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We study a system composed of two partially interdependetwtarks, when nodes in one network fail they
cause dependent nodes in the other network to also fail.idrptper, percolation of partially interdependent
networks under targeted attack is analyzed. We apply a gtleehnique which maps a targeted-attack problem
in interdependent networks to a random-attack problem marstormed pair of interdependent networks. We
illustrate our analytical solutions for two examples: (igtprobability for each node to fail is proportional to its
degree, and (ii) each node has the same probability to falilénnitial time. We find that: (i) for any targeted-
attack problem, for the case of weak coupling, the systerwslaosecond order phase transition, and for the
strong coupling, the system shows a first order phase tiams{ti) for any coupling strength, when the high
degree nodes have higher probability to fail, the systemimes more vulnerable, and (iii) there exists a critical
coupling strength, when the coupling strength is greatan the critical coupling strength, the system shows a
first order transition, otherwise, the system shows a seowshet transition.

PACS numbers: 89.75.Hc, 64.60.ah, 89.75.Fb

I. INTRODUCTION

Complex networks exist in many different areas in the realavand are studied in the past 15 years. However, almost all
researchers have been focused on properties of a singlemetamponent that does not interact and depend on otheorietw
[1-11]. Such situations rarely, if ever, occur in realitpf16]. In 2010, Buldyrev et al. [12] developed a theoretfcaine-
work for studying the process of cascading failures in filerdependent networks caused by random initial faildineodles.
Surprisingly, they found a first order percolation tramsitand that a broader degree distribution increased thexalbility of
interdependent networks to random failure, in contrashéodehavior of a single network. Recently, five importantegaliza-
tions of basic model [13-19] are proposed sequentiallyPdishani et al. [13] presented a theoretical frameworkttatysng
the case of partially interdependent networks. Their figdishowed that reducing the coupling strength lead to a efrom a
first to second order percolation transition. (ii) Becaumséhe real word, a network is attacked not always randomlgridiet al.
[14] investigated the robustness of fully interdependetivarks under targeted attack. The result implied thatrd#pendent
networks are difficult to defend. (iii) In real scenarioss tissumption that one node in a network depends only on oreeinod
the other network is not valid. Shao et al. [17] investigatdcamework to study the percolation of two interdependetworks
with multiple support-dependentrelations. (iv) Hu et 4B][studied percolation of a pair of coupled networks witlthbiaterde-
pendency links and connectivity links. They found unusisdahtinuous changes from second order to first order tianss a
function of the dependency coupling between the two netaqfk In the real word, more than two networks coupled togeth
Gao et al. [15, 19] proposed a framework to study the robgstnénetwork of networks (NON). Their results showed that fo
a treelike ER NON the robustness decreases with the numbretebrks and for a looplike ER NON the giant component is
independent on the number of networks. However, for realates, two infrastructures are always partially couptegether
[20, 21], such as energy and communications, power stagiod$ransportation etc., and they might be attacked irtealiy on
high degree nodes. Understanding the robustness due tallpanterdependency and under targeted attack is onesoifrthjor
challenges for designing resilient infrastructures.

Here we develop a generalized framework to study the pearonlaf partially interdependent networks under targetéaca.
We further develop a general technique [14] which maps tigetad-attack problem in interdependent networks to thdom-
attack problem in a transformed pair of interdependent agtsv We find that: (i) for any targeted-attack problem, for tase
of weak coupling, the system shows a second order phasétivansnd for strong coupling, the system shows a first order
phase transition, (ii) for any coupling strength, when tighldegree nodes have more probability to fail, the systecoines
more vulnerable, and (iii) there exists a critical coupktigength, when the coupling strength is greater than thiearcoupling
strength, the system shows a first order transition, otlserwthe system shows a second order transition. In the fioitpw
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two examples, the critical coupling strength can be expfiderived analytically: (i) the probability for each notte fail is
proportional to its degree, and (ii) each node has the saot®apility to fail in the initial time. Although case (ii) walved in
[15] we present here a more general case where both interxdepenetworks are initially attacked randomly.

