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Abstract

The flow of two immiscible fluids completely filling an enclosed cylinder and driven by the rotation

of the bottom endwall is studied numerically. The simulations are in parameter regimes where

there is significant advection of angular momentum, i.e. the disk rotation rate is fast compared

to the viscous diffusion time. We consider two classes of scenarios: the first are cases which

are straightforward to reproduce in physical experiments where only the rotation rate and the

viscosity ratio of the fluids are varied. Then we isolate different forces acting on the system such

as inertia, surface tension, and gravity by studying variations in individual governing parameters.

The viscosity ratio determines how quickly the upper fluid equilibriates dynamically to the flow in

the lower fluid and plays a major role in determining how vortex lines are bent in the neighborhood

of the interface between the two fluids. This in turn determines the structure of the interfacial

layer between the two swirling fluids, which is responsible for the flow in the upper fluid. The

simulations show that even when there is significant interfacial deformation, both the dynamics

and the equilibrium flow are dominated by vortex bending rather than vortex stretching. The

simulations show that for the range of immiscible fluids considered, surface tension effects are

significant. Increased surface tension reduces the degree to which the interface is deformed and the

limit of zero surface tension is not an appropriate approximation.

PACS numbers:
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I. INTRODUCTION

There has been much interest in the flow in a cylinder driven by the rotation of the bottom

when the top is a free surface [1–20]. Experimentally, the free surface is the interface between

a liquid (typically water) and air. Some experiments [2, 4, 6, 7, 15] were conducted in regimes

where the free surface remains essentially flat, however other experiments [1, 11, 12, 14, 18,

19, 21] have explored regimes where the deformation is of the order of the depth of the fluid

layer. In modeling this problem, the flow on the air side of the interface has typically been

ignored, and for the most part the interface has been treated as flat and stress-free.

Very recent numerical simulations have allowed for small interface deformations [17], but

they continued to assume the interface to be stress-free and ignored surface tension effects.

On the other hand, some experimental studies have considered the stress on the interface

due to the presence of surface-active agents, which not only alter the surface tension but

also impart surface viscosity to the interface [22–29]. In these swirling flows, the surface

shear viscosity directly determines the angle at which vortex lines meet the interface. At

a flat interface, the vortex lines are normal to the interface in the limit of zero surface

shear viscosity, and become tangential to the interface in the limit of very large surface

shear viscosity, affecting the extent to which the interfacial flow rotates. The bending of

the vortex lines very near the interface in order to accommodate the constraints imposed

by the surface shear viscosity results in a thin and intense interfacial boundary layer whose

azimuthal vorticity is comparable to that found if the interface were a stationary rigid lid [30].

Gas/liquid (in particular air/water) flows in the turbulent regime have also attracted

much interest, from geophysical applications [31] and industrial applications [32]. However,

both theoretical modeling and numerical simulations have so far been restricted to the

idealized situation where the interface is treated as being flat.

The characteristics of the interface between two immiscible (or weakly miscible) fluids

has also attracted much attention, even when the density and viscosity differences are not

as great as between air and water in the studies mentioned above. Such flows have been

used extensively in laboratory experiments in order to model processes of the atmosphere

and oceans [33–38]. Much of the theory for two-layer immiscible flows has focused on linear

spin-up or spin-down, i.e. the transition from a state of solid-body rotation to another state

of solid-body rotation when the change in rotation rate is very small compared to the mean
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rotation. The role of the boundary layers that form either side of the interface is a main con-

cern for these studies [39–43]. More recently, these two-layer problems have been simulated

numerically, relaxing some of the approximations made to allow for analytical progress [44],

but still only considering spin-up and spin-down (albeit nonlinear) and neglecting surface

tension effects.

Experimental observations in the strongly nonlinear regime have reported drastic changes

in the topology of the interface as the shear increases [45]. The interfacial flow is strongly

influenced by centrifugal acceleration, and the interfacial flow alters the ambient flows. This

two-way interaction appears stronger for small density differences and large viscosity differ-

ences between the two fluids [46]. What is still lacking is a nonlinear numerical investigation

of two immiscible fluids with strong sustained shear across the interface.

In this paper we present such a numerical investigation allowing for large interface de-

formations and surface tension forces at the interface between the two fluids which are fully

two-way coupled. We study the case where the bottom endwall is impulsively accelerated

from rest to a constant rotation rate, accelerating the initially at rest fluids until they reach

steady state.

After presenting the governing equations and numerical methods in §II, we discuss the

effects of increasing the disk rotation rate (§IIIA), analyze the impact of changing the

viscosity ratio between the two fluids (§III B), and explore the effects of inertia (§IIIC),

surface tension (§IIID), and gravity (§III E).

