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Pedestrian crowds have often been modeled as many-particle systems, usually using computer
models known as multi-agent simulations. The key challenge in modeling crowds is to develop rules
that guide how the particles or agents interact with each other in a way that faithfully reproduces
paths and behaviors commonly seen in real human crowds. Here we propose a simple and intuitive
formulation of these rules based on biomechanical measurements and the Principle of Least Effort.
We present a constrained optimization method to compute collision-free paths of minimum caloric
energy for each agent, from which collective crowd behaviors can be reproduced. We show that
our method reproduces common crowd phenomena, such as arching and self-organization into lanes.
We also validate the flow rates and paths produced by our method and compare them to those of

real-world crowd trajectories.

I. INTRODUCTION

Heterogenous crowds consist of people with differ-
ing goals and behaviors, but often display interesting
and predictable characteristics. Individuals within these
crowds, must navigate to their goals despite potentially
congested environments and the conflicting paths of oth-
ers in the crowd. A key observation in understanding
how individual trajectories are formulated arises from
the well-known Principle of Least Effort, a broad theory
which suggests that people naturally choose the path of
least effort in order to reach their goals [1]. This principle
has been applied to successfully explain human locomo-
tion patterns [2] and predict the velocity range at which
individuals generally travel [3, 4]. While much is known
about movement and speeds for humans walking in an
isolated setting, modeling accurate motions and trajec-
tories for crowds from individual human motion is not
well understood [5].

Many researchers, including Hoogendoorn and Bovy
[6], have shown that crowd motion can be modeled as in-
dependent agents that try to optimize some utility func-
tion. In this paper, we show how to extend the classic
Principle of Least Effort to model the motion of humans
in a crowd using an optimization based framework which
captures collective crowd behaviors. We present a novel
model based on this principle, which minimizes the total
biomechanical effort of each individual moving within a
crowd. We combine this model with biomechanical mea-
surements to produce highly efficient computer simula-
tions that compare well with empirical data on human
trajectories. Moreover, we show that this model can ac-
curately reproduce many emergent crowd behaviors and
numerically predict crowd flows in different settings.

Several models have been proposed to simulate human
motion in a crowd. While some methods try to model
the macroscopic or overall motion of the crowd [7, 8],
our goal is to accurately compute trajectories of individ-
ual pedestrians. Therefore we propose a microscopic, or
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agent-based, model of human motion which specifically
tries to model the position and velocity of each individual
over time. Previously proposed models of this type in-
clude many-particle force-based models [9, 10] and their
important extensions [11, 12|, methods based on sim-
ple rules [13], flow-field based methods [14], and Cellu-
lar Automata models [15, 16]. Methods have also been
proposed which fit models to recorded data [17] or ex-
tended existing models to capture newly recognized phe-
nomena [18]. An overview of this general area of the
physics of complex systems and transport can be found
in Schadschneider et al. [19]. Recently, researchers have
proposed geometric optimization based, multi-agent sim-
ulation methods where agents attempt to directly com-
pute collision free velocities in a predictive manner, based
on anticipated motion [20], data collected on humans [21],
and cognitive theories of perception [22]. Our model like-
wise uses an optimization framework, which in contrast,
is based on biomechanical principles of individual motion.

In this article, we show that our biomechanically based
model of pedestrian dynamics model can meaningfully
predict the trajectories of humans in crowds and thereby
generate natural crowd behaviors. Specifically, we show
that individuals in a crowd minimizing their expected
caloric expenditure results in a number of common crowd
behaviors and phenomena. We denote these behaviors
as “emergent behaviors”, because they are an indirect
result of individuals minimizing the expected energy of
their paths. We also show that our model’s predictions
match the paths and flow rates of real humans. While
previous methods have demonstrated some of these as-
pects, our proposed method can demonstrate all of these
aspects and is based on a simple interpretation of human
biomechanics.