Il. THE MODEL

In this model, two networksl, B with the number of node¥ 4, N, and within each network, the nodes are connected with
degree distribution®, (k) and Pg (k) respectively. We suppose that the average degree of thereths a and the average
degree of the networB is b. In addition, a fractiory 4 of A nodes depends on the nodes in netwBrind a fractionys of B
nodes depends on the nodes in netwarkrhat is, if noded4, of network A depends on nodB; of network B and B; depends
on nodeA, of network A, thens = 4, which satisfies the no-feedback condition [19]. Conseqyl,e/mhen nodes in one network
fail, the interdependent nodes in the other network aldpdad we suppose that only the nodes in the giant componeratine
functional, which leads to further fail in the first netwoikhis dynamic process leads to a cascade of failures. In todgudy
the cascading failure under targeted attack, we apply thergétechnique that a targeted-attack problem in netwoaksbe
mapped to a random-attack problem [14, 22]. A vdllig(k;) is assigned to each node, which presents the probabilityatha
nodei with k; links becomes inactive by targeted-attack. We focus onahely of functions [23]:

Walki) = ————0 < a < +o00. (1)
Zz 1 k?

Whena > 0, nodes with higher degree are more vulnerable for the tadgattack, while forx < 0, nodes with lower degree
have higher probability to fail. Fax = 0, all the nodes in a network have the same probability tovdiich is equivalent to the
case of random attack.

Without loss of generality, we begin by studying the geriegafiunction and the giant component of netwotlafter targeted
attack, which can be directly applied to netwdsk Next we study the generating functions of netwdrkt each iteration step.

(i) The generating function of netwotk is defined as

Gao(w Z Pa(k)z*. @)

The generating function of the associated branching psoces, () = G'y,(z)/G'4o(1) [12, 13, 24, 25]. The average degree
of network A is defined as = k = Y, Pa(k)k.

(ii) We intentionally removd — p, fraction of nodes from networld according to Eq. (1) and remove the links between the
removed nodes. Thus, we obtain that the generating funcfitire nodes left in networl is [14, 25, 26]

1 [e3
G ap(z Z P (k - > Pa(k)hf" ", A3)
k

where the new degree distribution of the remainindraction of nodesP* (k) = %PA(k)h’fa, andh, satisfies

pr=Ga(ln) =) Pa(k)hi” i = G (). @)
k

The average degree of the remaining nodes in netwarkthis step isk(p1) = Y, P4 (k)k
(iif) We remove the links between the removal nodes and thmaiging nodes. Thus we obtain that the generating function o
the network composed by the remaining nodes is [26]

Gac(z) = Gap(1 — p1 + prx), )
wherep; is the fraction of the original links that connect to the netidt, which satisfies

5= p1Nak(p1) _ >k Pa(k)kRy” (6)
Nak Yo Pa(k)k
Then we can find the equivalent netwotkwith generating functioiz 4o (), such that after a fraction— p; of nodes random
removed, the new generating function of nodes leftins the same a&' 4.(z). By solving the equatio 4o(1 — p1 + p1z) =
G a.(z), and Eq. (5) , we can get

Gaolz) = Gap(1 — 22 + PLyy. @)
P1 P1



And the generating function of the associated branchingg®®G a1 () = Gy (z)/G"4o(1).

(iv) Thus, the targeted-attack problem on netwdrkan be mapped to random-attack problem on netwirk~or network
A, 1 — p; fraction of nodes in networMK is intentionally removed according to Eqg. (1), the fractidmodes that belongs to the
giant componentis [14, 26, 27]:

pa(p1) =1—Gaoll = pr(1 = fa)l, 8

wherefs = fa(p1) satisfies a transcendental equation

fa=Ga[l —pi(1— fa)]. )

For networkB, 1 — ps fraction of nodes in networB is intentionally removed according to Eq. (1), the fractiddmodes that
belongs to the giant componen (p2) is similar to Eq. (8), but changg to p, and A to B.