II. GOVERNING EQUATIONS

Consider a cylinder of radius R and height H filled with two immiscible fluids with an

initial interface height of h when everything is at rest. At t = 0, the bottom endwall is

impulsively set to rotate with angular frequency Ω. The gravitational acceleration g is

aligned with the axis of the cylinder. The density and viscosity of the bottom fluid are

denoted by ρb and µb, respectively. Quantities with a ‘b’ or ‘t’ subscript denote the bottom

or top fluid, respectively. The two fluids are characterized by their viscosity ratio µr = µt/µb,

density ratio ρr = ρt/ρb, and the interfacial tension between the fluids σ. Using R as the

length scale and 1/Ω as the time scale, the Navier–Stokes equations governing the motion
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of this unsteady, incompressible, two-fluid system are

ρ

(

∂u

∂t
+ u · ∇u

)

= −∇P +
1

Re
∇ ·

(

µ
(

∇u+∇T
u

))

+
1

We
κδn̂−

1

Fr
ẑ , ∇ ·u = 0 , (1)

where u = (u, v, w) is the velocity in cylindrical polar coordinates (r, θ, z), P is the pressure

divided by the bottom fluid density ρb, κ is the interface curvature, δ is the interface delta

function, non-zero only at the location of the interface, n̂ is the interface normal, and ẑ is

the unit vector in the axial direction. The relative density ρ = 1 in the bottom fluid and

ρ = ρr in the top fluid, and the relative dynamic viscosity µ = 1 in the bottom fluid and

µ = µr in the top fluid. The Reynolds, Froude and Weber numbers are given by

Re =
ρbR

2Ω

µb

, Fr =
Ω2R2

gh
, and We =

ρbR
3Ω2

σ
. (2)

The problem is governed by the non-dimensional parameters Re, We and Fr, the material

property ratios ρr = ρt/ρb, and µr = µt/µb, the relative initial interface height h/R and the

cylinder aspect-ratio H/R.

Of the many governing parameters in this problem, the geometric parameters h/R and

H/R are the least interesting. This is because what is of interest in this class of problems

is how the interface deforms in response to the governing parameters and in how the top

fluid is driven into motion via the coupling across the interface as the bottom fluid is driven

into motion. So long as the deformation of the interface does not bring the interfacial shear

layer near either the top or bottom boundary layer, the two geometric parameters only play

a secondary role. In the single-fluid version of this swirling flow problem, which has been

studied extensively both experimentally and numerically (numerous papers are cited in the

Introduction), it is well established that the aspect ratio, so long as it is not too large or

too small, only has a quantitative impact on the flow. Hence, we focus on variations of the

governing parameters which are of primary importance.
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A. Numerics

To determine the location xf of the phase interface we employ a level set approach by

defining the level set scalar at the interface

G(xf , t) = 0 , (3)

with G(x, t) > 0 in the bottom fluid and G(x, t) < 0 in the top fluid layer. Differentiating

(3) with respect to time yields the level set equation,

∂G

∂t
+ u · ∇G = 0 . (4)

The interface curvature κ can be expressed in terms of the level set scalar as

κ = −∇ ·
∇G

|∇G|
. (5)

We solve and evaluate all level set related equations following the refined level-set grid

method in a separate globally conservative level set solver [47] using an auxiliary high-

resolution G-grid with a fifth-order WENO scheme [48] in conjunction with a third-order

TVD Runge-Kutta time discretization [49]. Neumann boundary conditions for G on the

cylinder sidewall impose a 90o contact angle there. The phase interface curvature κ is

evaluated on the G-grid using a second-order-accurate interface projection method [47].

The balanced force algorithm for finite-volume solvers [47] is used to solve (1). The

algorithm has been implemented in the flow solver NGA [50]. NGA solves the Navier-

Stokes equations using a second-order-accurate fractional step method on a staggered grid

layout. The location of the phase interface essentially impacts three different terms in these

equations directly. The first two, ρ and µ, can be calculated for finite volume solvers by

ρ = αcv + (1− αcv)ρr , (6)

µ = αcv + (1− αcv)µr , (7)
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where αcv is the bottom fluid phase volume fraction of a control volume,

αcv = 1/Vcv

∫

Vcv

H(G)dV , (8)

with Vcv the volume of the control volume, and H is the Heaviside step function. Equation

(8) is evaluated on the fine G-grid using an algebraic expression [51].

The third term impacted by the location of the interface is the surface force, represented

by the term κδn̂/We in (1), which in the staggered grid layout used here needs to be evalu-

ated at the cell faces. Following the continuum surface force model [52], δn is approximated

by δn = ∇αcv. This results in the surface force calculated by

1

We
κδn̂ =

1

We
κ∇αcv , (9)

with all terms being evaluated at the cell faces due to the staggered grid layout.

In this paper we are presenting a study of the basic state, which is steady and axisymmet-

ric, and so we restrict our simulations to the axisymmetric Navier-Stokes equations. Nev-

ertheless, this basic state is highly non-trivial with a deformed interface and thin boundary

and interfacial shear layers. Numerical grid convergence studies are presented and discussed

in the Appendix that also contains the code verification test case of a two-phase solid body

rotation.

III. RESULTS

We present results for two classes of scenarios. In the first, we limit ourselves to physical

systems that are easy to realize, in order to provide comparison data for future experiments.

In §IIIA we analyze the effect of increasing the disk rotation rate and in §III B we analyze

the impact of viscosity ratio between the fluids by varying the silicone oil. In the second

class, we analyze the impact of individual characteristic numbers on the system, by varying

only the Reynolds number in §IIIC, only the Weber number in §IIID, and only the Froude

number in §III E. These analyzed systems can still be physically realized, however they

involve significantly more experimental effort.
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A. Effects of increasing the disk rotation rate

We begin by examining the flow, starting from rest, for different rates of rotation of the

bottom disk, Ω. In non-dimensional terms, this means considering various values of Re.

