently assumes that the different thermistors sample all parts of the large scale circulation

equally as the large scale circulation wanders azimuthally [e.g., 11]. If, however, the duration

of experimental data acquisition were to be shorter than the timescale over which the large

scale circulation wanders, or if the large scale circulation were to become locked in place, the

cross-correlation should be normalized not by each thermistor’s time-averaged temperature,

but by the average of all thermistors on that level. Otherwise, we may be correlating small-

scale plume behavior, instead of global dynamics. We have tried both normalizations, and

find no appreciable change, indicating that we do, in fact, sample the large scale circulation

without such azimuthal bias.

In figure 5, we show the mean zero-lag vertical temperature correlation coefficient C for

all experiments. These data are plotted against the transition parameter RaE3/2, which

is argued to separate quasi-geostrophic and weakly rotating heat transfer regimes. In gen-

eral, we observe anti-correlated signals in the quasi-geostrophic regime (small RaE3/2), and
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FIG. 6: A schematic illustration of the 1-Dimensional CTC heat transfer model. The three vertical

layers, from bottom to top, are the bottom endwall, fluid layer, and top endwall. The vertical

locations of the interfacial temperatures calculated in the model are denoted T I, T II, and T III.

The dotted and dashed lines illustrate instantaneous vertical temperature profiles generated by the

model. The temperature gradient within the fluid layer varies with Nu(t).

positively correlated signals in weakly (large RaE3/2) and non-rotating (E ≈ ∞) regimes.

Negative correlations (C < 1) are indicative of the importance of CTCs in transporting

heat. Positive correlations (C > 1) indicate the development of large scale circulations.

IV. 1-DIMENSIONAL CTC HEAT TRANSFER MODEL

In order to better understand the physical meaning of Ctop−bottom
i in quasi-geostrophic

convection experiments, we examine a simple one-dimensional numerical model for vertical

heat transport by CTCs. The model consists of a vertical profile of a fluid layer sandwiched

between two endwalls of finite thickness and thermal conductivity. As in the laboratory

experiments, the temperature is fixed above the top endwall, and a heat flux is fixed below
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the bottom endwall. We model the drifting CTCs as a region of temporally fluctuating yet

vertically uniform heat flux. This is accomplished by characterizing the convecting fluid as a

solid thermal conductor with an effective conductivity keff = kfluidNu(t). Quantities used are

accurate to material properties and experimental settings, and Nu(t) is generated artificially.

We calculate the vertical temperature profile of the model at each time step, generating

synthetic temperature time series within the model’s top and bottom boundaries. The

correlation coefficient can then be calculated as in the actual experiment. This simple model

provides synthetic data for an end-member convection scenario wherein heat is transferred

entirely by space-filling, perfectly vertical CTCs. A more detailed description of the model

is given below.

A. Model Details

First, a one dimensional model convection tank setup is constructed with dimensions to

match the experiment, as shown in figure 6. The model consists of three layers (from bottom

to top): a bottom endwall, which has thickness and thermal conductivity hbottom = 0.015 m

and kbottom = 390 W/mK; a fluid layer with ‘tank’ height hfluid and kfluid = 0.6W/mK; and

a top endwall with htop = 0.06 m and ktop = 167 W/mK. The thermal boundary conditions

are fixed heat flux below the bottom tank endwall, q = Q/A, where A is the area through

which the heat power Q is fluxed, and fixed temperature above the top endwall, T cool.

The basic idea of the model is to vary the efficiency of heat transfer in the fluid layer with

time and solve for the temperature profile at each time step, ti. We assume the convective

heat transfer within the fluid is uniform in height, z, to approximate the behavior of an

ideal CTC. This allows treatment of the fluid as a uniform material with effective thermal

conductivity keff = kfluidNu(t), where Nu is the Nusselt number. We use a time varying Nu

to simulate a location in a three dimensional fluid layer through which Taylor columns pass

as they wander horizontally around the container.

Time series for Nu are synthesized using a modified random walk. Initially, Nu(t = 0) =
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Nu0. For the remaining time steps ti = t1, ..., tmax, we generate Nu(ti) = Nui as follows:

Nui = Nui−1 + C1(Ri
1 − 1/2) if Nui−1 = Nu0; (4)

Nui = Nui−1 + C1(Ri
1 − 1/2)− C2R

i
2 exp(−(Nu0 −Nui−1)/Nu0) if Nui−1 > Nu0; (5)

Nui = Nui−1 + C1(Ri
1 − 1/2) + C2R

i
2 exp((Nu0 −Nui−1)/Nu0) if Nui−1 < Nu0;(6)

where C1 and C2 are constants, and Ri
1 and Ri

2 are numbers in the range 0 < R < 1

generated randomly at each time step. The constant C1 determines the typical variability

of Nu between time steps (Nui − Nui−1). The third term in (5) and (6) prescribes an

exponentially weighted preference for Nu values to change in the direction of Nu0. The

constants C1 and C2 are positive and small, 0 < C < 1, and are chosen such that the Nu

time series is trendless about the desired value (Nu0), and has statistical properties (e.g.,

variance, temporal power spectrum) similar to the actual experimental time series.