A key issue in the design of an optimization-based
approach is determining the correct metric to optimize.
Previous approaches have suggested minimizing the to-
tal distance traveled (such as by using differential geom-
etry [24], planning on geodesics[16], or using flow-based
techniques [8]). However, path length minimization is
not a complete metric as its value is independent of an
agent’s speed. Additionally, it fails to model important
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FIG. 1: Graph of the empirical relationship between velocity
and caloric efficiency for adult males [4] (Eq. 1). The mini-
mum energy corresponds to the velocity 1.3 m/s, the average
walking velocity for adult males. [23]

real-world phenomena such as why humans tend to avoid
congestion. In contrast, biomechanics research suggests
a natural metric of calories expended over a path.

When walking in an unconstrained environment, peo-
ple are known to move at velocities that minimize their
caloric expenditure per unit distance [3, 4]. However,
when in crowd-like settings, other people create con-
straints on the possible motion an individual can take.
We posit that it is this interaction between different in-
dividuals, each of whom is independently minimizing his
or her expected effort, that gives rise to the emergent be-
haviors and motion patterns exhibited by crowds. Such
behaviors can be numerically approximated by perform-
ing a constrained minimization over all the paths each
individual can take, as described below. Our model is to
compute all the pedestrian trajectories in a crowd based
on this formulation.

II. LEAST-EFFORT MODEL

A person’s caloric expenditure rate, R, can be well
approximated by a quadratic function of their instanta-
neous speed [3, 4]. In this work we use the approximation
provided by Whittle [4]: R = e,|v|? + es, where the pa-
rameters of e, and ey can vary based on gender, age, and
fitness level. This function was derived empirically by fit-
ting a curve to data extracted from oxygen consumption
of participants walking on a treadmill at various speeds.

For any given trajectory, integrating this caloric rate
function over the trajectory will result in an estimate of
the total calories a human would expend by traversing
the trajectory. This leads to the following equation for
the energy expended by a person moving along a path II:

E(II) = m/H (ew|V[* + €5)dt, (1)

where m is the person’s mass, e, captures how efficiently

FIG. 2: (Color online) Computation Overview. The current
agent, Ai, has a goal marked X, but needs to avoid two ap-
proaching agents, As and As, each with some velocity (ar-
rows). Each neighbor creates a restriction on the velocity
the current agent can take (boundary line and shaded regions
show forbidden endpoints of the velocity vector of A1), leav-
ing the set of collision-free permissible velocities (PV). Each
velocity results in some expected energy to reach the goal
(dashed ellipses mark the iso-contours of this function). The
computed new velocity (light arrow) is the one which leads
to the collision-free path to the goal (dotted line) using the
least expected energy. This model is used to compute a new
velocity for each agent at each simulation time-step.

calories are used, and e; is a person’s rate of energy con-
sumption when standing still.

Based on this model, a person will be walking most
efficiently when Eq. (1) is optimized per unit distance
(Fig. 1). This happens with a path of a constant speed
of \/es/ey. For the average adult male e, = 1.26 and
es = 2.23 [4], which corresponds to a speed of 1.33 m s~ 1.
This matches the measured average walking speed for
humans in low density environments [23]. In other words,
a least effort analysis correctly predicts that people in an
unconstrained environment will take the shortest path to
their goal at their optimal speed.

In a crowded environment, however, nearby humans
and obstacles result in additional constraints on an in-
dividual’s motion. The strongest of these constraints is
that two people cannot share the same physical space.
Additionally, humans tend to avoid collisions in an an-
ticipatory manner, reacting to the collisions before they
occur [21]. This can result in a need to constantly adjust
paths to avoid collisions well ahead of time to account for
the potential actions of others. In other words, humans
tend to choose velocities that will result in collision-free
motion with respect to other nearby people and obsta-
cles.

