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Hierarchical Synchrony of Phase Oscillatorsin Modular Networks

Per Sebastian Skardadnd Juan G. Restrepo
Department of Applied Mathematics, University of Colorado at Boulder, Colorado 80309, USA

We study synchronization of sinusoidally coupled phasdlasars on networks with modular structure and
a large number of oscillators in each community. Of particuihterest is the hierarchy of local and global
synchrony, i.e., synchrony within and between communitiespectively. Using the recent ansatz of Ott and
Antonsen, we find that the degree of local synchrony can kermi@ted from a set of coupled low-dimensional
equations. If the number of communities in the network igidara low-dimensional description of global
synchrony can be also found. Using these results, we stiddschtions between different types of synchrony.
We find that, depending on the relative strength of local dolia coupling, the transition to synchrony in the
network can be mediated by local or global effects.

PACS numbers: 05.45.Xt, 05.90.+m

I. INTRODUCTION nities, assuming that oscillators within communities alen-
tical. Reference [20] analyzed the linear stability of thed-
Large networks of coupled oscillators are pervasive in sci—herent state for a system of coupled communities of hetero-
9 P . P - geneous phase oscillators. The same system was considered
ence and nature and serve as an important model for studyi X ;
iIf Ref. [25], where a set of coupled low-dimensional equa-

emergent colleqnve behaw_or. Some e>.(amples include SYons governing the dynamics of the community order param-
chronized flashing of fireflies [1], cardiac pacemaker cells .
eters was formulated. Here, we study this system of equa-

[2], walker |ndu<_:ed 950'”?“0”_3 of some p(_edest_rlan betlg tions, finding for some important cases analytical exposssi
[3], Josephson junction circuits [4], and circadian rhythm o .
. X . or local and global order parameters describing synclaeeni
in mammals [5]. A paradigmatic model of the emergence of. o -

tion within communities and on the whole network, respec-

synchrony in systems of coupled oscillators is the KuramOtinely. We find that, in the limit of a large number of commu-

model [6], in which each oscillator is described by a phasenities, the Ott-Antonsen ansatz introduced in Ref. [25] lsan
angled,, that evolves as

used to obtain a low dimensional description of community
) 1 synchrony. Using this description, we characterize thespha
O = wn + > Anm sin (0 — 0), (1)  space of the system where the parameters are the local and
global coupling. One of our results is that, depending on the
wherew, is the intrinsic frequency of oscillator, A,,,,, rep-  relative strength of local and global coupling, the transito
resents the strength of the coupling from oscillatoto os-  synchrony in the network can be mediated by local or global
cillator n, andn,m = 1,..., N. The classical all-to-all Ku- effects.
ramoto model corresponds #,,,, = k. The study of gen- This paper is organized as follows. In Sec. Il we describe
eralizations of the Kuramoto model has become an importarthe model. In Secs. Il and IV we present in detail the local
area of research. Some examples of such generalizations iand global dimensionality reductions, respectively. l8.9¢é
clude systems with time-delays [7], network structure [8, 9 we discuss the effect of community structure of the network
non-local coupling [10], external forcing [11], non-simigal ~ on the dynamics and how it promotes hierarchical synchrony.
coupling [12], cluster synchrony [13], coupled excitabk o In Sec. VI we discuss how our results generalize when certain
cillators [14], bimodal distributions of oscillator fregocies heterogeneities are introduced into the network. In Se¢. VI
[15], phase resetting [16], time-dependent connectiif],]  we conclude this paper by discussing our results.
noise [18], and communities of coupled oscillators [19-22]

In this paper we study the case where the coupling strength
is not uniform, but rather defines a network that has strong
modular, or community, structure. Synchrony on heteroge-
neous networks has been studied in the past, both for phase os We are interested in studying coupled oscillators on a net-
cillator systems [8] and other dynamical systems [23]. Muchwork with strong community structure such that (i) the cou-
recent work has focused on the synchronization of phase o$ling strength between oscillators within the same commyuni
cillators on networks with modular structure [19-22]. W¢hil is much larger than the coupling strength between osciliato
the link between community topology and synchronization isin different communities and (i) the intrinsic frequenoy &in
well established [24], there are few analytical results ttee  oscillator is drawn from a distribution specific to the commu
scribe synchronization in modular networks. Referencé [19nity to which that oscillator belongs. Condition (i) senassa
developed a framework to study a general number of communodel of situations where all the coupling strengths have si

ilar magnitude, but the density of connections between com-

munities is less than the density of connections within a-com

munity. The motivation for condition (ii) is that oscillatin
*Electronic addressskar dal @ol or ado. edu different communities could have different frequency rilist