Since Fr and We also depend on Ω, these will also vary. In this section, we consider all

properties to correspond to a bottom fluid of Flourinert FC-75 and a top fluid of DOW-

Corning DC-200 silicone oil with nominal viscosity 10 cS. The material property ratios

are ρr = 0.5284 and µr = 6.9124, and the surface tension between the two fluids is σ =

7.0 × 10−3 N/m [53]. Further, we shall fix H/R = 1.5 and h/R = 0.75. To determine the

parameters, we consider a cylinder of radius R = 0.5 cm on Earth (gravitational acceleration

g = 9.80665 m/s2).

Although the flow is computed using the velocity formulation as described in §II, since

the flows are axisymmetric, it is convenient to describe them in terms of the streamfunction–

vorticity formulation. The velocity field in the cylindrical polar coordinates (r, θ, z) is

u = (u, v, w) = (−ψz/r, γ/r, ψr/r), and the corresponding vorticity field is ∇ × u =

(−γz/r, η, γr/r), where subscripts denote differentiation. Contours of ψ in a meridional

plane (r, z) depict streamlines, and contours of γ = rv in that plane depict vortex lines. The

azimuthal component of vorticity is related to the streamfunction by

ψzz + ψrr − ψr/r = −η/r . (10)

The steady states for various Re (and corresponding Fr and We) are illustrated in Fig. 1

which shows the vortex lines (top panels), the streamlines (middle panels) and contours

of the azimuthal component of vorticity (bottom panels). The results for Re = 1200 and

Re = 1800 are qualitatively similar. Following the impulsive start of the bottom rotating

disk, the disk boundary layer is rapidly established within about one disk rotation (by

about t = 6). This is seen best in how the η contours adjacent to the disk reach steady state

in the associated online movie [56]. The fluid in this boundary layer is centrifuged radially

outward, carrying the angular momentum acquired from the rotating disk with it (evidenced

by the bending of the vortex lines radially outward in the layer), and a weak secondary

meridional flow is established which replaces the centrifuged fluid with fluid from the interior.

The streamlines illustrate this large-scale meridional circulation. As the centrifuged fluid
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(a) Re = 1200 (b) Re = 1800 (c) Re = 2400 (d) Re = 3000

FIG. 1: Contours at steady state of vortex lines rv (top row), streamlines ψ (middle row) and

azimuthal vorticity η (bottom row) at (a) Re = 1200, Fr = 0.887 and We = 41.0, (b) Re = 1800,

Fr = 2.00 and We = 92.3, (c) Re = 2400, Fr = 3.55 and We = 164, and (d) Re = 3000, Fr = 5.55

and We = 256; these Fr and We numbers correspond to flow of Flourinert FC-75 (bottom fluid)

and DOW-Corning DC-200 silicone oil (top fluid) in a cylinder of radius 0.5 cm on Earth. There

are 15 positive (black) and 15 negative (gray) contour levels, given by leveli = ±(i/15)2 max, where

max = 0.005 for ψ and max = 3 for η. For rv, leveli = (i/15)2 as rv is non-negative and has a

maximum value of 1 (see associated online movies [56]).
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is turned upwards by the presence of the cylinder sidewall, a sidewall boundary layer is

established on a slower timescale in which the angular momentum is advected upwards.

The sidewall layer is established by about t = 35. Since the flow has finite Re, there is some

viscous diffusion of the advected angular momentum. As this sidewall boundary layer flow

reaches the vicinity of the interface, there is some upwards displacement of the interface, but

for the most part, the fluid in the bottom layer is turned radially inwards at the interface.

Having a more viscous top layer of fluid, the inwards radial velocity decreases as it gets

closer to the interface, establishing a boundary layer that has much in common with that

at a rigid no-slip wall; the structure of the η boundary layer at the interface is very similar

to that at a no-slip wall in comparable parameter regimes (compare with results in [30]).

Of course, the interface is not rigid or no-slip, and so there is non-zero flow tangential to

the interface (the flow normal to the interface goes to zero as the flow asymptotes to steady

state, which is reached by about t = 120).

The velocity is continuous across the interface and the fluid in the top layer is dragged

radially inwards with the meridional flow in the bottom layer, thereby establishing a large

scale meridional flow in the top fluid. The top meridional flow is much weaker and has

an opposite sense of circulation to that in the bottom layer. Of particular note, the radial

velocity in both the top and bottom fluids near the interface is directed radially inward. The

top layer of fluid is also spinning due to its contact with the interfacial layer that has acquired

angular momentum. However, the top layer spins considerably less than the bottom layer in

the vicinity of the interface as the vortex lines, while being continuous across the interface,

are refracted, and they also undergo significant bending in the interfacial layer, where they

are almost tangential to the interface over a good portion of it.