To capture these two aspects of human navigation, we
propose a model in which each individual in the crowd is
modeled as a virtual agent that attempts to find the mini-
mum energy path to its goal while avoiding collisions. We
model the tendency to anticipate collisions as a restric-
tion on the set of permissible velocities an agent can take
to include only those which result in collision-free paths



for the near future. Here we denote these velocities as
PV (Fig. 2 - white region). Our formulation assumes
each individual chooses the velocity from this set that is
expected to minimize the energy described by Eq. (1).
To achieve this minimization, we first express the set of
potential velocities PV using a set of linear constraints
on the velocities of each agent (Fig. 2). This set can be
computed efficiently using geometric optimization tech-
niques. In the remainder of this section we present for-
mally the method by which this set PV can be generated
and the optimal velocity computed for each agent.

A. Optimization Formulation

We represent agents as a hard disk with a fixed radius
r. Following the methods proposed in Berg et al. [25], we
define PV as a intersection of several linear constraints on
an agent’s velocity, one constraint for each neighboring
agent. Given an agent A, for each neighboring agent
B, we compute the constraint on A’s velocity by first
computing the minimum change in the relative velocity
between A and B needed to avoid collision for at least T
seconds. This change in velocity is denoted as the vector
111. We then constrain A’s velocity to change by at least

su (with the assumption B will likewise avoid the other

half of the collision). Therefore, given A has a current

velocity of v§", the permitted velocities given B are:

PVaop={v:(v—- i+ %u)) -u > 0}. (2)
The boundary of this set is a line which goes through the
point (v+3u) with the slope ut = (u.y, —u.z). A similar
formulation can handle avoidance of obstacles with the
exception that obstacles can not be expected to recipro-
cate in avoiding collisions and therefore the entire vector
u must be accounted for. Therefore, for an obstacle O:

PVao=1{v:(v—-(vi"+u)) u>0} (3)

The union of these linear velocities constraints across
all agents forms PV (Fig. 2). Formally:

PV = () PVasn[)PVao- (4)
B#A 10)

‘We can now model the PLE notion of the collision-free
path taking the least caloric energy as:

Minimize E(TI) s.t. vi"* € PV, (5)

where agents are limited to paths whose initial veloc-
ity, vi"%, lies with the set of non-colliding velocities PV .
Solving this equation produces a model for crowd motion
which can be summarized as: each agent finds the path,

II, with an initially velocity vi™™ from the permitted ve-
locities PV, which minimizes the expected biomechanical
effort to reach the goal.

In practice people can only avoid other agents and ob-
stacles that they are aware of. For the results in this pa-
per we represent the region of awareness as a circle of ra-
dius 10m, centered around the agent. Other, anisotropic,
models are also possible as our method is independent of
the underlying sensing model.

B. Geometric Solution

We can now compute trajectories by solving Eq (5) for
each agent. As a simplifying assumption, we restrict our-
selves to paths II which can be represented by two linear
segments. The first segment corresponds to a motion that
avoids collisions with nearby obstacles and other individ-
uals, and the second segment leads the agent directly to
its goal position (Fig. 2 dotted line). We assume the
avoidance segment takes 7 seconds at an initial velocity
of v. We can compute the exact effort along this path
as follows: Given an individual’s current position, p, and
goal position, G, we use Eq. (1) to compute the expected
energy along a path as:

E(W) =1(ew|V]* + es)m +2|G — p — 7V|/esewm. (6)

By combining Eq. (5) and Eq. (6), we can now define
our Least Effort model for trajectory computation and
motion in crowds as:

Minimize E(v"") s.t. v € PV. (7)

We note that Eq. (7) can be solved efficiently by ex-
ploiting the convexity of the energy function, E, and the
convexity of the set of potential velocities, PV as de-
scribed in in Ref. [26]. We use a linear programming
type solution, where each linear segment on boundary of
PV is optimized for sequentially.

