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We study a system composed of two partially interdependent networks, when nodes in one network fail they
cause dependent nodes in the other network to also fail. In this paper, percolation of partially interdependent
networks under targeted attack is analyzed. We apply a general technique which maps a targeted-attack problem
in interdependent networks to a random-attack problem in a transformed pair of interdependent networks. We
illustrate our analytical solutions for two examples: (i) the probability for each node to fail is proportional to its
degree, and (ii) each node has the same probability to fail inthe initial time. We find that: (i) for any targeted-
attack problem, for the case of weak coupling, the system shows a second order phase transition, and for the
strong coupling, the system shows a first order phase transition, (ii) for any coupling strength, when the high
degree nodes have higher probability to fail, the system becomes more vulnerable, and (iii) there exists a critical
coupling strength, when the coupling strength is greater than the critical coupling strength, the system shows a
first order transition, otherwise, the system shows a secondorder transition.

PACS numbers: 89.75.Hc, 64.60.ah, 89.75.Fb

I. INTRODUCTION

Complex networks exist in many different areas in the real world and are studied in the past 15 years. However, almost all
researchers have been focused on properties of a single network component that does not interact and depend on other networks
[1–11]. Such situations rarely, if ever, occur in reality [12–16]. In 2010, Buldyrev et al. [12] developed a theoreticalframe-
work for studying the process of cascading failures in fullyinterdependent networks caused by random initial failure of nodes.
Surprisingly, they found a first order percolation transition and that a broader degree distribution increased the vulnerability of
interdependent networks to random failure, in contrast to the behavior of a single network. Recently, five important generaliza-
tions of basic model [13–19] are proposed sequentially. (i)Parshani et al. [13] presented a theoretical framework for studying
the case of partially interdependent networks. Their findings showed that reducing the coupling strength lead to a change from a
first to second order percolation transition. (ii) Because in the real word, a network is attacked not always randomly, Huang et al.
[14] investigated the robustness of fully interdependent networks under targeted attack. The result implied that interdependent
networks are difficult to defend. (iii) In real scenarios, the assumption that one node in a network depends only on one node in
the other network is not valid. Shao et al. [17] investigateda framework to study the percolation of two interdependent networks
with multiple support-dependent relations. (iv) Hu et al. [18] studied percolation of a pair of coupled networks with both interde-
pendency links and connectivity links. They found unusual discontinuous changes from second order to first order transition as a
function of the dependency coupling between the two networks. (v) In the real word, more than two networks coupled together,
Gao et al. [15, 19] proposed a framework to study the robustness of network of networks (NON). Their results showed that for
a treelike ER NON the robustness decreases with the number ofnetworks and for a looplike ER NON the giant component is
independent on the number of networks. However, for real scenarios, two infrastructures are always partially coupled together
[20, 21], such as energy and communications, power stationsand transportation etc., and they might be attacked intentionally on
high degree nodes. Understanding the robustness due to partially interdependency and under targeted attack is one of the major
challenges for designing resilient infrastructures.

Here we develop a generalized framework to study the percolation of partially interdependent networks under targeted attack.
We further develop a general technique [14] which maps the targeted-attack problem in interdependent networks to the random-
attack problem in a transformed pair of interdependent networks. We find that: (i) for any targeted-attack problem, for the case
of weak coupling, the system shows a second order phase transition, and for strong coupling, the system shows a first order
phase transition, (ii) for any coupling strength, when the high degree nodes have more probability to fail, the system becomes
more vulnerable, and (iii) there exists a critical couplingstrength, when the coupling strength is greater than the critical coupling
strength, the system shows a first order transition, otherwise, the system shows a second order transition. In the following
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two examples, the critical coupling strength can be explicitly derived analytically: (i) the probability for each nodeto fail is
proportional to its degree, and (ii) each node has the same probability to fail in the initial time. Although case (ii) wassolved in
[15] we present here a more general case where both interdependent networks are initially attacked randomly.