As Re is increased, the interface deforms more as the sidewall boundary layer flow is

stronger and can push the lower denser fluid further up, and to conserve mass the interface

is lowered at the axis. Also, with increased Re, less of the angular momentum acquired in

the rotating disk boundary layer is dissipated as the fluid is advected faster to the interface,

and consequently the interfacial fluid is rotating faster with increased Re. The appropriate

measure of how fast the interface is rotating is v/r along the interface. On the rotating disk,

v/r = 1 for all Re. Figure 2(c) shows that v/r along the interface increases with Re and

is largest at the axis and zero at the sidewall. At Re = 3000, for r . 0.2 the fluid in the

bottom layer is close to solid-body rotation, as can be seen in Fig. 1 from the vortex lines
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FIG. 2: Radial variations of (a) the interface height, (b) interface curvature, (c) rotation rate of

the interface, and (d) the meridional velocity tangential to the interface, for the corresponding

steady-state solutions in Fig. 1.

(contours of rv), with weak meridional circulation (the streamlines are almost vertical and

spaced widely apart, indicative of a slow effusive axial flow into the bottom disk boundary

layer). The flow in the bottom fluid for r & 0.2 has a strong meridional circulation. This

division into an inner-radius solid-body rotating flow and an outer-radius swirling flow with

strong meridional circulation has previously been observed in experiments and simulations

with both a stress-free interface and a surfactant-influenced interface [8, 9, 29]. The flow in

the upper fluid is now influenced by the swirling interfacial flow. It is spun up in a fashion

similar to that explored in [54] for the flow in a cylinder driven by a disk of smaller radius

on the bottom endwall. The swirling interface for r . 0.2 now is able to centrifuge the

upper fluid adjacent to it radially outward thereby establishing a meridional circulation cell

of opposite sense to the meridional circulation that is driven by the interface along r & 0.2

10



(a) (b)

0 0.2 0.4 0.6 0.8 1
r

−0.24

−0.12

0

0.12
κR

e−
2

.5

Re=1200
Re=1800
Re=2400
Re=3000

0 0.2 0.4 0.6 0.8 1
r

0

0.1

0.2

R
e−

0
.7

5 v/
r

Re=1200
Re=1800
Re=2400
Re=3000

FIG. 3: Radial variations of (a) the interface curvature, and (b) rotation rate of the interface for

the corresponding steady-state solutions in Fig. 1.

(see the streamlines for Re = 3000 in Fig. 1d).

For all the Reynolds numbers considered, Re ≤ 3000, the interface displacement and

curvature vary self-similarly with Re, as can be seen in Figs. 2(a) and (b). In fact, Fig. 3

shows that the curvature distribution collapses as κRe−2.5. The interface rotation rate v/r

also collapses self-similarly over the range of Re considered according to Re−0.75v/r. However,

the meridional velocity tangential to the interface, vt, does not vary self-similarly with Re,

as is evident from Fig. 2(d). The maximum negative vt does not vary significantly with Re,

remaining at about 2% of the maximum disk velocity, while in contrast v/r increases by 50%

over the same range of Re. Maximum negative vt also saturates at larger r as Re increases

while vt tends to zero over an increasing range of r out from the axis as Re increases. This

is a consequence of the fluid in the top layer adjacent to the interface being centrifuged

radially outward at the higher Re at small r as it rotates faster with increasing Re, leading

to the counter rotating meridional flow near the axis and interface commented on earlier.

B. Effects of viscosity ratio µr

By utilizing a variety of silicone oils with different viscosities as the top layer, it is possible

to keep all of the governing parameters other than µr essentially constant in a physical

experiment. In this subsection, we shall keep Re = 2000, Fr = 2.46, We = 114, ρr = 0.5284,

H/R = 1.5 and h/R = 0.75, while varying µr from 100 down to 0.2 (for the silicone oil used
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in the previous subsection, µr = 6.9124, which we simply refer to as the µr = 7 case for

now). For comparison purposes, we also consider the flow where the interface between the

top and bottom fluids is replaced by a rigid no-slip boundary and we solve for the flow in

the bottom, with Re = 2000 and H/R = 0.75 (for this single-phase flow, Re and H/R are

the only governing parameters).

The vortex lines (rv), streamlines (ψ) and azimuthal vorticity (η) for various µr are

shown in Fig. 4, along with the no-slip interface case. Comparing the no-slip case with the

flow in the bottom fluid of the µr = 100 case (parts a & b of the figure), we find that the

flows are essentially the same except for the non-trivial deformation of the interface. The

deformation leads to a stretching of the vortex lines near the sidewall where the interface

height is largest, resulting in a slightly faster azimuthal velocity there compared with the

no-slip case, while the reduced interface height near the axis leads to the vortex lines being

axially compressed and the near solid-body rotation near the axis is slightly slower than in

the no-slip case. The vortex lines are almost tangential to the interface, so that the top

fluid which is 100 times more viscous is hardly spun up. Since the interface is not no-slip,

the meridional tangential velocity along the interface is also not zero, and via the viscous

coupling, there is a weak meridional circulation in the top fluid as the top fluid adjacent to

the interface is also dragged radially inward. In the limit of µr → ∞, it is expected that

v → 0 and vt → 0 on the interface, corresponding to the no-slip, rigid boundary condition.