II. MODEL DESCRIPTION



butions due to different functional needs (e.g., as in eardi 9, f, + Bga(f,,é") =0, or
myocytes in different regions of the heart [26]), or as an ap-

proximation to fluctuations inherent to large but finite com- ¢ , o
munities. Thus, for a network witt’ communities labeled 9t fo + 0p- {fo W+ D e K77 Im(zpe )1 } =
oc=1,2,...,C where community containsN, oscillators, o'=1

we assume that the coupling matrlxn Eq. (1) can be written (6)
in block form asA,,,,, = K°° , whereo ando’, respectively,
denote the communities to which oscillaterandm belong. : . .

Furthermore, we assume that the intrinsic frequenciesdor o pand f,(6,w,?) ln a Folurler series, fo(0,w,t) =
cillators in communityo are drawn from a distribution par- % (1 + fo:l Jon(w, t)e? 4 c.c.), and make the
ticular to that community, denoted hy, (w). We denote the
fraction of oscillators in community by n, = N, /N, where
N is the total number of oscillators in the whole network.

ga’(w) > n in6
With this notation, Eq. (1) results in the following system, fo(0,w,1) = Tor (1 + Z ag(w, t)e™ + C-C-> (1)

Following Ott and Antonsen [25], we ex-

ansatzfgyn(w, t) = a?(w,t), namely

considered in Refs. [20, 25]: n=1
c oo Vo \év?fich, whlen introdu(cgd ir)1 Eq. (6), yields a single ordinary
jo o . no’  po ifferential equation (ODE
07 =wl+ Y n, N > sin(0g, —07),  (2)
o’'=1 =1 C
. . 1 oo’ 2 * . 8

wheref? denotes the phase of an oscillator in community G + Wag + 5 Z ot K77 (25105 —251) = 0, (8)
c=1,...C,n=1,...,N,, and the intrinsic frequenay? o'=1

is randomly drawn from the distributian, (w). Next, in order wherez, in the continuum limit is given by
to measure synchrony within and between communities we

define the local and global order parameters oo p2m _
2o :/ f,,(@,w,t)ewdew
1 Ng —oo0 J0
o i .t 07, 00
Zog = T'g€ = Na_ 1nz:1€ 5 (3) — / ga(w)a:;(w,t)dw (9)
Z = Re' = anzg, (4) Finally, by letting the distribution of frequencies, be
o=1 a Lorentzian with spread, and meanQ,, i.e. g,(w) =

) 8o /{702 + (w — Q,)?]}, we can calculate, by closing the
respectively, such that, measures the degree of local syn- ; contour of integration with the lower-half semicircle of in

chrony in communityr and 2 measures the degree of global fjte radius in the complex plane and evaluatirigw, ¢) at
synchrony over the entire network. We note that the lineagnq anclosed pole af,:
. a -

stability of the incoherent state in this model was studied i
Ref. [20] (see also [21]). 2o = a5 (Q — 16, 1), (10)

Thus, by evaluating Eqg. (8) at = Q, — id,, we close the
dynamics forz,:

I11. LOCAL DIMENSIONALITY REDUCTION 1 = / 9
Zo + (50 - iQO’)ZU + = Z na’KUU (2;’20 — ZU/) =0,
2 o'=1
In this section, we will study local synchrony by assuming (11)
there are a large number of oscillatd¥s in each community. ) ) )
Using the definition of,, in Eq. (3), we simplify Eq. (2) to which definesC' complex ODEs, or equivalentlC' real
ODEs, given by

c
. 1 / 9o o
0° = W’ + — na’KUU (20/67“9" o Z*/ewn)’ (5) 1— 7’2 C , )
vt gz_:l 7 Fo = —=0oT0 + —5* > e K77 Re(zgre” ), (12)
o'=1
where* denotes complex conjugate. We now move to a con- 9 c
tinuum description by taking the limiv, N, — oo in such by = Qy + re +1 Z Nt K77 1M (24067 77). (13)
a way that alh), remain constant. Accordingly, we introduce 2rs a1