II. THE MODEL

In this model, two networksA,B with the number of nodesNA, NB, and within each network, the nodes are connected with
degree distributionsPA(k) andPB(k) respectively. We suppose that the average degree of the networkA is a and the average
degree of the networkB is b. In addition, a fractionqA of A nodes depends on the nodes in networkB and a fractionqB of B
nodes depends on the nodes in networkA. That is, if nodeAi of networkA depends on nodeBj of networkB andBj depends
on nodeAs of networkA, thens = i, which satisfies the no-feedback condition [19]. Consequently, when nodes in one network
fail, the interdependent nodes in the other network also fail, and we suppose that only the nodes in the giant component remain
functional, which leads to further fail in the first network.This dynamic process leads to a cascade of failures. In orderto study
the cascading failure under targeted attack, we apply the general technique that a targeted-attack problem in networkscan be
mapped to a random-attack problem [14, 22]. A valueWα(ki) is assigned to each node, which presents the probability that a
nodei with ki links becomes inactive by targeted-attack. We focus on the family of functions [23]:

Wα(ki) =
kαi

∑N

i=1 k
α
i

,−∞ < α < +∞. (1)

Whenα > 0, nodes with higher degree are more vulnerable for the targeted attack, while forα < 0, nodes with lower degree
have higher probability to fail. Forα = 0, all the nodes in a network have the same probability to fail,which is equivalent to the
case of random attack.

Without loss of generality, we begin by studying the generating function and the giant component of networkA after targeted
attack, which can be directly applied to networkB. Next we study the generating functions of networkA at each iteration step.

(i) The generating function of networkA is defined as

GA0(x) =
∑

k

PA(k)x
k. (2)

The generating function of the associated branching process,GA1(x) = G′
A0(x)/G

′
A0(1) [12, 13, 24, 25]. The average degree

of networkA is defined asa = k̄ =
∑

k PA(k)k.
(ii) We intentionally remove1− p1 fraction of nodes from networkA according to Eq. (1) and remove the links between the

removed nodes. Thus, we obtain that the generating functionof the nodes left in networkA is [14, 25, 26]

GAb(x) =
∑

k

P p1

A (k)xk =
1

p1

∑

k

PA(k)h
kα

1 xk, (3)

where the new degree distribution of the remainingp1 fraction of nodesP p1

A (k) ≡ 1
p1

PA(k)h
kα

1 , andh1 satisfies

p1 = Gα(h1) ≡
∑

k

PA(k)h
kα

1 , h1 ≡ G−1
α (p1). (4)

The average degree of the remaining nodes in networkA in this step is̄k(p1) =
∑

k P
p1

A (k)k.
(iii) We remove the links between the removal nodes and the remaining nodes. Thus we obtain that the generating function of

the network composed by the remaining nodes is [26]

GAc(x) = GAb(1 − p̃1 + p̃1x), (5)

wherep̃1 is the fraction of the original links that connect to the nodes left, which satisfies

p̃1 =
p1NAk̄(p1)

NAk̄
=

∑

k PA(k)kh
kα

1
∑

k PA(k)k
. (6)

Then we can find the equivalent networkA′ with generating functioñGA0(x), such that after a fraction1− p1 of nodes random
removed, the new generating function of nodes left inA′ is the same asGAc(x). By solving the equatioñGA0(1− p1 + p1x) =
GAc(x), and Eq. (5) , we can get

G̃A0(x) = GAb(1−
p̃1
p1

+
p̃1
p1
x). (7)
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And the generating function of the associated branching process,G̃A1(x) = G̃′
A0(x)/G̃

′
A0(1).

(iv) Thus, the targeted-attack problem on networkA can be mapped to random-attack problem on networkA′. For network
A, 1− p1 fraction of nodes in networkA is intentionally removed according to Eq. (1), the fractionof nodes that belongs to the
giant component is [14, 26, 27]:

pA(p1) = 1− G̃A0[1− p1(1− fA)], (8)

wherefA ≡ fA(p1) satisfies a transcendental equation

fA = G̃A1[1− p1(1 − fA)]. (9)

For networkB, 1− p2 fraction of nodes in networkB is intentionally removed according to Eq. (1), the fractionof nodes that
belongs to the giant componentpB(p2) is similar to Eq. (8), but changep1 to p2 andA toB.

According to the definition of the fraction of nodes that belongs to the giant component, we perform the dynamic of cascading
failures as follows: Initially,1 − p1 and1 − p2 fraction of nodes are intentionally removed from networkA and networkB
respectively. The remaining fraction of networkA nodes after an initial removal of1 − p1 is ψ′

1 = p1, and the remaining
fraction of networkB nodes after an initial removal of1 − p2 is φ′0 = p2. The remaining functional part of networkA
contains a fractionψ1 = ψ′

1pA(ψ
′
1) of network nodes. Accordingly, for the same reason, the remaining fraction of networkB is

φ′1 = p2[1 − qB(1 − pA(ψ
′
1)p1)], and the fraction of nodes in the giant component of networkB is φ1 = φ′1pB(φ