However, with everything else finite (in particular with finite Fr), there is still significant

interface deformation at large µr.

For µr > 7, the flows are qualitatively similar; the interface is slightly more deformed,

the meridional tangential velocity is faster, and the meridional circulation in the top fluid is

stronger for smaller µr. Of particular note, as µr is decreased, the vortex lines in the bottom

fluid meet the interface at a larger angle, indicating that the interface is swirling faster with

smaller µr, and this leads to an increasingly spun up upper layer of fluid. On reducing µr to

about 5, the interface is sufficiently spun up, especially near the axis, so as to centrifuge the

fluid in the top layer adjacent to the interface radially outward, thus creating a meridional

flow of the opposite sense in the upper fluid. As µr is further reduced, this counter meridional

flow dominates in the upper fluid and the original meridional circulation that at larger µr

was driven by the meridional circulation in the lower fluid is now confined to an increasingly

thinner boundary layer-type flow over the outer radial part of the interface at the smallest µr
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(a) Half-Cylinder (b) µr = 100 (c) µr = 7

FIG. 4: Contours at steady state of vortex lines rv (top row), streamlines ψ (middle row) and

azimuthal vorticity (bottom row) at Re = 2000, Fr = 2.46, We = 114 and viscosity ratios as

indicated. The contour levels are the same as in Fig. 1 (see the associated online movies [56]).
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(d) µr = 5 (e) µr = 2 (f) µr = 0.2

FIG. 4: (continued) Contours at steady state of vortex lines rv (top row), streamlines ψ (middle

row) and azimuthal vorticity (bottom row) at Re = 2000, Fr = 2.46, We = 114 and viscosity ratios

as indicated. The contour levels are the same as in Fig. 1 (see the associated online movies [56]).
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(see Fig. 4f). At the smallest µr considered, the flow in the bottom fluid is most intense due

to the reduced viscous damping from the upper fluid, and the flow begins to resemble the

swirling flows with a free upper surface, i.e. idealized flows with the upper fluid having zero

viscosity and density and the interface having zero surface tension. In particular, Fig. 4(f)

shows the development of a recirculation zone attached to the interface away from the axis,

which is typical in free-surface swirling flow models as well as in experiments with air as

the upper fluid and water as the lower fluid [2, 3, 5, 15]. This recirculation zone tends to

form near where the inner radial flow is in solid-body rotation and the outer radial flow is

dominated by the meridional circulation [8, 9].

The temporal evolutions from rest are affected by the viscosity ratio, as can be seen from

the online movies [56] associated with Fig. 4. For large µr, the top fluid adjusts quickly to

flow changes in the bottom fluid, so that both reach steady state essentially at the same

time. In contrast, for small µr, the top fluid is slower to adjust to changes as the bottom

fluid evolves, and then the delayed adjustments in the top fluid result in further adjustments

in the bottom fluid, and so the transient flow is a damped oscillation.

Figures 5(a) and (b) show that in the outer radial region, the interface height and cur-

vature are little affected by variations in µr. However, in the inner radial region, there are

significant changes with the interface height dropping and the interface curvature becoming

more negative as µr is decreased. This is attributable to the strengthening counter merid-

ional flow and increased swirl in the upper fluid as µr is decreased. Notice from the contours

of rv in Fig. 4 that the top fluid is spinning faster with decreasing µr, but that as µr is

decreased below about 1, the stronger counter meridional flow in the top fluid advects the

angular momentum to larger radii, leaving the inner radial region spinning slower as µr is

decreased, while at the same time, the interface is spinning faster (Fig. 5c). It is this fast

spinning inner radial section of the interface that drives the counter meridional flow; it’s

effect on the tangential meridional velocity at the interface, vt, is shown in Fig. 5(d), where

we find that vt becomes positive (radial outflow) for µr < 1 for r < 0.35 while there is

an increasingly strong radial inflow (vt negative) along the interface for r > 0.35, as µr is

decreased.
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FIG. 5: (Color online) Radial variations of (a) the interface height, (b) interface curvature, (c) the

rotation rate of the interface and (d) the meridional velocity tangential to the interface, for the

corresponding steady-state solutions in Fig. 4 at Re = 2000 and the indicated values of µr; the

µr = 7 case is shown in red.

C. Effects of varying Reynolds number

Up to now, we have considered parameter variations which are readily reproduced in

laboratory experiments. However, these protocols vary the relative strengths of several forces

making it difficult to determine their individual contribution on the observed phenomena.

In this section, we isolate the effect of inertia, by only varying Re and keeping the other

parameters fixed at We = 114, Fr = 2.46, µr = 6.9124, ρr = 0.5284, H/R = 1.5, and

h/R = 0.75 (corresponding to the two-fluid system considered in §IIIA).

Figure 6 depicts radial variations in interface height, interface curvature, rotation rate,

and meridional velocity tangential to the interface at steady state for Re ∈ [1200, 3000]. The
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FIG. 6: Radial variations of (a) the interface height, (b) interface curvature, (c) rotation rate of the

interface, and (d) the meridional velocity tangential to the interface, for the steady-state solutions

at Fr = 2.42, We = 114 and Re as indicated. These Fr and We numbers correspond to flow of

Flourinert FC-75 (bottom fluid) and DOW-Corning DC-200 silicone oil (top fluid) in a cylinder of

radius 0.5 cm on Earth at Re = 2000.

degree by which the top fluid is spun up is similar to the case of varying Ω at the same

Reynolds numbers. However, the interface at the same Re is significantly less deformed here.