the density functiory, (6, w, t) that represents the density of

oscillators in community with phase) and natural frequency Equation (11) was formulated originally in Ref. [25], b it

w at timet. Since the number of oscillators in each commu-consequences for hierarchical synchrony have not been stud
nity is conserved,, satisfies the local continuity equation, ied in detail. Equations (12) and (13) describe the dynamics



of local synchrony. The synchrony of communityis de-
scribed by the magnitude of its order parameteand phase 5
1,. The phase variablg¢, obeys an equation similar to that
of the network-coupled Kuramoto model, Eq. (1), but the ef-
fect of communitys’ on communitys is modulated by the
degree of synchrony of community, r,/, and its relative
sizen,s. In contrast to the Kuramoto model, each community
has an additional variable, which evolves in conjunction
with the phase variable, . In this sense, the dynamics of the
community order parameters resembles a network of coupled
complex Ginzburg-Landau oscillators [27].

In what follows, we will consider the illustrative case in
which all communities have the same size and spread in natu-
ral frequencies, i.ey, = C~! andd, = §. Furthermore, we
let the coupling strength within each community be the same, 0 1 2 3 4 5
as well as the coupling strength between oscillators in dif- K
ferent communities. We assume the coupling strength within

communities is much larger than that between communitied;!G- 1: (Color online) Bifurcation diagram ifK, k) parameter
namely space for Eq. (2) with = A = 1. Regions A, B, C, and D (described
in the text) are denoted in red, yellow, green, and blue eesely,
. { Ck ifo=o with bifurcations (i)-(iv) indicated by solid and dashedees.

K otherwise, (14)

wherek and K are of the same order. We clarify that the Egs. (12) and (13) as
local coupling strengtli’'k is chosen so that the local coupling

within a community is of the same order as the sum of the o= e 4 <k _ E) , 1—7;

coupling to every other community. More generally, a local 7 7 c) 7 2

coupling strength of the fornk°? = k/e with ¢ < 1 can 1— 42

be analyzed from our results by rescalingy a factor ofCe. + K ———=Reos(¥ —¢o), (15)
In section VI we relax these assumptions and discuss the case 2

where community sizes, spread in frequency distributiand, Ve = Qs + K (T" * ) Rsin(¥ — 1,). (16)
coupling strengths vary from community to community. We 2ry

now use the definition of in Eq. (4) to rewrite the system in We note that although we will l&f' — oo in the next section,

Egs. (15) and (16) are valid whefi is any positive integer
and can be used to study synchrony on networks with a small
number of communities.

Finally, we assume that the mean frequen€igsare drawn
from a distributionG(£2), which we assume to be Lorentzian
with spreadA and meari’. However, by entering a rotating

State Variables Description frame, we can sdt = 0 without any loss of generality. For the

" degree of local synchrony of communi sake of convenience we summarize all local and global state
]'% degree of global synchrony variables and parameters of the system in Table I. We note
" phase of local order parameter that choosing a Lorentzian distribution f6f{w) is a natural

o

W phase of global order parameter choice if the heterogeneity in the distributiops(w) is as-
sumed to originate from fluctuations arising from the random

Parameters Description . . . i
: sampling of frequencies from the same Lorentzian distribu-
k local coupling strength . . . . ,
K : tion. In this case, since a sum of Lorentzian random vargable
global coupling strength has a Lorentzian distribution, the distribution of the aggr
0 local frequency spread frequencies in finite communities is Lorentzian
A global frequency spread q ) .
QU mean intrinsic frequency of Commun'my B.efore analyZII"lg Eqs (15) and (16), we illustrate the be-
N, size of communityr havior of the local and global order parametérs= A =
C total number of communities 1 over a range of values foK and k. We definer =

c! chzl ro as a measure of local synchrony and show the
TABLE I: Summary of local and global state variables and p@a  behavior off and R in Fig. 1. While this behavior will be de-
ters of the system. duced from the analysis that follows, we find it convenient to