According to the definition of the fraction of nodes that mgJe to the giant component, we perform the dynamic of casgadi
failures as follows: Initially,] — p; and1 — p, fraction of nodes are intentionally removed from netwerland networkB
respectively. The remaining fraction of netwarknodes after an initial removal df — p; is ¢; = p;, and the remaining
fraction of networkB nodes after an initial removal df — py is ¢, = p2. The remaining functional part of netwouk
contains a fraction, = ¢}pa(v}) of network nodes. Accordingly, for the same reason, the ieimgfraction of networkB is
@) = pa[l — q(1 — pa(¥h])p1)], and the fraction of nodes in the giant component of netw®ik ¢; = ¢\ pr(¢}). Then the
sequencey,, and¢,,, of giant components, and the sequetif,eand¢,, of the remaining fraction of nodes at each stage of the
cascading failures, are constructed as follows:

V1 = p1, b1 = Pipa(¥),

¢y = p2, &1 = p2[1 — q(1 — pa(¥])p1)], 61 = 1pB(F)),

Py = p1[l = qa(1 — pp(d1)p2)], 2 = Yopa(¥s),

¢ = p2[l — qr(1 — pa(¥y)p1)], b2 = dopB(F3), (10)

U, =l — qa(l = p(d),_1)p2)], ¥n = Uy pa(¥y,),
¢, = p2[1 — qa(1 — pa(¥},)p1)], &n = &,0B (D))

Fig. 1 shows the giant componefit andg,, as functions of time step for different values of, = b, p1, p2, g4, g anda. The
simulation results show excellent agreement with the thesystem (10). Fig. 1(a) shows that a finite giant componkiste
for p2 > p§, and fig. 1(b) shows the case when< p$, the two networks collapse.

Next, we study the steady state of system (10) after the dasgfailures, which can be representedify; ¢/, at the limit of
n — oo. The limit must satisfy the equations, =+, |, ¢, = ¢/, since eventually the clusters stop fragmenting and the
fractions of randomly removed nodes at stepndn + 1 are equal. Denoting,, = z, ¢, = y, we arrive at a system of two
symmetric equations:

x =pi[l —qa(1 —pB(Y)P2)],

y = p2[l —qp(1 —pa(z)p1)]. (11)

1. ANALYTICAL SOLUTION

In this section we present two examples that can be explmitllved analytically: (i = 1 and (ii) o = 0 for two interdepen-
dent Erdds-Rényi (ER) networks. Case (ii) is similar tatthf Parshani et al [13] but more general. For the ER [28—88}arks,
characterized by the Poisson degree distribution, (z) = G a1(z) = expla(x — 1)], Gpo(z) = Gpi(z) = exp[b(z — 1)].

(i) For the case ofv = 1, substitutinga = 1 into Egs. (3)-(7), we obtain thaf 1, (), Ga.(z) and Go(z) can be
represented by 40(x), which reflects the mapping from a targeted-attack problemabhdom-attack problem. Then we get
G ao(x) = Ga1(z) = explah?(z — 1)], Gpo(y) = Gp1(y) = exp[bh3(y — 1)]. Thus, from Eq. (9) we obtain

Ja = expl-ah3e(l - f)], 5 = exp[-bh3y(L - f3)). (12)

Substituting Egs. (8), (9), (11) into Egs. (12), by elimingtz andy, we obtain
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FIG. 1: (a) The giant component of both netwotksand B, ,, and ¢,,, after timen cascading failures for the case when

a=>b=3,p =08 p2 =09 > p§, ga = 0.45 a = 1 andgg = 0.15. The simulation results show excellent agreement

with the theory, system (10). All estimates are the resuitaveraging over 40 realizations. (b) The giant component of

network A, v,,, after timen cascading failures for the case when= b = 3, p; = 0.9, ¢4 = 0.65, g = 0.7, « = 0, and

p2 = 0.6726 < p§ = 0.673. The simulation results show excellent agreement withlikery, system (10). In both (a) and (b),
Ny = Np=2x10°.

fa= e_aplh?(l_fA)[l_QA‘f‘pﬂlA(1_fB)]7

13
fB _ e—bpzhg(l—.fB)[l—q3+p1QB(1—fA)]_ ( )

According to the definition of)o, = pa(z)z and¢é~, = ps(y)y, we obtain the giant component of networksnd B at the
end of the cascading failure respectively as

VYoo =p1(1 = fa)[l — qa +p2ga(l — fB)],
¢oo =p2(1 = fB)[1 — qB + P19 (1 — fa)].