As in the varying rotation rate case, the interface curvature and rotation rate of the

interface collapse with a Reynolds number scaling, see Fig. 7. However, here, the best-fit

exponents are −0.5 in both cases compared to −2.5 (curvature) and −0.75 (rotation rate)

in the varying Ω case. The reason for the change in fitting exponent, especially for the

interface curvature, is the following. In the varying Ω case, an increase in Ω results not only

in an increase in Re, but also in We and Fr. The decrease in relative importance of surface

tension (due to increasing We) leads to larger deformations of the interface and hence larger
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FIG. 7: Radial variations of (a) the interface curvature, and (b) rotation rate of the interface for

the same steady-state solutions as in Fig. 6.

interfacial curvatures (see Figs. 2 and 6). This compares to the case here where only Re

is varied and the relative importance of surface tension is kept constant. To collapse the

larger curvature variations in the varying Ω case thus required a higher power than in the

constant We number case.

These results indicate that surface tension effects are of significant importance in the

analyzed system, a point further analyzed in §IIID.

D. Effects of varying Weber number

In this section, we explore the effects of surface tension. Surface tension enters into

the non-dimensional system via the Weber number only. We fix Re = 2000, Fr = 2.42,

µr = 6.9124, ρr = 0.5284, H/R = 1.5, h/R = 0.75 (corresponding to the two-fluid system

considered in §IIIA), and consider four We cases: (a) We = 50, (b) We = 114 corresponding

to the Flourinert and silicone oil system, (c) We = 500, and (d) We = ∞ (zero surface

tension). Physically, these variations in We may be obtained by choosing an appropriate

silicone oil and heating the system to a uniform temperature such that the desired Re, Fr,

and We are achieved.

Although meridional contour plots do not show much variation with Weber number, a

close examination of the interfacial profiles show significant We dependencies. These pro-

files are shown in Fig. 8 depicting radial variations in interface height, interface curvature,
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FIG. 8: Radial variations of (a) the interface height, (b) interface curvature, (c) rotation rate of the

interface, and (d) the meridional velocity tangential to the interface, for the steady-state solutions

at Fr = 2.42, Re = 2000 and We as indicated. These Fr and Re numbers correspond to flow of

Flourinert FC-75 (bottom fluid) and DOW-Corning DC-200 silicone oil (top fluid) in a cylinder of

radius 0.5 cm on Earth.

rotation rate, and meridional velocity tangential to the interface at steady state for vari-

ous We as indicated. In particular, the surface deformation increases as We increases and

the curvature not only increases in magnitude but also shows large amplitude undulations

reminiscent of a shear driven wave. In contrast, the interface rotation rate and meridional

velocity tangential to the interface are quite insensitive to Weber number variations.

Surface tension effects are important in determining the steady state shape of the interface

in these flows. The question then is whether this is due to the peculiarities of the chosen

flow configuration with high shear. To analyze this, Fig. 9 shows the two-phase solid body

rotation test case used in the Appendix to verify the code, but now with the addition
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FIG. 9: Profiles of interface height for the case of two-phase solid body rotation for the case with

zero surface tension, physical surface tension, and analytical solution. The analytical solution is

z = h/R(1 + Fr(2r2 − 1)/4), with h/R = 0.75 and Fr = 2.42.

of surface tension. As clearly shown, an increase in surface tension (lower We) results in

significantly different interface shapes, flattening the interface. This raises a concern of

trying to reproduce these results experimentally using so-called essentially immiscible fluids,

i.e. fluids that are miscible on a much slower time scale than the time scale on which

experiments are conducted, since such systems lack surface tension.

E. Effects of varying Froude number

In this section, we explore the effects of gravity, which only enters into the non-

dimensional system via the Froude number. Physically, one could explore such Froude

number variation effects by conducting the same experiment in a low-gravity environment.

Numerically, we fix Re = 2000, We = 114, ρr = 0.5284, µr = 6.9124, H/R = 1.5, h/R = 0.75

(corresponding to the Flourinert and silicone oil system considered in §IIIA), and consider

three Fr cases: (i) Fr = 6.3 × 10−5, corresponding to a very large gravity so that the in-

terface is essentially flat, (ii) Fr = 2.46, corresponding to Earth gravity, and (iii) Fr = ∞,

corresponding to zero gravity.

There are very few consequences beyond interfacial curvature to having a change in

gravity. The Fr ≈ 0 case has the least deformation, with the interface being essentially flat,

and the Fr = ∞ case has the maximum deformation. The amount of deformation, even at

Fr = ∞, is limited by surface tension effects (We = 114), as is evident in Figs. 10(a) and
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FIG. 10: Radial variations of (a) the interface height, (b) interface curvature, (c) rotation rate

of the interface and (d) the meridional velocity tangential to the interface, for the steady-state

solutions at Re = 2000, We = 114 and Fr as indicated.