present the phase space now to provide a framework for ot 1
subsequent analyses. We note that although the diagrara abc
is theoretical, we present plots & andr following various
paths in the diagram, and all show excellent agreement witl
the theory. In the parameter spdde, k), we find the follow- I~ Q.5
ing four regions: region A where, R = 0 (bottom left red),
region B where&® > 0, R = 0 (top left yellow), and regions C
and D where", R > 0 (bottom right green and top right blue,
respectively). In region A there is neither local nor global
synchrony, in region B there is local synchrony but no global 0 2 4 6
synchrony, and in both regions C and D there is both local anu )
global synchrony. We note that although bath? > 0 in F'G' 2 (C|°|9r onll;lne) A_velrage ngrfe]\?f local syg?nzniersuslz
both regions C and D, the nature of solutionsifgrare quali- Ir(o T ??;:Sg&é tgethcér:r:z?::l”;re&ctign7n4§8’ (1;) ( d;s;eiinre d)
tatively different, as will be discussed later. Finallylidand N ' '
dashed curves indicate bifurcations between these regiahs
will be discussed as we proceed with the analysis. In the rest which case
of this section, we will study local synchrony, charactedz
by the community order parametets We will do this by as-
suming a given value of the global synchrony order parameter
Z = Re'™. In the next section, we will study the dynam-
ics of Z using a dimensionality reduction on the global scale.and otherwise the community drifts indefinitely. The degree
We note here that in the rest of the figures in this paper, sincef local synchronyr, for locked communities can be found
we are interested in networks with a large number of commuby settingr, in Eq. (15) to zero and using Eq. (19), which
nities and a large number of oscillators per communities, weives the implicit equation
will compare the results from direct numerical simulatidn o
Eq. (2) on networks with larg&’, andC' with the theoretical .S (k B E) o1 2
curves obtained from our analysis of the continuum limit. 7 c) 7 2
First we study local synchrony whei = 0. In this case, 1— 2 1022

from Egs. (15) and (16) we see that each community decou- + KR 2 \/1 — e T (20)

les from all others and evolves independently. The pligse K2R (7 +1)
p p \ p
of communityc moves with velocity2,, and the stable fixed
points of Eq. (15) are

—e—simulation
- - -theory

2Qa’ o
wg—\ll—arcsin{ " } ,

KR(r2+1) (19)

Eqg. (20) determines the steady-state value,ofor locked
communities and yields two possible kinds of solutions for

{ 0 if k — K/C < 20, ro. either EqQ. (20) has a real solution for eveny,, or it
To 2% . (17)  has a real solution for only sonf,. It can be shown that
\V 1= %7 otherwise, whenk — K/C < 26, Eq. (20) has a real solution for all

Q., and thus each community becomes phase-locked and each
r, reaches a fixed point @& — oo. On the other hand, if

k — K/C > 2§, there is a real solution for only sonfg,

with magnitude less than a critical locking frequency, vhic
we denote as). In this case communities witf2,| < Q
phase-lock anda, is given by the solution of Eq. (20), while
other communities continue drifting indefinitely. The phas
angle, of a drifting communitys increases or decreases
monotonically and therefore its order parametemight be

so that allr, are equal. Bifurcation (i), indicated as a solid
black line in Fig. 1, is described by this analysis, and oseir
k— K/C = 26. To illustrate this bifurcation, we plotin Fig. 2
the results of simulating the system/ass varied from zero to
six with N, = C' = 400, = A = 1, and fixedK = 1 and
plot the resulting® from simulation (blue circles) against the
theoretical prediction of Eq. (17) (dashed red). The imerp
tation of this result is that the oscillators in each comntyuni

synchronize as in the all-to-all Kuramoto model, but with ang o dependent, according to Eq. (15). However, assuming a
effective coupling strength — K/C', which shows that the stationary globa’I order parametelr Withl constﬁ’nhryldlll (as

k coupling to other independently evolving communities . . . : :
V‘{.eahﬂ hibit h will be discussed in the next section), the solution of the-tw
slightly infi |§sync rony. ) dimensional autonomous system in Eqgs. (15) and (16) must

The analysis above assumis= 0. Now, we will ana-  approach a limit cycle (this can be shown, for example, us-

lyze Ioca_l _synchrony whei > O In thIS case some of '_[he ing the Poincare-Bendixson theorem [28]). To estimate the
communities become synchronized with each other. Given gme averaged value of, in this limit cycle, we neglect the
value of Z (which can be obtained using another dimension-ffect of the cosine term in Eq. (15) over one period and find
ality reduction, as we will show in the next section), com-that the time averaged order parameter for drifting commu-
munity o synchronizes with the mean field [i.e., a solution .. . . % .
o = 0,75 — 0 for Eqs. (15) and (16) exists] if nities is approximated byr,) = /1 — RTC This value
agrees with the solution of Eq. (20) whe)y is the locking
frequency in Eq. (18). Therefore, the community locking fre
quency can be determined by inserting the expressiofror

r2 +1
2ry

Q.| < KR

(18)



