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Abstract

Modularity based partitioning methods divide networks into modules by comparing their struc-

ture against random networks conditioned to have the same number of nodes, edges and degree

distribution. We propose a novel way to measure modularity and divide graphs, based on con-

ditional probabilities of the edge strength of random networks. We provide closed form solutions

for the expected strength of an edge when it is conditioned on the degrees of the two neighboring

nodes, or alternatively on the degrees of all nodes comprising the network. We analytically com-

pute the expected network under the assumptions of Gaussian and Bernoulli distributions. When

the Gaussian distribution assumption is violated, we prove that our expression is the best linear

unbiased estimator. Finally, we investigate the performance of our conditional expected model in

partitioning simulated and real world networks.

1



I. INTRODUCTION

Graph theory methods have been applied to study the structure and properties of a wide

range of systems, including the World Wide Web [1, 2], social networks [3, 4], biological

networks [5, 6], and many others. Often, network analysis focuses on identifying natural

divisions of networks into groups, and two broad classes of algorithms have been used for this

goal: divisive and agglomerative techniques. Divisive techniques partition the network into

multiple sub-networks by removing edges between them, whereas agglomerative techniques

start with individual nodes and progressively join them into clusters using similarity criteria.

Both approaches are popular and successful in analyzing networks [7–9], however they also

suffer from shortcomings. For example, the minimum-cut method [10], a divisive algorithm

that minimizes the sum of weights of the removed edges, has the disadvantage of often di-

viding the network very unevenly [11]. To deal with this problem, researchers have proposed

methods with modified cost functions that normalize the cost of the removed edges. This

is achieved using either the cardinality of the resulting clusters, as with average-cuts and

ratio-cuts [12], or the ratio of the within cluster connections to the total cluster connections,

as with normalized cuts [13]. However, while minimizing the cost of removed connections,

these methods are not specifically designed to preserve another important feature of the

network: its community structure.

Real life networks divide into modules (communities, groups) within which the network

connections are strong, but between which the connections are weak. Modules are groups of

nodes that share the same properties or play similar roles in the whole network. Networks

can have different properties at the modular level than in the scale of the entire network, and

without information about the modular structure of the network, these properties may be

difficult to detect [14, 15]. More essential than the node-level analysis of the graph, topolog-

ically detecting community structure can be of great value in identifying the substructures

of the network that have distinguishable and important functions. For example, web-pages

dealing with the same topic form a web-community [16], while in biology modules can be de-

fined as groups of proteins or mRNA associated with specific cellular functions [17]. In brain

imaging, modules may consist of brain regions that are densely connected, or are function-

ally highly correlated [18]. There are multiple formal definitions of a community structure

[19], ranging from local definitions, such as n-clique [20], k-plex, and weak-community [21],
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FIG. 1. (Color online) Random graph models and modularity. First column: nodes i and j of the original

graph are connected with an edge Aij . Second column: random graph A has the same node degrees ki and

kj as the original graph, but the edge strength is replaced by its conditional expected value E(Aij |k), with

analytic expressions given in Table 1. The contribution of this edge to modularity is Aij − E(Aij |k) when

the two nodes are assigned to the same group, and the total modularity involves a sum over all edges of the

graph. Third column: similarly for random graph B, with the exception that Rij in equation (1) is used

instead of the conditional expected edge strength.

to those using global measures on the graph [22, 23].

Newman et al. introduced a measure of the quality of a particular division of a net-

work, called modularity [22], and later presented a spectral graph partition algorithm that

maximizes modularity [23]. Along with many on-going theoretical explorations [24–28],

modularity-based partitioning has become popular recently in a broad range of applications

[24, 29–38]. Unlike traditional clustering methods that seek to minimize weighted combi-

nations of the number of edges running between the modules, such as minimum cuts or

normalized cuts [13], modularity-driven clustering methods compare each edge against its

expected value when clustering nodes into corresponding modules. If a natural division of

a network exists, we should expect connections within a module to be stronger than their

expected values, and the opposite should hold true for connections between modules. Cen-

tral to this idea is the expected network, or the “null model”, which is defined as a random

network conditioned to have the same number of nodes, edges, and degree distribution as in

the original graph but in which the links are randomly placed [39]. In graph theory, the set
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of random networks that has predetermined node degrees is called the configuration model

and has been extensively studied [40–42].

In this paper, we propose a new null graph model that can be used for modularity-based

graph partitioning, and provide analytic solutions for specific parametric distributions. We

extend the results originally presented in our conference publication [43]. We first provide

closed form solutions for the expected strength of an edge when it is conditioned only on

the degrees of its two neighboring nodes. We then provide an improved estimate of the

expected network, where we condition the strength of an edge on the nodes comprising the

whole network. We analytically compute the expected network under the assumption of

Gaussian and Bernoulli distribution. When the Gaussian assumption is violated, we prove

that our expression is the best linear unbiased estimator. Finally, we use our conditional

expected network to partition graphs, and demonstrate its performance in simulated and

real world networks.

II. MODULARITY AND EXPECTED GRAPH MODELS

In this section we first describe modularity and the null model used in [23] for the esti-

mation of modularity. We then introduce our null models, which are analytically computed

for specific probability distributions for the edges of the network.