′
1). Then the

sequence,ψn andφn, of giant components, and the sequenceψ′
n andφ′n, of the remaining fraction of nodes at each stage of the

cascading failures, are constructed as follows:

ψ′
1 = p1, ψ1 = ψ′

1pA(ψ
′
1),

φ′0 = p2, φ
′
1 = p2[1− qB(1− pA(ψ

′
1)p1)], φ1 = φ′1pB(φ

′
1),

ψ′
2 = p1[1− qA(1− pB(φ

′
1)p2)], ψ2 = ψ′

2pA(ψ
′
2),

φ′2 = p2[1− qB(1− pA(ψ
′
2)p1)], φ2 = φ′2pB(φ

′
2),

· · ·

ψ′
n = p1[1− qA(1− pB(φ

′
n−1)p2)], ψn = ψ′

npA(ψ
′
n),

φ′n = p2[1− qB(1− pA(ψ
′
n)p1)], φn = φ′npB(φ

′
n).

(10)

Fig. 1 shows the giant componentψn andφn as functions of time stepn for different values ofa = b, p1, p2, qA, qB andα. The
simulation results show excellent agreement with the theory, system (10). Fig. 1(a) shows that a finite giant component exists
for p2 > pc2, and fig. 1(b) shows the case whenp2 < pc2, the two networks collapse.

Next, we study the steady state of system (10) after the cascading failures, which can be represented byψ′
n, φ

′
n at the limit of

n → ∞. The limit must satisfy the equationsψ′
n = ψ′

n+1, φ
′
n = φ′n+1 since eventually the clusters stop fragmenting and the

fractions of randomly removed nodes at stepn andn + 1 are equal. Denotingψ′
n = x, φ′n = y, we arrive at a system of two

symmetric equations:

x = p1[1− qA(1 − pB(y)p2)],

y = p2[1− qB(1 − pA(x)p1)].
(11)

III. ANALYTICAL SOLUTION

In this section we present two examples that can be explicitly solved analytically: (i)α = 1 and (ii)α = 0 for two interdepen-
dent Erdös-Rényi (ER) networks. Case (ii) is similar to that of Parshani et al [13] but more general. For the ER [28–30] networks,
characterized by the Poisson degree distribution,GA0(x) = GA1(x) = exp[a(x− 1)],GB0(x) = GB1(x) = exp[b(x− 1)].

(i) For the case ofα = 1, substitutingα = 1 into Eqs. (3)-(7), we obtain thatGAb(x), GAc(x) and G̃A0(x) can be
represented byGA0(x), which reflects the mapping from a targeted-attack problem to random-attack problem. Then we get
G̃A0(x) = G̃A1(x) = exp[ah21(x− 1)], G̃B0(y) = G̃B1(y) = exp[bh22(y − 1)]. Thus, from Eq. (9) we obtain

fA = exp[−ah21x(1 − fA)], fB = exp[−bh22y(1− fB)]. (12)

Substituting Eqs. (8), (9), (11) into Eqs. (12), by eliminating x andy, we obtain
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FIG. 1: (a) The giant component of both networksA andB, ψn andφn, after timen cascading failures for the case when
a = b = 3, p1 = 0.8, p2 = 0.9 > pc2, qA = 0.45, α = 1 andqB = 0.15. The simulation results show excellent agreement
with the theory, system (10). All estimates are the results of averaging over 40 realizations. (b) The giant component of
networkA, ψn, after timen cascading failures for the case whena = b = 3, p1 = 0.9, qA = 0.65, qB = 0.7, α = 0, and
p2 = 0.6726 < pc2 = 0.673. The simulation results show excellent agreement with the theory, system (10). In both (a) and (b),

NA = NB = 2× 105.

fA = e−ap1h
2

1
(1−fA)[1−qA+p2qA(1−fB)],

fB = e−bp2h
2

2
(1−fB)[1−qB+p1qB(1−fA)].