The temporal resolution of the model is set to match that of the acquisition frequency

of experimental thermal measurements. We assume that the thermal diffusion timescale

through the solid container boundaries is small compared to the typical time scale of fluctu-

ations in convective heat transport. This assumption of instantaneous thermal equilibration

allows us to solve for a thermally equilibrated temperature profile T (z, ti) at each time step.

Based on visual observation of flow in non-rotating convection, and estimates of convec-

tive free fall, advective timescales are expected to be tens of seconds to minutes in our

experiments. The timescale for thermal diffusion over distance d is τκ ∼ d2κ, where κ is the

material’s thermal diffusivity. Copper and aluminum have κ = 1.1×10−4 and κ = 6.4×10−5,

respectively [29]. The time scale for diffusion between the fluid layer and thermistors is ap-

proximately 0.05 s, which is faster than both advective time scales and acquisition frequency.

The timescale for diffusion across the entire top and bottom endwalls is roughly 25 s and 1.5

s, respectively. The diffusive time scale through the upper endwall, therefore, is not signifi-

cantly faster than advective timescales. A more advanced model could include the influence

of finite thermal diffusivity, but, since we’ve already drastically reduced the complexity of

the true system with this toy model, we anticipate that this additional effect will not alter

its fundamental result. Experimental and numerical examinations of the effects of finite

conductivity boundaries are given in [30, 31]

The heat flux and effective thermal conductivity are uniform in space within each layer,

so the temperature will vary linearly in z within each layer, such that we need only solve
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FIG. 7: An example of synthesized temperature time series data produced by the 1-D CTC heat

transfer model. The top panel shows synthetic measurements in the top endwall (T top
1 (t)), and the

bottom panel shows data from the lower endwall (T bottom
1 (t)). Model parameters are: hfluid = 0.197

m; Q = 100 W; T cool = 10 C; and Nu0 = 66. Compare with experimental data shown in figure 3.

for the temperatures at the interfaces between layers. The temperature above the top

endwall is fixed at T cool. The temperature between the top endwall and fluid is T III(ti).

The temperature between the fluid and the bottom endwall is T II(ti). The temperature at

the bottom of the lower endwall is T I(ti). The locations of these interfacial temperature

calculations, T I−III , are shown in schematic figure 6. The aim of the model is to solve for

these three temperatures at each time step ti which depend on the predefined Nu(ti).

Initially, we take

T III(t = 0) = T cool +
q htop

ktop

(7)

T II(t = 0) = T III +
q hfluid

Nu(t = 0) kfluid

(8)

T I(t = 0) = T II +
q hbottom

kbottom

. (9)
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For the remainder of the time steps, t1, ..., tmax, the temperatures are solved for as

T III(ti) = T cool +
Nu(ti) q htop

〈Nu〉 ktop

(10)

T II(ti) = T III +
q hfluid

Nu(ti) kfluid

(11)

T I(ti) = T II +
q hbottom

kbottom

. (12)

Notice that the temperature above the fluid, T III(ti), is dependent on fluctuations of Nu

about it’s mean 〈Nu〉 ≈ Nu0. This is due to the convecting fluid’s control of how much of

the base heating q reaches the top endwall, as the fluid acts as a heat flux capacitor.

Once the temperature profile time series are generated, it is possible to extract a synthetic

thermistor time series measurement. In the experiment, the thermistors are located within

the endwalls, 2 mm from the fluid boundary. Synthetic top and bottom thermistor data are

then

T top(ti) = T III(ti)−
(

0.002 m

htop

)
(T III(ti)− T cool) (13)

T bottom(ti) = T II(ti) +

(
0.002 m

hbottom

)
(T II(ti)− T II(ti)). (14)

Examples of these synthetic thermistor data are shown in figure 7, and can be compared

directly to experimental data (figure 3). Note that the top temperature shows much smaller

variance than both the bottom temperature, as well as the top temperature from actual

experiments. This is likely due to the assumption of instantaneous thermal equilibration,

which will smooth vertical variations and limit their amplitude. The absolute amplitude of

variations, however, are not important for normalized cross-correlation coefficients, which

are calculated for the synthetic data exactly as in actual experiments using (2).

B. Model Results

Figure 8 shows calculations of vertical correlations, Ctop−bottom
i , from six model iterations.