5

@ 4 : ‘ predictions, which are plotted as dashed red curves. Fi. 3(
o simulation corresponds to region B, whefe = 0 andr, is given by
Ao'gs - - -theory Eqg. (17) and is therefore independentoof Fig. 3(b) cor-
S 09 = responds to region C, where all communities lock and their
= 000000 T e0A008080) order parameter, is a solution of Eq. (20). Fig. 3(0) corre-
0.83 1 sponds to region D, where some communities lock and their
0.8 ‘ ‘ ‘ order parameter, is a solution of Eq. (20), and other com-
- -2 0 2 4 munities drift and their order parametey is independent of
o) Q o and given by(r,). The vertical arrows indicate the theoret-
1 ‘ ‘ ‘ ‘ — — ical value for the locking frequency obtained from Eq. (21).
0.8 r_\ o simulation Theoretical results match very well with the numerical simu
S 06 ,p°° b |- - -theory lations.
T 0.4 ..o° %0, ]
0.2=° oo
O L L L L
-15 -10 -5 8 5 10 15
(€) 1 : ‘ IV. GLOBAL DIMENSIONALITY REDUCTION
0.95 o simulation
~ - - -theory . . .
S o9 4 In the previous section, we studied local synchrony by as-
Iy m suming a steady-state value for the global synchrony oraler p
0.85 A } ' rameterZ = Re'Y. We now discuss how the global order
0.8 ‘ ‘ ‘ parameter can be found by making a second dimensionality
-4 -2 0 2 4 reduction on a global scale. As we previously Mt tend
Q to infinity in order to enter a continuum description within

FIG. 3: (Color online) Time-averagedvs 2 from simulation (blue  each community, we now consider the limit— oo and in-
circles) withC' = No = 400 andé = A = 1 compared to theoret-  troduce the density functiof’ (¢, 2, r,t) that describes the
ical prediction (dashed red) f@i<, k) = (1,8) (a),(8,1) (b), and  gensijty of communities with average phasemean natural
(4, 8_) (c). The vertical arrows indicate the theoretical valuetfar frequency(, and degree of local synchromyat timez. In
locking frequency obtained from Eq. (21). analogy with individual oscillators, the number of communi
ties is conserved anfl must satisfy the continuity equation
above into Eq. (18), obtaining that communities lock when? " + 9y (F¥) + 9, (F7) = 0. However, we find that the
their frequency, satisfies degrees of local synchronquckly reac.h a stationary distri-
bution, so we seek solutions whede(Fi) = 0. In analogy
~1/2 to the classical Kuramoto model, we find thgtapproaches
(21) a fixed point if communityr phase-locks, or otherwise forms
—9)?2 a stationary distribution with other driftings. With Eq. (16)
the continuity equation becomes

" 2
|QU|§Q:KR<1_ g
(k-2

The locking frequency only is defined fér— K/C > 20,
which defingsanew bifuicgtigq. WheénrK/C > 26 (region  aF+0, {F [Q K <T2 + 1> Im(Ze“f’)} } —0. @2
D), the locking frequenc is finite and only some communi- 2r
ties phase-lock. A& — K/C approachegd from above, the ) .
locking frequency diverges. Fdr— K/C < 26 (region C), ~Wherer = r(Q, R) is the steady-state value ofgiven by
all communities phase lock. The boundary between these twgd- (17) or implicitly by Eq. (20).

regions for largel is denoted as bifurcation (ii), and is indi- Like Eq. (6), Eq. (22) is of the form studied by Ott and

cated as a solid black line in Fig. 1. A heuristic interprietat Antonsen in Refs. [25, 29], and can be solved with a similar
of this transition is that wheh is increased through bifurca- ansatz. Thus. we mak,e thé ansatz

tion (ii), communities with largé<,| desynchronize because

the local coupling strength causes them to prefer an angular G(Q) oo _
velocity U much closer to their own mean frequeriey than F(,Q,rt)=—+= <1 + Z A" (Q,r, t)e™ + c.c.
the mean frequency of the entire network. 2 n=1
To test Egs. (17), (20), and (21), we simulate the system (23)

with N, = C = 400 andé = A = 1 with (K, k) = (1,8), i . i
(8,1), and (4, 8) (parameters from regions B, C, and D, re- Inserting Eq. (23) into Eq. (22), we find that
spectively) and plot time-averaged as a function of2, in