Specifically, we first find the velocity that minimizes
Eq. (6) which we denote as v°P'. For Eq. (6), this
point can be found analytically through differentiation.
For each linear boundary segment of PV, we then check
if voP! is a permitted velocity. If it is not a permitted
we find the optimal velocity along the linear boundry.
This new point now serves as v°P!, and this process is
repeated for each remaining segment of PV. The final
value of v°P! will be the point that minimizes Eq. (7).

This process is repeated for each agent to compute the
optimal velocity, voP?, for that agent. All agent positions
are then updated using Eulerian integration of their ve-
locity over discretized time-steps (0.1s in the results be-
low). This process is repeated until each agent reaches
its goal position. As discussed in Ref. [25] and Ref. [26],
this general method for collision avoidance will lead to
provably smooth and collision free paths (provided there
is sufficient free space for agents to maneuver). This adds
to the generality of our model by alleviating the need to



FIG. 3: (Color online) Stills from a simulation of humans walking through a narrow passage, taken at 15 second intervals.
There is initially jamming at the passage (a), followed by a semi-circular arch forming around the exit (b). Once through the
passage, individuals do not immediately spread out, but leave an empty space or “wake” behind the obstacles (c).

tune specific parameters to find smooth or collision free
paths; rather free parameters can be used to capture the
naturally occurring variation in human motion. Addi-
tionally, because the implicit cooperation between agents
(the results of avoiding only %u) large timesteps can be
used while still maintaining collision free motion between
agents [25].

Our resulting model has three free parameters to de-
scribe each agent: the agent’s radius, r, and the parame-
ters es and e, in their energy function which define their
preferred velocity.

C. Global Navigation

In cases when an agent’s goal is not immediately vis-
ible, we use a roadmap (a graph of connected, mutually
visible, intermediate goals) to select a path of interme-
diate goals for an agent. The agent then navigates via
these intermediate goals along the way to its ultimate
destination [25, 26]. We form this roadmap by randomly
sampling potential, collision-free positions to select in-
termediate goals and then connecting mutually visible
intermediate goals (whose direct between them does not
pass through walls) to create a graph with the interme-
diate goals as nodes and the path between these goals as
edges. Each edge is weighted by the expected caloric en-
ergy needed to traverse the link. We use standard graph
search techniques to find the series of intermediate goals
which forms the path of least expect effort to reach an
agent’s final goal [27]. The next visible of these interme-
diate goals serves as an agent’s goal, G, in Eq. (6).

Source code implementing these collision avoidance
and global navigation techniques are provided online [28].

III. RESULTS

The validity of the model described in Sec. II can
be analyzed in several respects. First, we examine the
emergent phenomena generated by the model. These are
effects which are not explicitly accounted for in the for-
mulation, but reliably occur in simulations due to the in-
teraction between agents. Secondly, we perform a quanti-
tative analysis of how closely our simulated results match

data collected about real-word crowd flows and paths
taken by humans in controlled studies. Finally, we show
results from simulations of complex scenarios consisting
of thousands of independent agents and hundreds of ob-
stacles.

A. Emergent Phenomena

We have analyzed several different crowd movement
patterns and other emerging behaviors that arise from
our Least-Effort model and compared them to observed
phenomena in real crowds. For example, simulated indi-
viduals tend to dynamically form emergent lanes when
they are moving in bi-directional flows as demonstrated
in Fig. 4. In this scenario two groups of agents are
given goals corresponding to a horizontal movement in
opposite directions along the x-axis. In the process of
reaching their goals, agents naturally self-organize into
lanes. This is a result of the fact that agents spend fewer
calories by joining existing lanes of people moving with
a similar direction and speed. This allows individuals to
move at their most energy efficient speed without having
to slow down to avoid collisions and thereby minimize
the total individual effort. This emergent lane formation
has been commonly reported in observations of real world
crowds [10, 23, 29].
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FIG. 4: (Color online) Lane Formation. (a) Two opposing
groups of agents, (dark) red and (light) blue, have oppos-
ing initial conditions with goals past each other. (b) As the
groups approach the agents naturally form into small coherent
lanes reducing the overall effort of each individual.