Solving the Egs. (13), we obtaify and fz, and then we obtaih,, andg., by substitutingf4 andfz into Egs. (14).
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FIG. 2: (a) The giant component,, of network B as a function of initial attack on netwotR, 1 — p2, whenp; = 0.7, a = 3,
b=4,qp = 0.7anda = 1 for two differentg4. (b) The giant component,, of network B as a function of initial attack on
networkB, 1 — ps, whenp; = 0.9,a = 3,b = 4, qg = 0.7 anda = 1 for two differentq4. For the weak coupling strength
(g4 = 0.1), the system shows a second order phase transition, arttefetrbng coupling strength{ = 0.7), the system shows
a first order phase transition. From (a) and (b), we find thatctianges of the critical threshold depends on the changss of
(c) The coupling strength— ¢4 as a function ol — p$, for different values of remaining fraction of nodes aftatial attack on
networkA4, p1, whena = 3,b = 4, gg = 0.7. For eachp;, 1 — g4 as a function ofl — p§ is divided into two region by a symbol
o. The dash-dot curve above a symbalepresents the second order phase transition and the solid below the symbod
represents the first order phase transition. All the ciratesconnected to form a critical line, which representslthe¢ as a
function of1 — p$. It also shows thaj increases ag,; increases.

Numerical simulation results of system (14) are shown in BigAs shown in Fig. 2, for fixed, b, ¢, there exists a critical
5, Whenps < p§, doo = 0, Whenps > p§, ¢ > 0. For the weak coupling case, i.e., whenis small g4 = 0.1 in Fig. 2),
b0 (p§) = 0, which shows a second order phase transition, and theticangiireshold is defined ag. For strong coupling,
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i.e., wheng, is large g4 = 0.7 in Fig. 2), ¢ (p5) > 0, which represents a first order percolation phase transiéind the
transition threshold is defined @&. Fig. 2(a) and (b) indicate that there exists a critigl which corresponds to the condition
whenp! = p'l, whengu < ¢, the system shows a second order phase transition, andgyheny5, the system shows a first
order phase transition. Furthermore, Fig. 2(a) and (b)cateithat the critical threshold changes withi.e., ¢% also changes
with p;. In Fig. 2(c), we studied by numerical simulatidns- g4 as a function ofl — p$, for different values op; whena = 3,
b =4, qp = 0.7. As shown in Fig. 2(c), for eachy, there exists a critical5 (o), which corresponds to the conditiph = p’’.
Moreover,$ increases ag; increases, which is represented by the circle curve in Rig), dnd indicates that the two networks
becomes more robust ag decreases.

Next, we study the transition threshqid andp’! analytically wherw = b = k, p; = po = p, ga = g = q. In this case,
from Egs. (13) and (14), we obtain that the giant componemtstwvorksA and B at the end of the cascading failute, = ¢
satisfies

G0 = p(1 — e 0= [1 — g+ pg(1 — e 0 )], (15)
andf = f4 = fp satisfies
f = e FPR*(=Hl—a+pe(1-f)] (16)
whereh = Inp/k + 1. The condition for the first order transitigp = p') is
1= flkp"h*(1 = q) + 2k(p")qh*(1 = £),0< f < 1. (17)
And solving Eq. (16) forf — 1 yields the condition for the second order transitipn= p’?),

Ep''(1—q)h? = 1. (18)
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FIG. 3: The coupling strength— ¢ = 1 — g4 = 1 — gp as a function of the first order and second order phase ti@msit

threshold,1 — p!, p!!, for different values of average degree= a = b, whena = 1. The circles curve shows the critical line,

below which the system shows a first order phase transitrmhabove which the system shows a second order phase wansiti
The simulation of the critical line agrees well with the the&qg. (20).