Figs. 3(a), (b), and (c), respectively. Results from disat- A+iQA+ K <
ulation are plotted in blue circles and compared to thecaéti 4

r2 41

>(A2Z—Z*) =0. (24)



0.5

—e—simulation
- - -theory

4

6

FIG. 4. (Color online) Degree of global synchrod¥ (main) and
average local synchrony (inset) versuskK from simulation (blue
circles) withN, = C = 400, 6 = A = 1, andk = 4 compared
to theoretical prediction from Egs. (30), (31), (32) and)(@8shed
red).

We calculateZ as:
Z:/OO /O%F(q/),ﬂ,r,t)reiwdwdQ
= /OO G(Q)A*(Q, r, t)rdS2. (25)
Sincer (2, R) is defined implicitly by Eq. (20) for locked

communities and by Eq. (17) for any drifting communities,
it is potentially piecewise-defined and not smooth. Howgever

to a very good approximation we can do this integral using

residues by considering the solutio(f2, R) of Eq. (20) for
12| < Qwhich is real and positive for If§2) — 0~ as a func-
tion of complexQ2. The functionr is analytic when IniQ2) <
0, and its real part convergesit(f2, R) as Im(§2) — 0~ with

Q| < Q, while its imaginary part converges to an odd func-

tion. As Im(Q) — 0~ for || > Q, the real part of* dif-
fers from Eq. (17) by a bounded amount.Gf(?) decgys o)

quickly that the error in approximatingby 7 for || > Q can

Evaluating Eq. (24) af2 = —iA andr = 7 closes the
complex dynamics fo#:

. K AN
Z-l—AZ-i—Z(T +1)(§Z —Z):O. (27)
The evolution ofR and¥ are given by
. K _ o R?
R= —AR+ZR(7~ +1) (1 - 5) ; (28)
U =0. (29)

We note that these equations are valid provided that'(&)in

the manifold of Poisson kernels [i.e. is of the form in Eq.)[23
and (b) the distribution of degrees of local synchrange-
mains stationary as the system evolves. Regarding assampti
(a), Ref. [29] shows that in the Kuramoto model all solutions
approach this manifold as— oo. The stable fixed points of
Eq. (28) are

0 if K < 225,
= 7 /1= WAH) otherwise. (30)

To eliminate7 we assume nonzer& (and thus7

V4A/K — 1), and insert Eq. (30) into Eq. (20) witf,
—iA. We choose the real, positive solution given by

\/ (31)

which we insert back into Eq. (30) to obtalh We note that
other solutions fof- are purely imaginary or negative. From
the top line of Eq. (30), the imaginary solutions foresult
in a critical value forK larger thardA, while real solutions
result in a critical value smaller thai?\, and thus we choose
the positive real solution (the negative solution resultg i<

A—6+/(k+K—06)?2-2(k+K+0)A + A2
k+K

be neglected when computing the integral, we can approxid). Finally, to calculate the bifurcation curve for the onsét

mate the integral above by the integral which kasstead
of r (due to the symmetry af/, the imaginary part of does
not contribute to the integral). The integral witton the real
line can be done by deforming the contour of integration t
the line connecting; = — B — ic t0 2o = B — i¢, WhereB,

e > 0, and closing the contour with the semi-circle in the neg-
ative complex plane connecting to z;. Using the residue
theorem, and takingg — oo ande — 0, we obtain

7 = TAT(—iA T 1), (26)
where we have defined = 7(—iA, R). For the Lorenzian
distribution with A = 1, we expect this approximation to be
excellent wherf? 2> 4, but the agreement between the direct
numerical simulation of Egs. (2) and the theoretical predic
tions is very good even for situations in whi€his smaller
[e.g., Fig. 5 (a) close to the transition f&]. We note that if
(k, K) is in region C [see Fig. 1] using to evaluate the in-

tegral in Eg. (25) is exact since all communities lock and are

described by Eq. (20).

global synchrony, we lef — /4A/K — 1" which yields
the curvek = 25— — £ This curve is indicated as a dashed

black curve in F_ig. 1 and gives bifurcation (iii) from regién

%o C and bifurcation (iv) from region B to D.