Our model is also able to reproduce observed human
behavior at narrow passages. The scenario shown in Fig.
3 highlights many of these behaviors. Here, each agent



is given a goal horizontally along the x-axis beyond the
narrow passage. The simulated agents tend to jam in
the congestion that forms at a narrow passage as they
attempt to avoid colliding with other individuals who are
nearby. This also leads to semi-circular arching around
the passage as the individuals try to come as close as
possible to the exit in order to minimize time spent in
congestion. These phenomena of jamming, congestion,
and arching around exits have all been reported in studies
of real human crowds [23, 30].

The process of each individual minimizing his or her
caloric energy also allows our model to capture several
other common crowd phenomena. For example, obsta-
cles in a crowd’s path create an open space behind them
which people do not immediately fill (Fig. 3, right panel).
This is known as the wake effect [29] as it is reminiscent
of flow separation regions in fluids. In such regions the
agents tend to choose a direct path towards the goal as
it is more efficient overall than filling in the free space
behind an obstacle.

Energy minimization also explains overtaking behavior
seen in crowds. As shown in Fig. 1, moving slower than
the optimal speed is inefficient. Individuals with higher
optimal velocity will therefore overtake the slower ones,
minimizing their overall effort. Another related phe-
nomenon is congestion avoidance. Taking paths which
avoid regions of high density, slow moving individuals of-
ten results in using less caloric energy than slowing down
and moving through the congestion. Simpler simulation
methods such as finding the shortest or quickest path
fails to reproduce such effects.

B. Flow Analysis

Further validation of our biomechanically-inspired
model of crowd motion can be performed by comparing
predictions from the simulation to actual data. For ex-
ample, several recent studies have analyzed human exit
times through doorways of various widths [31-34].

To compare our simulation results to these studies we
created a scenario similar to those of the above studies.
Several simulations were run where approximately 100
simulated agents are given a goal of a point 10m outside
the room centered along the exit’s midpoint. For each
run the width of the room’s exit was varied from 0.8m to
1.4m. Fig. 5 summarizes this simulation set-up.

Fig. 6 compares the flow rate predicted by our least-
effort simulations and flow rates measured on real hu-
mans. The predicted flow rates lie within the range of
flows reported for humans for a range of exit widths.

Another aspect of human flow is the well established
correlation between increased density and slower speeds
known as the fundamental diagram [35, 36]. Our model
shows a similar trend. As an example, we initialize
agents with the positions and velocities reported in sev-
eral timesteps of the Bottleneck benchmark in [36] and
plot the predicted speed of each agent as a function of
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FIG. 5: (Color online) Flow Analysis Scenario. 96 agents are
placed in a room of dimension 5m x 8m. Agents are given a
goal outside the room which requires them to pass through
the exit on the right wall. The experiment is repeated for
various exit widths varying from 0.8m to 1.4m.
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FIG. 6: (Color online) Real and Simulated Flow Rates. A
comparison of the effect of exit width on the flow for real
(dashed lines) and simulated (solid line) humans. Agents sim-
ulated with our model exhibit similar flow as real humans.

density (Fig. 7). While there is variation in the agents’
speeds at any density, in general, agents in high density
regions move significantly slower than those in low den-
sity regions. The blue line in Fig. 7 shows a quadratic
fit of the data, this fit closely matches the fundamental
diagram established by Weidmann [35].
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FIG. 7: (Color online) The fundamental diagram comparing

agent speeds vs their local density (solid line) matches the
relationship established by Weidmann (dashed line) [35].



C. Path Comparison

In addition to comparing real and predicted flows, we
can also compare the paths predicted by our method to
those of real people walking in similar condition. Here
we use data from two scenarios gathered at [37] and pre-
sented in Ref. [22].