The model parameters are set to hbottom = 0.015 m, kbottom = 390 W/mK, hfluid = 0.197 m,

kfluid = 0.6W/mK, htop = 0.06 m, ktop = 167 W/mK, Q = 100 W, T cool = 10 C, tmax = 3000

s, Nu0 = 66, C1 = 0.01, and C2 = 0.0004. These values are chosen in order to simulate the

experimental setting from which the data in figures 3 and 4a are collected.
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FIG. 8: Temperature correlations calculated from synthetic thermistor data from the 1-D CTC

heat transfer model. Model parameters are hfluid = 0.197 m, Q = 100 W, T cool = 10 C, and

Nu0 = 66. Six separate model results are shown, wherein different Nu time series are used in

order to approximate the six different thermistor pairs used in actual experiments. Instantaneous

temperature values within the top and bottom endwalls are strongly anti-correlated.

At zero time lag (m = 0), the correlation is perfect (|C| = 1), owing to the assumption of

perfectly uniform, vertical heat transport at each time step. The sign of the correlation, how-

ever, is negative, in agreement with the thermal anti-correlations observed experimentally

(figure 4a & b)

The nature of the time series used for Nu(t) is unimportant for producing anti-correlated

temperature calculations at zero lag. If Nu(t) varies as white noise, for example, we again

find a perfect anti-correlation at m = 0. But, since each value in a white time series is

independent of the previous value, C(m 6= 0) = 0 over an ensemble average. In order to

produce correlation profiles with broader ranges of non-zero values, the time series must

have non-zero autocorrelation. The width of the troughs observed in figures 4 (a & b) and 8

are therefore linked to the spectral properties of the time series, which is in turn linked to

the convective flow. We leave a detailed analysis of temporal spectra for future work.
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V. DISCUSSION

Figures 1c and 4b both show results from rapidly rotating, turbulent Rayleigh-Bénard

convection with Rf = 1.1× 1011 and E = 3× 10−6. Figure 8 shows synthetic data from an

idealized model of heat transport by Taylor columns with parameters set to simulate these

experiments. The qualitative agreement between experimental correlation measurements

and the synthetic model data supports the idea that anti-correlated temperature measure-

ments are indicative of the presence of CTCs. That the model data have a much stronger

anti-correlation is due to the assumption of perfectly uniform, perfectly vertical instan-

taneous heat transport at all times. Possible causes for imperfect correlation (|C| < 1) in

experiments include: lateral diffusion of heat in CTCs and endwalls; diffusive heat transport

in the space between CTC cores; and CTCs may not be perfectly vertical and container-

high. Flow visualizations (figures 1c), however, further verify the columnar nature of flow in

experiments with identical parameters to those that produce vertically anti-correlated tem-

perature signals (figure 4b). The general agreement between these three figures indicates

that convection within this regime is manifest as tall, roughly vertical, thermally active

CTCs.

Ref. [25] shows that the thermal boundary layer is thinner than the Ekman boundary

layer when RaE3/2 & 20 in rotating RBC simulations. This transition also corresponds

to a change in heat transfer behavior from quasi-geostrophic to weakly rotating. Here, we

observe that some experiments with 20 < RaE3/2 . 100 produce anti-correlated signals.

From this we infer that when the thermal boundary layer thickness is smaller than but

comparable to the Ekman boundary layer thickness, CTCs can still exist. This contention

is in agreement with the idea that the intensification of heat transfer observed near this

transition is related to Ekman pumping in the presence of a thermal boundary layer [32].

The scatter in experimental C data precludes the identification of any clear transition point

between quasi-geostrophic CTCs and weakly rotating large scale circulation. This difficulty

remains regardless of the abscissa parameter chosen in figure 5 (including, for example, the

convective Rossby number, Roc = (RaE2/Pr)1/2).

To summarize, we find two rotating convective regimes, termed quasi-geostrophic and

weakly rotating. In quasigeostrophic convection, heat is transported by tall, thin, vertical

conduits known as convective Taylor columns. These flow structures wander about hori-
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zontally, pumping warm fluid from bottom to top or vice versa. Locally, this flow (nearly)

simultaneously cools the bottom boundary and cools the top boundary due to their finite

conductivity, and therefore produces anti-correlated vertical temperature signatures. In the

weakly rotating regime, large scale circulations produce warm and cool ‘piles’ of material

that generate positively correlated vertical temperature signatures.