(b) showing the interface shape and curvature. The flows not very close to the interface are

very similar, and especially so in the upper fluid. Near the interface the flows simply adjust

to the change in shape of the interface. However, more careful inspection near the interface

does reveal some curvature effects. In particular, the way in which the vortex lines (rv)

meet and cross the interface is affected by the curvature, and this results in the interface

rotation (v/r) varying with Fr. Figure 10(c) shows that the interface rotation increases by

about 50% from the flat interface case to the most deformed interface case. This increase

in interface rotation is in the inner radial section where the bulk flow in the bottom fluid

is nearly in solid-body rotation. However, the meridional tangential velocity (vt) is very

little affected by the interface deformation (Fig. 10d). This all indicates that the interface

deformation primarily affects how the vortex lines meet and bend at the interface, and any
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effects on the meridional flows are primarily a consequence of the vortex line bending.

Comparing the flat interface case (Fr ≈ 0) with the rigid lid case, we find the the flow

in the lower fluid is very similar. The main distinction is that the η-boundary layer in

the rigid lid case has approximately uniform thickness, whereas that in the small Fr case

is considerably thinner for r < 0.25. This is attributable to the difference in the behavior

of the vortex lines in this region. With the rigid lid case, the vortex lines are bent in

the boundary layer to be tangential to the stationary lid, whereas for the small Fr case,

the vortex lines are not bent very much. Where the bulk lower fluid is in near solid-body

rotation, the vortex lines cross the interface and the interface spins. Where the bottom fluid

is primarily overturning meridionally, the vortex lines are almost tangential to the interface

and its rotation is much reduced. The vortex line bending is a local source of azimuthal

vorticity [3, 55], and is responsible for the establishment of the interfacial shear layer.

IV. CONCLUSIONS

We have studied numerically the swirling flows of two immiscible fluids within a stationary

enclosed cylinder driven by the uniform rotation of the bottom endwall. Initially, everything

is at rest with the denser fluid in a bottom layer of equal volume to that of the lighter top

fluid. Since only the bottom fluid is in contact with the rotating endwall, the top fluid is

only driven into motion via the viscous coupling between the two fluids. The interface is

deformable and its motion is determined by the balance between flow inertia, viscous stresses,

gravitational buoyancy and surface tension. We have considered a wide range of viscosity

ratios of the two fluids, µr, and found that this plays an important role in determining

the dynamics in the two fluids. When the top fluid is significantly more viscous than the

bottom fluid, the top fluid adjusts quickly to the bottom flow, whereas for top fluids with

smaller viscosity, the top fluid adjusts more slowly and this delay is fed back to the lower

fluid which then needs to re-adjust, leading to oscillatory transients. The viscous coupling

between the two fluids is accomplished via the establishment of an interfacial shear layer

due to the difference in the rotations of the top and bottom fluids.

As noted from theoretical analysis [40] and experiments [36] for the spin-up of two essen-

tially immiscible fluids, the interfacial shear layer is dynamically important. We also find

this to be the case in the present problem. Much of the structure of the interfacial shear
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layer results from vortex line bending in the interfacial region, and the amount of vortex

line bending is strongly influenced by the viscosity ratio. Two extremes are typically well-

studied, µr → ∞ where the top fluid then acts like a no-slip boundary for the lower fluid and

the vortex lines are bent to be tangential to the boundary, and µr → 0 which corresponds to

a vacuum above the lower fluid and the vortex lines are normal to the interface in the lower

fluid (this often provides a good model when the upper fluid is a gas). In this study, we

have considered finite µr ∈ [0.2, 100], over which the amount of vortex line bending in the

neighborhood of the interface varies considerably. As observed in [36], if the dynamics of the

interfacial shear layer is not included, as in the theory of [39], then the lack of surface stresses

lead to vortex stretching being the primary mechanism by which the interface moves. In

our problem, vortex stretching effects are negligible compared with vortex bending effects.

Vortex stretching occurs when the vortex lines are stretched due to changes in the fluid

depth, i.e. via interface deformation, and this would correspond to increased or decreased

axial vorticity, the vortex lines would be closer together or further apart. But this is not

evident from the results with Fr = 0 and large Fr which only affect the degree of interface

deformation, and in and of itself does not contribute to the develpment of the interfacial

layer which is characterized by large concentrated azimuthal vorticity. On the other hand,

vortex line bending is clearly observed over all parameter ranges, and the bending of vortex

lines is a direct source of azimuthal vorticity. The vortex line bending is predominant in

the interfacial layer, as well as in the endwall boundary layers. Another source of azimuthal

vorticity at the interface is due to the surface tension term, but this is a small contribution

compared to the vortex line bending. This is bourne out by the comparison between Fr = 0

case (where there is no surface tension term contribution to the azimuthal vorticity) and

the large Fr cases (leading to large deformations). The intensity of the interfacial layer’s

azimuthal vorticity is comparable for all Fr, and hence primarily due to vortex line bending.