(13)

According to the definition ofψ∞ = pA(x)x andφ∞ = pB(y)y, we obtain the giant component of networksA andB at the
end of the cascading failure respectively as

ψ∞ =p1(1− fA)[1 − qA + p2qA(1 − fB)],

φ∞ =p2(1− fB)[1 − qB + p1qB(1− fA)].
(14)

Solving the Eqs. (13), we obtainfA andfB, and then we obtainψ∞ andφ∞ by substitutingfA andfB into Eqs. (14).
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FIG. 2: (a) The giant componentφ∞ of networkB as a function of initial attack on networkB, 1 − p2, whenp1 = 0.7, a = 3,
b = 4, qB = 0.7 andα = 1 for two differentqA. (b) The giant componentφ∞ of networkB as a function of initial attack on
networkB, 1 − p2, whenp1 = 0.9, a = 3, b = 4, qB = 0.7 andα = 1 for two differentqA. For the weak coupling strength
(qA = 0.1), the system shows a second order phase transition, and for the strong coupling strength (qA = 0.7), the system shows
a first order phase transition. From (a) and (b), we find that the changes of the critical threshold depends on the changes ofp1.
(c) The coupling strength1− qA as a function of1− pc2, for different values of remaining fraction of nodes after initial attack on
networkA, p1, whena = 3, b = 4, qB = 0.7. For eachp1, 1− qA as a function of1− pc2 is divided into two region by a symbol
◦. The dash-dot curve above a symbol◦ represents the second order phase transition and the solid curve below the symbol◦
represents the first order phase transition. All the circlesare connected to form a critical line, which represents the1 − qcA as a

function of1− pc2. It also shows thatqcA increases asp1 increases.

Numerical simulation results of system (14) are shown in Fig. 2. As shown in Fig. 2, for fixeda, b, qB, there exists a critical
pc2, whenp2 < pc2, φ∞ = 0, whenp2 > pc2, φ∞ > 0. For the weak coupling case, i.e., whenqA is small (qA = 0.1 in Fig. 2),
φ∞(pc2) = 0, which shows a second order phase transition, and the transition threshold is defined aspII . For strong coupling,
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i.e., whenqA is large (qA = 0.7 in Fig. 2),φ∞(pc2) > 0 , which represents a first order percolation phase transition, and the
transition threshold is defined aspI . Fig. 2(a) and (b) indicate that there exists a criticalqcA, which corresponds to the condition
whenpI = pII , whenqA < qcA, the system shows a second order phase transition, and whenqA > qcA, the system shows a first
order phase transition. Furthermore, Fig. 2(a) and (b) indicate that the critical threshold changes withp1, i.e.,qcA also changes
with p1. In Fig. 2(c), we studied by numerical simulation,1− qA as a function of1− pc2, for different values ofp1 whena = 3,
b = 4, qB = 0.7. As shown in Fig. 2(c), for eachp1, there exists a criticalqcA (◦), which corresponds to the conditionpI = pII .
Moreover,qcA increases asp1 increases, which is represented by the circle curve in Fig. 2(c), and indicates that the two networks
becomes more robust asqA decreases.

Next, we study the transition thresholdpI andpII analytically whena = b = k̄, p1 = p2 = p, qA = qB = q. In this case,
from Eqs. (13) and (14), we obtain that the giant components of networksA andB at the end of the cascading failureψ∞ = φ∞
satisfies

φ∞ = p(1− e−k̄h2φ∞)[1− q + pq(1− e−k̄h2φ∞)], (15)

andf ≡ fA = fB satisfies

f = e−k̄ph2(1−f)[1−q+pq(1−f)], (16)

whereh = ln p/k̄ + 1. The condition for the first order transition(p = pI) is

1 = f [k̄pIh2(1− q) + 2k̄(pI)2qh2(1 − f)], 0 ≤ f < 1. (17)

And solving Eq. (16) forf → 1 yields the condition for the second order transition(p = pII),

k̄pII(1− q)h2 = 1. (18)

0 0.5 1

0.2

0.4

0.6

0.8

1

1−pI,1−pII

1−
q

 

 

k = 3

Second order
Critical line
First order

k = 10

k = 4

k = 5

k = 8

FIG. 3: The coupling strength1 − q = 1 − qA = 1 − qB as a function of the first order and second order phase transition
threshold,1− pI , pII , for different values of average degreek̄ = a = b, whenα = 1. The circles curve shows the critical line,
below which the system shows a first order phase transition, and above which the system shows a second order phase transition.

The simulation of the critical line agrees well with the theory Eq. (20).