The analysis of Egs. (17) and (18) shows the first order tiiansatp = p’ occurs for networks with strong coupling & ¢.),
whereas the second order transitiop at p’! occurs for networks with weak coupling & ¢.). This behavior is shown in Fig.
3, where the solid curves show the case of first order phassticn and the dash-dot curves show the case of secondpitdse
transition. The critical value of. (andp.) for which the phase transition changes from first order twsd order is obtained
when the conditions for both the first and second order tliansi are satisfied simultaneously. Applying both condiicEgs.
(17) and (18), we obtain

k[ + 1n(12_chC)//2]2 = (1%)2 (19)



Solving Eq. (19), we obtain., and then we can get by

(20)

(i) For the case whemx = 0, Wy = 1/N, thus the targeted-attack problem is equivalent to the oamdttack problem
studied in Ref. [13]. For the case of two Erdos-Rényi (EF8{30] networks with average degreeandb, we can easily get
pa(z) =1— fa,pe(y) =1 — fp fromthe Egs. (8) and (9), and system (11) becomes

z=pi[l — qa +p2qa(1 = fB)],
y=p2[l — g +p1ga(l — fa)]. (21)

According to Egs. (9), (21)f 4, fp satisfy
fa= e_apl(1_fA)[1_‘ZA+P2QA(1_fB)]’

fp= e~ tr2(1=fB)[1—ap+p1gp(1—-fa)] (22)

Thus, we obtain the fraction of nodes in the giant compongimetworksA and B at the end of the cascading process

Yoo = p1(1 = fa)[l — qa + p2qga(l — fB)],
¢oo = p2(1 = fB)[1 —qB + p1gB(1 — fa)].

Our framework is equivalent to Ref. [13] when = 1. In detail, wherp, = 1, Egs. (22) are the same as Eqs. (7) in Ref. [13].
Here we study the more general case where: 1.
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FIG. 4: (a) The giant component,, of network B as a function of initial attack on network, 1 — ps, whenp; = 0.7,

a=0b=3,¢p =0.7anda = 0 for two differentg4. (b) The giant component,, of networkB as a function of initial attack

on networkB, 1 — ps, Wwhenp; = 0.9,a = b = 3, gg = 0.7 anda = 0 for two differentq,. For the weak coupling strength

(ga = 0.1), the system shows a second order phase transition, anddatrtong coupling strengtly { = 0.65), the system

shows a first order phase transition. (c) The coupling strehg- ¢4 as a function oft — p$, for different values of remaining

fraction of nodes after initial attack on netwa p;, whena = b = 3, g = 0.7. For eacltp;, 1 — ¢4 as a function ofl — p§

is divided into two region by a symbel The dash-dot curve above a symbakpresents the second order phase transition and

the solid curve below the symbeolrepresents the first order phase transition. All the ciralesconnected to form a critical line,
which represent$ — ¢ as a function ofl — p$. It also shows thag increases ag; increases.

For the caser = 0, numerical simulation results of system (23) are shown @ Bi For giveru = b, ¢, p1, there exists a
critical p§, whenps < p§, ¢oo = 0, Whenpy > p§, doo > 0. For weak coupling, i.e., wheqy is small g4 = 0.1 in Fig. 4),
b0 (p§) = 0, representing a second order phase transition, and thelagon threshold is defined aé’. For strong coupling,
i.e., whengy is large (e.9.ga = 0.65 in Fig. 4), ¢ (p5) > 0, representing a first order phase transition, and the paionl
threshold is defined gs'. Similar to the case whem = 1, Fig. 4 indicates that there exists a critigél, which corresponds
to the condition whep! = p/!. Whengs < ¢4, the system shows a second order phase transition, and auhenqgs, the
system shows a first order phase transition. Furthermage4fndicates that the critical threshold changes withi.e., ¢ also
changes wittp;. In Fig. 4(c), we investigate using numerical calculatidns- ¢4 as a function oft — p$, for different values
of p; whena = b = 3, gg = 0.7. As shown in Fig. 4(c), for eachy, there exists a critical$ (o), which corresponds to the
conditionp! = p!!. Moreover,S increases ap; increases, which is represented by the curve with circldggn 4(c), and
indicates that the two networks become more robustiadecreases.