It remains unclear over what range of parameters CTCs are stable. The width of a CTC

should scale as E1/3 [33]. As E decreases to the very low values predicted in planetary

settings, CTCs become increasing thin, and may undergo instabilities [34]. Furthermore, in

low Pr fluids such as liquid metals, the thermal anomalies carried in CTCs may be more

effectively diffused, and so the columns may not extend across the layer. As an example,

the observation of two pairs of geomagnetic flux patches that are nearly symmetric about

the equator evoke, as an explanation, the existence of CTCs in Earth’s field-generating core

[e.g., 35, 36]. Earth’s liquid metal outer core has E ≈ 10−15 and Pr . 0.1, and it is not clear

that large scale CTCs can exist in such an extreme setting. We can answer these questions

by looking for evidence of CTCs in experiments with increasingly extreme parameters.
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Appendix

To serve as a control group for the conclusions drawn from the correlation data shown

in figure 4, we have calculated correlations between thermistor pairs with both vertical

and lateral separation. We look at correlations with two types of lateral separation: either

azimuthal neighbors (minimally offset), with 7 cm lateral separation; or maximally separated

diametrically opposed pairs (antipodal), separated by 13 cm laterally. For quasi-geostrophic

experiments, some of these pairs do still produce negative correlations, but these are always

weaker than the correlations between purely vertical thermistors, and grow weaker with

increasing lateral separation.

Figure 9 shows a comparison of correlation coefficients for six types of thermistor pairs: a)

autocorrelation of the thermistor signal with itself; b) horizontal pairs of nearest neighbors;

c) horizontal pairs of diametrically opposed thermistors; d) vertically aligned and vertically

separated thermistors (our original analysis); e) minimally laterally offset and vertically

separated thermistors; and f) maximally laterally separated and vertically separated (an-

tipodal) pairs. The experimental case shown is the same as in figure 4a, which is in the

geostrophic regime (RaE3/2 ≈ 5). These geostrophic correlations become less coherent as

lateral separation is increased.

Figure 10 shows a comparison of correlation coefficients for the six types of thermistor

pairs, as shown in figure 9, but now for the weakly rotating convection experiment data

shown in figure 4c. The correlations are weak in general. We do notice that the weak positive

correlations seen in the purely vertically separated pair are complemented by weakly anti-

correlated signals for the antipodal pairs. This fits with our interpretation of these thermal

signatures as being produced by large scale circulations, which should produce heat flux

anomalies that are anomalously high in the tank corners that are antipodally opposed.

We can test the CTC interpretation of the temperature correlations more systematically

by determining the time lag at which vertical correlations are maximally anti-correlated in

the geostrophic experiments. Heat transfer by wandering CTCs should result in maximum

anti-correlations at lag (k ≈ 0) for the vertically aligned thermistor pairs, but should show

no strong bias in lag-space for the horizontally separated pairs. We calculate the lag at

which the correlation coefficient is minimal (within a ten minute lag range) for each pair for

the 64 cases with RaE3/2 < 10. Figure 3 shows a histogram of the results of this calculation.
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FIG. 9: Temperature correlations from a geostrophic convection experiment plotted versus correla-

tion lag for six types of thermistor pairs: a) autocorrelation of the thermistor signal with itself; b)

horizontal pairs of nearest neighbors; c) horizontal pairs of diametrically opposed thermistors; d)

vertically aligned and vertically separated thermistors (our original analysis); e) minimally later-

ally offset and vertically separated thermistors; and f) maximally laterally separated and vertically

separated (antipodal) pairs. The experimental case shown has h = 4.7 cm, Q = 50 W, and Ω = 5.3

Hz, and therefore Rf = 2× 108, E = 4.4× 10−5, RaE3/2 ≈ 5. Panel d) is identical to figure 4a.
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FIG. 10: Vertically and/or horizontally separated temperature correlations from a weakly rotating

convection experiment plotted versus correlation lag. As in figure 9, the six types of thermistor

pairs are: a) autocorrelation of the thermistor signal with itself; b) horizontal pairs of nearest

neighbors; c) horizontal pairs of diametrically opposed thermistors; d) vertically aligned and ver-

tically separated thermistors (our original analysis); e) minimally laterally offset and vertically

separated thermistors; and f) maximally laterally separated and vertically separated (antipodal)

pairs. The experimental case shown has h = 19.7 cm, Q = 100 W, and Ω = 0.43 Hz, and therefore

Rf = 1× 1011, E = 3× 10−5, RaE3/2 ≈ 280. Panel d) is identical to figure 4c.

For the pairs with purely vertical separation (a), there is a strong likelihood that geostrophic

convection will produce minimum correlation (maximum anti-correlation) near k = 0. For

pairs with lateral separation (b & c), this strong preference disappears. This supports our

argument that the anti-correlations observed in vertical pairs for geostrophic convection are

due to wandering Taylor columns.
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FIG. 11: Histograms of the time lags at which vertically separated thermistor pairs produce max-

imum anti-correlations for geostrophic experiments (RaE3/2 < 10). Panel a shows data from

thermistor pairs with no lateral separation. Panel b shows data from minimally laterally offset

pairs. Panel c shows antipodal (maximally offset) pairs.
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