We now seek to compute the mean degree of local syn-
chrony7. In the largeC' limit we consider heret is given
by an integral equation. IfK, k) is in region C, i.e.k < 20,
then since each community becomes phase-locked, we simply
have

e / T QR R)AS. (32)

However, if (K, k) is in region D, i.e.k > 24, then because
some communities phase lock and some do not, we have that

-
|Q|<Q(R)

G(Q)r(Q, R)dQ + ~/|Q>§(R) G(Q)(r)dQ,

(33)



ical predictions plotted in black dashed and dot-dashed, re
spectively. Note that for these parameters = 1/1/2, so
my > m. > me, and accordingly we see a separation of local
and global onset in Fig. 5(a), but not in Fig. 5(b).

We interpret these results as follows. Along paths where
k > m.K local coupling effects dominate global coupling
effects. In this case the community structure is strong ghou
to yield a hierarchical ordering of synchrony, i.e. a sefjana
in the onset of local and global synchrony. However, when
k < m.K global coupling effects dominate local coupling
effects. In this case the community structure is weak enough
to yield a simultaneous onset of local and global synchrony.

0.5 VI. HETEROGENEITIES

We now discuss how the results above generalize when
A some of the assumptions previously used are relaxed. We al-
s aaaaa-aa-i -2t o ’ low for heterogeneities in both the sizes of communities and

0 2 4 6 ; iatribti i

spread in frequency distributiogs (w), i.e. we allown, and

FIG. 5: (Color online) Degrees of global synchroyblue circles) 0o to vary from community to community. We also allow the

.5: i % ueci . ool 1o
and average local synchrony(red triangle) along paths (&) = :cocal ind /glol?jal gc;upllng str/engths tovary, lettiNg” = k
3K/2 and (b)k = K /2 from simulation withNV, = C' = 1000 and oro =o' andk? foro 7o' ) )
S=A=1. Beginning with local synchrony, we carry out a dimension-
ality reduction on the local scale and obtain the following
ODEs:

whereQ} is the locking frequency given by Eq. (21).
To illustrate these results, we simulate the system with b= —sr 4 Cn (5 — K7\, 1- ra
N, = C =400, = A = 1,k = 4, and letK vary be- 7 77 lo c )7 2

tween zero and six. In Fig. 4 we plét (main) andr (inset) _ 2
from simulation in blue circles and the theoretical predits + K7 5 ZRcos(¥ — vy ) (34)
from Eqgs. (30), (31), (32) and (33) in dashed red. Theorktica 2
predictions agree well with simulations. d}g =Q, + K° <ﬁ) Rsin(U — 1),). (35)
To
V. HIERARCHICAL SYNCHRONY Thus, when® = 0, we have that
. _ 0 if Cn, (k7 — K7/C) < 26,

With a complete understanding of both local and globalr, = 1 2., otherwise

synchrony in the system studied above, we now discuss hi- \/ Cno (k7 —K/C) ’

erarchical synchrony. We consider moving slowly (compared . ) (36)

with A=) along some path ifiK, k) parameter space, re- The onset of local synch_rony in community occurs at

stricting paths to lines starting &b, 0) for simplicity. From k7 — K7/C = 26, /(C,), i.e. in general synchrony occurs

our analysis we find that bifurcations intersect(af k) =  at d|ﬁere_nt values for different communities. Whén> 0,

(A — 6+ A2+ 62 + 6AJ,25). Thus, for linesk = mK, if communityc becomes phase-locked if

m > me = A—5+\/A225+62+6A5 the onset of local synchrony 24

occurs before the onset of global synchrony. On the other 0, < K“R—Z—, (37)

hand, ifm < m. the onset of local and global synchrony oc- 2ro

cur simultaneously. Choosing: = 3/2 andms = 1/2,  in which case-, satisfies

in Figs. 5 (a) and (b) we plot the steady-state valueg?of

and7 resulting from moving along the linés = m; K and ., K° 1—r2

k = mo K, respectively, fotV, = C = 1000 andd = A = 1. do7e = Cllo <k - 7) o5

We note thatV, = C' = 1000 is used in these simulations

rather than400 as in the previous simulations because we I K"Rl —r2 \/1 4Q2r2
2

find that finite-size effects are more prevalent near bifiiwoa - K72R2(r2 +1)% (38)