Pedlosky [40] included the interfacial shear layer due to finite µr, but took the limit of

Fr → 0 so that the interface remained flat during the spin-up and so his theory did not

include surface tension effects (due to zero interfacial curvature). He concluded that the

frictional coupling between the two fluids is vital for the spin-up process, and we find that

to be true here as well, but interfacial deformations and surface tension effects limiting the

deformations are also critically important in the regimes we have studied.
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TABLE I: Grid convergence for kinetic energy at Re = 3000.

nz Ek Error Order
150 5.66× 10−2 1.00× 10−3 -
300 5.58× 10−2 2.38× 10−4 2.07
450 5.57× 10−2 5.55× 10−5 3.59
600 5.56× 10−2 - -
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Appendix A: Numerical resolution tests

To determine the appropriate numerical resolution, a grid convergence study was con-

ducted for Re = 3000 with the four resolutions. (nr, nz) = (100, 150), (200, 300), (300, 450)

and (400, 600). Having the thinnest viscous boundary layer, the Re = 3000 case requires

the highest resolution of the cases considered in this paper. As such, any grid that is in the

asymptotic convergence regime for the Re = 3000 case will also be in that regime for the

other parameters studied in this paper.

The largest difference between f600 and f150 occurs in the viscous boundary layer at

the rotating bottom wall, suggesting that the coarsest grid (100 × 150) does not provide

adequate resolution in this region. However, as the resolution is increased, the error rapidly

decreases. The kinetic energy, Ek = π
∫ H/R

0

∫

1

0
(u2 + v2 +w2)rdrdz, is a useful global metric

to determine convergence. Table I shows the kinetic energy for the indicated grid resolution.

The error and order of convergence are computed using the results from the finest grid as the

“exact” solution. The errors decrease with increasing grid resolution. The obtained order

of convergence is slightly better than expected. This is most likely because kinetic energy

is not directly simulated but is rather the sum of the squares of simulated variables which

leads to fortuitous cancellation of errors.

The interface position can also be used to determine the asymptotic convergence regime.
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TABLE II: Grid convergence for interface displacement ∆h at Re = 3000.

nz ∆h Error Order
150 3.104× 10−1 8.106× 10−3 -
300 3.030× 10−1 6.960× 10−4 3.54
450 3.025× 10−1 2.260× 10−4 2.77
600 3.023× 10−1 - -

TABLE III: Grid convergence for velocity fields at (r, z) = (0.99, 0.01).

nz u Error Order
150 2.071× 10−2 5.117× 10−3 -
300 1.667× 10−2 1.083× 10−3 2.24
450 1.588× 10−2 2.850× 10−4 3.29
600 1.559× 10−2 - -

nz v Error Order

150 3.422× 10−1 −2.055× 10−1 -

300 4.751× 10−1 −7.261× 10−2 1.50

450 5.231× 10−1 −2.463× 10−2 2.66

600 5.477× 10−1 - -

nz w Error Order

150 1.606× 10−2 5.641× 10−4 -

300 1.585× 10−2 3.555× 10−4 0.67

450 1.561× 10−2 1.130× 10−4 2.83

600 1.549× 10−2 - -

The interface profiles of the finest grids lie directly on top of each other, while that of the

coarsest grid is different from the others, demonstrating that the coarsest grid may not be

in the asymptotic convergence regime. Table II shows the overall interface displacement for

the indicated grid resolutions. The error and order of convergence are computed using the

results from the finest grid as the “exact” solution.

To demonstrate grid convergence using local quantities, the velocity field at two points

near the bottom right corner is examined. The points chosen are (r, z) = (0.99, 0.01),

which is inside the viscous sublayer, and (r, z) = (0.98, 0.02). The convergence test results,

summarized in tables III and IV, demonstrate that a numerical resolution of nr × nz =

200 × 300 is sufficient to ensure that the solution is within the asymptotic convergence

regime. This is the grid resolution employed for results presented in this paper.
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TABLE IV: Grid convergence for velocity fields at (r, z) = (0.98, 0.02).

nz u Error Order

150 4.761× 10−2 1.451× 10−3 -

300 4.646× 10−2 2.991× 10−4 2.28

450 4.622× 10−2 5.956× 10−5 3.98

600 4.616× 10−2 - -

nz v Error Order

150 6.064× 10−1 −6.122× 10−2 -

300 6.478× 10−1 −1.982× 10−2 1.63

450 6.611× 10−1 −6.568× 10−3 2.72

600 6.676× 10−1 - -

nz w Error Order

150 4.920× 10−2 6.287× 10−3 -

300 4.448× 10−2 1.573× 10−3 2.00

450 4.337× 10−2 4.665× 10−4 3.00

600 4.291× 10−2 - -
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FIG. 11: Profiles of interface height for the case of two-phase solid body rotation with zero surface

tension. The analytical solution is z = h/R(1 + Fr(2r2 − 1)/4), with h/R = 0.75 and Fr = 2.42.

Having established that a grid converged solution can be reached, next we address the

question whether convergence to the correct solution is achieved. To verify this, we compare

our numerical results to an analytical solution in the case of solid body rotation of two

immiscible fluids. Figure 11 shows the radial profiles of the analytic interface (open symbols)

and our computed profile (solid line). The analytical solution is derived assuming zero

surface tension. Agreement between analytical and numerical solution is excellent providing
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additional verification of the numerical code.
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