The analysis of Eqs. (17) and (18) shows the first order transition atp = pI occurs for networks with strong coupling (q > qc),
whereas the second order transition atp = pII occurs for networks with weak coupling (q < qc). This behavior is shown in Fig.
3, where the solid curves show the case of first order phase transition and the dash-dot curves show the case of second orderphase
transition. The critical value ofqc (andpc) for which the phase transition changes from first order to second order is obtained
when the conditions for both the first and second order transitions are satisfied simultaneously. Applying both conditions, Eqs.
(17) and (18), we obtain

k̄[1 + ln(
1− qc
2qc

)/k̄]2 =
2qc

(1− qc)2
. (19)
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Solving Eq. (19), we obtainqc, and then we can getpc by

pc =
1− qc
2qc

. (20)

(ii) For the case whenα = 0, W0 = 1/N , thus the targeted-attack problem is equivalent to the random-attack problem
studied in Ref. [13]. For the case of two Erdös-Rényi (ER) [28–30] networks with average degreesa andb, we can easily get
pA(x) = 1− fA, pB(y) = 1− fB from the Eqs. (8) and (9), and system (11) becomes

x = p1[1− qA + p2qA(1− fB)],

y = p2[1− qB + p1qB(1− fA)].
(21)

According to Eqs. (9), (21),fA, fB satisfy

fA = e−ap1(1−fA)[1−qA+p2qA(1−fB)],

fB = e−bp2(1−fB)[1−qB+p1qB(1−fA)].
(22)

Thus, we obtain the fraction of nodes in the giant componentsof networksA andB at the end of the cascading process

ψ∞ = p1(1− fA)[1− qA + p2qA(1− fB)],

φ∞ = p2(1− fB)[1− qB + p1qB(1− fA)].
(23)

Our framework is equivalent to Ref. [13] whenp2 = 1. In detail, whenp2 = 1, Eqs. (22) are the same as Eqs. (7) in Ref. [13].
Here we study the more general case wherep2 < 1.
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FIG. 4: (a) The giant componentφ∞ of networkB as a function of initial attack on networkB, 1 − p2, whenp1 = 0.7,
a = b = 3, qB = 0.7 andα = 0 for two differentqA. (b) The giant componentφ∞ of networkB as a function of initial attack
on networkB, 1 − p2, whenp1 = 0.9, a = b = 3, qB = 0.7 andα = 0 for two differentqA. For the weak coupling strength
(qA = 0.1), the system shows a second order phase transition, and for the strong coupling strength (qA = 0.65), the system
shows a first order phase transition. (c) The coupling strength 1 − qA as a function of1 − pc2, for different values of remaining
fraction of nodes after initial attack on networkA, p1, whena = b = 3, qB = 0.7. For eachp1, 1 − qA as a function of1 − pc2
is divided into two region by a symbol◦. The dash-dot curve above a symbol◦ represents the second order phase transition and
the solid curve below the symbol◦ represents the first order phase transition. All the circlesare connected to form a critical line,

which represents1− qcA as a function of1− pc2. It also shows thatqcA increases asp1 increases.

For the caseα = 0, numerical simulation results of system (23) are shown in Fig. 4. For givena = b, qB, p1, there exists a
critical pc2, whenp2 < pc2, φ∞ = 0, whenp2 > pc2, φ∞ > 0. For weak coupling, i.e., whenqA is small (qA = 0.1 in Fig. 4),
φ∞(pc2) = 0, representing a second order phase transition, and the percolation threshold is defined aspII . For strong coupling,
i.e., whenqA is large (e.g.,qA = 0.65 in Fig. 4),φ∞(pc2) > 0 , representing a first order phase transition, and the percolation
threshold is defined aspI . Similar to the case whenα = 1, Fig. 4 indicates that there exists a criticalqcA, which corresponds
to the condition whenpI = pII . WhenqA < qcA, the system shows a second order phase transition, and whenqA > qcA, the
system shows a first order phase transition. Furthermore, Fig. 4 indicates that the critical threshold changes withp1, i.e.,qcA also
changes withp1. In Fig. 4(c), we investigate using numerical calculations, 1 − qA as a function of1 − pc2, for different values
of p1 whena = b = 3, qB = 0.7. As shown in Fig. 4(c), for eachp1, there exists a criticalqcA (◦), which corresponds to the
conditionpI = pII . Moreover,qcA increases asp1 increases, which is represented by the curve with circles inFig. 4(c), and
indicates that the two networks become more robust asqA decreases.