By substitutinge = b = k, p1 = p2 = p, g4 = g = ¢ into Egs. (22) and (23), we obtain that the giant component of
networksA and B at the end of the cascading failufe, = ¢, satisfies

oo = (1 — e F9=)[1 — g+ pg(1 — e F0=))], (24)



andf = fa = fp satisfies
f=efr(=Dl—atpa1-N] < § < 1. (25)

Thus we obtain the condition for the first order transitipn= p’)

1= flkp"(1 = q) + 2k(p")*q(1 = f)]. (26)
Solving Eq. (25) forf — 1 yields the condition for the second order transitipn= p’!),
IEpH(l —q)=1. (27)

Similar to the case af = 1, the analysis of Egs. (26) and (27) shows that the first ordesition aip = p’ occurs for networks
with strong couplingq > ¢.), whereas the second order transitiop at p’’ occurs for networks with weak coupling € q.).
This behavior is shown in Fig. 5, where the solid curves stimxctse of first order phase transition and the dashed-duiteels
show the case of second order phase transition. The cuatads ofg. (andp,.) for which the phase transition changes from first
order to second order is obtained when the conditions fdr that first and second order transitions are satisfied simedtasly.
Applying both conditions Eqgs. (26) and (27), we obtain

) _k+1-v2k+1

K (28)
CV2k+1+1
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FIG. 5: The coupling strength— ¢ = 1 — g4 = 1 — gp as a function of the first order and second order phase ti@msit

threshold,1 — p!,1 — p!!, for different values of average degree= a« = b, whena = 0. The curve of circles shows the

critical line, below which the system shows a first order ghimansition, and above which the system shows a second order
phase transition. The simulation of the critical line agreell with the theory Eq. (28).

IV. NUMERICAL SOLUTIONSOF THE GENERAL CASE

Our theoretical study can be applied to any case.dh this section, we investigate the solutions for the gaheaises ofv.
Fig. 6 shows the giant componefy, of network B as a function of initial attack on network, 1 — p, for o = 2 [Fig. 6(a)] and
a = —1 [Fig. 6(b)]. For giver, b, ¢z, p1, there exists a critical§, whenps < p§, ¢ = 0, Wwhenps > p§, ¢ > 0. For weak
coupling, i.e., whery4 is small g4 = 0.1 in Fig. 6), 9o (p5) = 0, which shows a second order phase transition. For strong
coupling, i.e., whemy4 is large ¢4 = 0.8 in Fig. 6), ¢ (p5) > 0, which shows a first order phase transition. Fig. 6 indicates
that there exists a critical, whenga < ¢%, it shows a second order phase transition, and when ¢4, the system shows a
first order phase transition. Furthermore, Fig. 6 indicttiasthe critical threshold changes withi.e., ¢4 also changes with.

In Fig. 7, we investigate the numerical simulationlof ¢4 as a function ofl — pg, for different values ofx whena = 3,
b=4,p = 038,¢gp = 0.7. As shown in Fig. 7, for each, there exists a criticaj (o). Moreover,1 — ¢4 increases as
« increases, which is represented by the circle curve in Figind indicates that the two networks becomes more robust as
decreases.
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FIG. 6: (a) The giant component,, of network B as a function of initial attack on netwotR, 1 — p2, whenp; = 0.8, a = 3,

b=4,qp = 0.7Tanda = 2 for two differentq 4. (b) The giant component,, of network B as a function of initial attack on

network B, 1 — ps, whenp; = 0.8, a = 3,b = 4, gqg = 0.7 anda = —1 for two differentg,. For weak coupling strength

(ga = 0.1), the system shows a second order phase transition, antidogsoupling strengthyy = 0.8), the system shows a
first order phase transition.
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—oe—Critical line
—— First order

02 04 06 08 1
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FIG. 7: The coupling strength — ¢4 as a function ofl — p§, for different values oty, whena = 3, b = 4, ¢gg = 0.7 and
p1 = 0.8. The circles curve shows the critical line, below which thstem shows a first order phase transition, and above which
the system shows a second order phase transition.

V. CONCLUSIONS

In summary, we developed a framework for studying peroofadif two partially interdependent ER networks under tardet
attack for the cases of high degrees attack 1 and random attacky = 0. For any value ofy, the system shows a second order
phase transition wheqis small, and a first order phase transition whesa large. We find the criticaj. and critical threshold
pe, When the percolation of the system changes from first torekooder, for the case when= 1 anda = 0. Moreover, we
find that whemn increases, i.e. the high degree nodes have more probadbifayl, the system becomes more vulnerable.
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