The first scenario involved two people standing about
6m apart and being instructed to exchange places. Fig. 8
shows the mean and standard deviation of the partici-
pants’ paths. In this figure all the paths have been nor-
malized so that “forward” corresponds to the positive
x-axis. Overlaid on the actual human paths is the path
predicted by our method (r=.28m). The path predicted
by our method falls within the variation of the human
paths and closely matches the mean of the human paths.
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FIG. 8 (Color online) Paths of two humans passing each
other. Our model’s path (light solid line) matches very closely
with the the mean of the human paths (dark solid line), and
within one standard deviation of human paths (dashed lines).
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FIG. 9: (Color online) Paths taken past a static obstacle (cir-
cle). Our model’s path (light solid line) matches very closely
with the the mean of the human paths (dark solid line), and
within one standard deviation of human paths (dashed lines).

In the second scenario (Fig. 9) we validate the paths
from our model against those of real humans when walk-
ing around a static obstacle. Again, the path predicted
by our model lies within the variation seen in human
paths and is close to the mean of the human paths.

D. Complex Scenarios

The simplicity of our algorithm allows us to pro-
duce computationally efficient implementations capable
of simulating large scale crowd behavior in real time. Be-
cause of the underlying efficiency of our approach, we are
able to use this model to generate realistic crowd behav-
iors for complex, real-world scenarios.

One of the key challenges in simulating complex en-
vironments is to avoid collisions of the agents with
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FIG. 10: (Color online) Comparison of Real (top) and Virtual
(bottom) Shibuya Crossing. The modeled individuals show a
similar pace and self-organization as the real pedestrians.

each other and between the agents and the obsta-
cles in the environment. Our method is scalable and
can handle complex scenarios involving thousands of
virtual agents. In these complex scenarios, the con-
strained optimization framework discussed in Sec. II.
successfully avoids collisions between agents and with
obstacles while still navigating agents to their goal.
Visualized simulations generated by our least-energy
model in a variety of scenarios can be found online at
http://gamma.cs.unc.edu/LeastEffort/.

Finally, we show a comparison between virtual and real
crowds in the same scenario. Here we compare a simu-
lated crossing to real footage taken at the five-way scram-
ble crossing outside Shibuya Metro Station in Tokyo (Fig.
10). The bottom panel shows a virtual recreation of the
crossing; the top is a still from a video captured at a simi-
lar angle. The real-world video and simulations show im-
portant similarities in both pace and style. Importantly,
this scenario demonstrates phenomena such as lane for-
mation in a natural setting.

IV. SUMMARY AND FUTURE WORK

In summary, we have introduced a new computational
model to simulate crowds that display collective behav-
iors formed by individual trajectories. By combining fun-
damental biomechanical measurements and the Principle
of Least Effort we were able to develop a crowd simula-
tion system based on constrained energy minimization.
We have validated our model by comparing the predicted
results with data from real-world crowds and have shown
that it can accurately model humans paths, crowd flows,
and emergent behaviors.
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While we have shown that constrained caloric energy
minimization can successfully reproduce typical crowd
behaviors, there are still scenarios which are not currently
well modeled by this approach. For example, there are
social and psychological factors, such as running when
panicked, that can not be captured simply in terms of
minimizing the biomechanical energy of locomotion. Ad-
ditionally, different people do not always take the exact
same path, but rather exhibit variations which come from
differences in personality and style.

Looking forward, we conjecture that our approach can
be extended to eventually model several of these sociolog-
ical and psychological factors, as well capture some of the
variations seen in humans. Accounting for factors such
as discomfort in dark areas or close to walls could further

enhance our approach. Such a model could be used to
analyze crowd flows in various environments and assist
in predicting and controlling crowds in large assemblies.

Additionally, we would like to study how our least-
effort model compares to other optimization-based or
predictive approaches. Such a study would ideally focus
on highly discriminative scenarios such as two pedestri-
ans approaching at various angles.
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