By substitutinga = b = k̄, p1 = p2 = p, qA = qB = q into Eqs. (22) and (23), we obtain that the giant component of
networksA andB at the end of the cascading failureψ∞ = φ∞ satisfies

φ∞ = p(1− e−k̄φ∞)[1− q + pq(1− e−k̄φ∞)], (24)
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andf ≡ fA = fB satisfies

f = ek̄p(f−1)[1−q+pq(1−f)], 0 ≤ f < 1. (25)

Thus we obtain the condition for the first order transition(p = pI)

1 = f [k̄pI(1− q) + 2k̄(pI)2q(1− f)]. (26)

Solving Eq. (25) forf → 1 yields the condition for the second order transition(p = pII),

k̄pII(1 − q) = 1. (27)

Similar to the case ofα = 1, the analysis of Eqs. (26) and (27) shows that the first order transition atp = pI occurs for networks
with strong coupling (q > qc), whereas the second order transition atp = pII occurs for networks with weak coupling (q < qc).
This behavior is shown in Fig. 5, where the solid curves show the case of first order phase transition and the dashed-dottedcurves
show the case of second order phase transition. The criticalvalues ofqc (andpc) for which the phase transition changes from first
order to second order is obtained when the conditions for both the first and second order transitions are satisfied simultaneously.
Applying both conditions Eqs. (26) and (27), we obtain

pc =
k̄ + 1−

√

2k̄ + 1

k̄
,

qc =

√

2k̄ + 1 + 1

2k̄
.

(28)
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Critical line
First order
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k = 4
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FIG. 5: The coupling strength1 − q = 1 − qA = 1 − qB as a function of the first order and second order phase transition
threshold,1 − pI , 1 − pII , for different values of average degreek̄ = a = b, whenα = 0. The curve of circles shows the
critical line, below which the system shows a first order phase transition, and above which the system shows a second order

phase transition. The simulation of the critical line agrees well with the theory Eq. (28).

IV. NUMERICAL SOLUTIONS OF THE GENERAL CASE

Our theoretical study can be applied to any case ofα. In this section, we investigate the solutions for the general cases ofα.
Fig. 6 shows the giant componentφ∞ of networkB as a function of initial attack on networkB, 1−p2 for α = 2 [Fig. 6(a)] and
α = −1 [Fig. 6(b)]. For givena, b, qB, p1, there exists a criticalpc2, whenp2 < pc2, φ∞ = 0, whenp2 > pc2, φ∞ > 0. For weak
coupling, i.e., whenqA is small (qA = 0.1 in Fig. 6),φ∞(pc2) = 0, which shows a second order phase transition. For strong
coupling, i.e., whenqA is large (qA = 0.8 in Fig. 6),φ∞(pc2) > 0 , which shows a first order phase transition. Fig. 6 indicates
that there exists a criticalqcA, whenqA < qcA, it shows a second order phase transition, and whenqA > qcA, the system shows a
first order phase transition. Furthermore, Fig. 6 indicatesthat the critical threshold changes withα, i.e.,qcA also changes withα.

In Fig. 7, we investigate the numerical simulation of1 − qA as a function of1 − pc2, for different values ofα whena = 3,
b = 4, p1 = 0.8, qB = 0.7. As shown in Fig. 7, for eachα, there exists a criticalqcA (◦). Moreover,1 − qcA increases as
α increases, which is represented by the circle curve in Fig. 7, and indicates that the two networks becomes more robust asα
decreases.
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FIG. 6: (a) The giant componentφ∞ of networkB as a function of initial attack on networkB, 1 − p2, whenp1 = 0.8, a = 3,
b = 4, qB = 0.7 andα = 2 for two differentqA. (b) The giant componentφ∞ of networkB as a function of initial attack on
networkB, 1 − p2, whenp1 = 0.8, a = 3, b = 4, qB = 0.7 andα = −1 for two differentqA. For weak coupling strength
(qA = 0.1), the system shows a second order phase transition, and for strong coupling strength (qA = 0.8), the system shows a

first order phase transition.
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FIG. 7: The coupling strength1 − qA as a function of1 − pc2, for different values ofα, whena = 3, b = 4, qB = 0.7 and
p1 = 0.8. The circles curve shows the critical line, below which the system shows a first order phase transition, and above which

the system shows a second order phase transition.

V. CONCLUSIONS

In summary, we developed a framework for studying percolation of two partially interdependent ER networks under targeted
attack for the cases of high degrees attackα = 1 and random attack,α = 0. For any value ofα, the system shows a second order
phase transition whenq is small, and a first order phase transition whenq is large. We find the criticalqc and critical threshold
pc, when the percolation of the system changes from first to second order, for the case whenα = 1 andα = 0. Moreover, we
find that whenα increases, i.e. the high degree nodes have more probabilityto fail, the system becomes more vulnerable.
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