(iii). This is most likely due to the fact that at this bifurca

tion the onset of local and global synchrony occurs simultaotherwise community will drift. Note that for a given value
neously. The values aR and7 from simulation are plotted of R, the behavior ofr, depends not only of,, but also
in blue circles and red triangles, respectively, with tle¢or Cn,, d,, k7, andK?, so in general there is no single locking
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frequencﬁ that separates locked and drifting communities atcertain choices, e.g. exponentials or linear combinatains

Q, = 1Q. Dirac delta functions, further analytical results areiatihle
To study global synchrony, we again perform a dimensionbut not presented here.

ality reduction on the global scale. Singg, 0., k7, and K°

vary from community to community, after sendiig — oo

we introduce the density functidfi(y, Q,r, 7, d, k, K, t) that VIl. DISCUSSION

represents the fraction of communities with phasemean

natural frequency?, degree of local synchrony sizen, fre-

guency distribution spreadl and local and global coupling

strengthst and K at time¢. Noting thatr, depends om,,

0o, k7, and K7 and again looking for solutions with station-

aryr,, I’ satisfies the continuity equation

We have described and solved fully the steady-state dynam-
ics of coupled phase oscillators on a modular network with a
large number of oscillators in each community and a large
number of communities. In particular, we have studied lo-
cal and global synchrony, i.e. synchrony within and between

P2 41 _ communities, respectively. First we assumed a large num-
O F + Oy {F [Q + K ( 5 ) Im(Ze“")} } =0, (39) Dber of oscillators in each community and used a local dimen-
" sionality reduction to study local synchrony. Next, whea th
number of communities is large, we showed that a global di-
mensionality reduction can be done to study global synghron
Our analytical results shed light on the phenomenon of hiera
chical synchrony, characterized by synchronization orcallo
scale before it occurs on a global scale, which occurs when
the community structure of the network is strong enough. The
G(Q)H (n)D(0)J(k)L(K) system analyzed in this paper modeled synchrony on a net-
o1 work with two community levels, but synchrony on networks
) with more levels, e.g. communities with subcommunities, ca
(40)

where now depends om, ¢, k, andK in addition toS2 andR.
We assume that for each community the mean frequengy
sizen,, frequency distribution spreaq, and local and global
coupling strength&” and K? are all chosen independently
and make the ansatz

F(w? Q? T? "77 57 k? K’ t) =

be modeled in a similar way and analogous analytical results
can be obtained.
Although we have assumed strong uniform coupling within

X <1 + Z A, 0.k, K, 1)e™Y + c.c.

n=1

which yields the ODE communities and weak uniform coupling between communi-

. K /241 ties, we conjecture, based on _preli_minary n_ur_nerical experi
A+iQA+ — < > (A2Z — Z*) = 0. (41) ments, that the system studied in this paper is in some cases a

4 r good quantitative model for networks where links between os

cillators in the same community are dense and links between
oscillators in different communities are sparse.
An interesting result is that the system of planar oscitkato
oo oo oo el oo 2w representing community interactions [Egs. (15) and (16)] a
:/ / / / / / F(,Q,1m,m,0,k, K,t) mits an approximate low dimensional description. The anal-
ysis of community synchrony in Sec. IV is, to the best of our

Finally in the continuum limitZ can be calculated by the
integral

x re'? dipdQudndsdkd K knowledge, the first low-dimensional description of osddr
systems in which each oscillator has a phase and an associ-
/ / / / H(n J(k)L(K) ated oscillation amplitude. Other systems of coupled plana

oscillators could be analyzed in the same way.
X TA* (=L, 7,m, 0, k, K, t)dndddkdK. (42)

Equations. (41) and (42) govern the global synchrony of
the system and must be solved self-consistently with thad loc Acknowledgements
dynamics, governed by Egs. (34) and (35). For arbitrary dis-
tribution functionsH (), D(9), J(k), and L(K) the integral The work of PSS and JGR was supported by NSF Grant
in Eqg. (42) might need to be evaluated numerically, but forNo. DMS-0908221.
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