We assume an undirected network with N nodes and L edges, and the weight of the edge

connecting nodes i and j denoted as the Aij element of a weighted adjacency matrix A. If

the network is unweighted, then A is a binary adjacency matrix with every edge of unit

strength. We extend the definition of the degree of node i as ki =
∑

j Aij, i.e. the sum of

the weights of edges associated with node i. This definition is consistent with the definition

of degree for binary graphs, and allows us to apply our method to both binary and weighted

networks, similarly to [44]. We also denote the total sum of the weights of all edges in the

network as m = 1
2

∑
i,j Aij = 1

2

∑
i ki.

A. Modularity

Optimal partitioning of a network requires specification of an appropriate cost function.

Among the most popular is “modularity” [22] which uses the idea that if a natural division of
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a network exists, connections within a module should be stronger than their expected values,

and the opposite should hold true for connections between modules. If an edge is stronger

than its expected value, it contributes positively to modularity, provided that the two nodes

connected by the edge belong to the same module. Divisions that increase modularity are

preferred, because they lead to modules with high community structure.

Evaluation of modularity requires the computation of an expected network, or “null

model”, which has the same configuration as the original network but contains no com-

munity structure because of a random placement of its edges. Newman [23] considered a

random network where the probability of having a connection between two nodes i and j is

proportional to the product of their degrees:

Rij =
kikj
2m

,∀i, j ≤ N (1)

Under this random graph model, modularity is expressed as [23]:

Q =
1

2m

∑
i,j

(Aij −Rij) δ (Ci, Cj) (2)

where Ci indicates group membership of node i. The Kronecker delta function equals 1 when

nodes i and j belong to the same group, and is 0 otherwise. Therefore, modularity increases

when Aij −Rij (edge strength minus expected edge strength) is positive for within-module

edges (third column of figure 1).

B. Random Network Partially Conditioned on Node Degrees

We denote by E(Aij) the expected value of edge strength between nodes i and j. Instead

of using Rij, we propose the null graph model whose expected edge strength E(Aij|ki, kj)

is conditioned on the degrees ki and kj of the neighboring nodes. The idea of conditioning

on the degrees of neighboring nodes is based on the observation that the significance of an

edge is directly related to the total connections of its nodes. If two nodes have high degrees,

there is a high chance they are connected even on a random network without a community

structure. The opposite holds true for nodes with low degrees, where even weak connections

could be important. Even though Rij also has a dependency on node degrees (equation (1)),

it is not in the explicit form of a conditional expected value.
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TABLE I. (Color online) Expected edge strength for several different types of random networks

Null Model Expected edge strength

Expected Bernoulli random network con-

ditioned on degrees of associated nodes

E(Aij |ki, kj) =


kikj

kikj+(N−1−ki)(N−1−kj)·(p/(1−p)) , i 6= j

0 , i = j

Expected Gaussian random network con-

ditioned on degrees of associated nodes
E(Aij |ki, kj) =


ki+kj−(N−2)µ

N , i 6= j

0 , i = j

Expected Gaussian random network con-

ditioned on whole degree sequence. Also,

BLUE null model in the non-Gaussian case

E(x|Hx = k) = µx + ΣxkΣ−1k (k− µk)

Expected i.i.d Gaussian random network

conditioned on whole degree sequence
E(Aij |k) =


ki+kj
N−2 −

2m
(N−1)(N−2) , i 6= j

0 , i = j

The conditional expected value of edge Aij can be calculated using the Bayesian formu-

lation:

E(Aij|ki, kj)

=

∫
t · P (Aij = t|ki, kj)dt

=

∫
t · P (ki, kj|Aij = t)P (Aij = t)∫

P (ki, kj|Aij = u)P (Aij = u)du
dt (3)

To solve equation (3), we need to specify the joint distribution of the network edges. Ap-

pendix A provides detailed derivation for the cases of Gaussian and Bernoulli distributions.

For the case of Gaussian random networks with independent and identically distributed

(i.i.d.) edges with mean µ and variance σ2, we obtain the following analytic expression:

E(Aij|ki, kj) =


ki+kj−(N−2)µ

N
, i 6= j

0 , i = j
(4)
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For binary networks, we can solve equation (3) for edges following an i.i.d. Bernoulli

distribution with parameter p, where p is the probability of having a non-zero edge:

E(Aij|ki, kj) =


kikj

kikj+(N−1−ki)(N−1−kj)·(p/(1−p)) , i 6= j

0 , i = j
(5)

C. Random Network Fully Conditioned on Node Degrees

In the previous section, we conditioned an edge only on the neighboring node degrees ki

and kj. A better representation of the null model structure is to condition an edge on the

degrees of all nodes comprising the network:

E(Aij|k1, k2, k3, . . . , kN) = E(Aij|k) (6)

To find the above expectation, we first concatenate the elements of the adjacency matrix

A into a column vector x. When graph topology does not allow self-loop connections,

we use the transformation Aij = xl, where l = (2N−j)(j−1)
2

+ (i− j),∀(0 < j < i ≤ N). This

transformation simply takes into account the symmetric nature of the adjacency matrix

and concatenates only the elements of the lower triangle, excluding the main diagonal. To

allow self-loop connections, we use a similar transformation, but also include the diagonal

elements.

We now consider the linear mapping Hx = k, where H is the N ×L incidence matrix of

the graph [45, 46], a uniquely defined matrix that connects the edge strengths x to the node

degrees k. Figure 2a shows an example graph consisting of 4 nodes. The corresponding

matrix H, edge vector x, and degree vector k are:

H =


1 1 1 0 0 0

1 0 0 1 1 0

0 1 0 1 0 1

0 0 1 0 1 1


x =

(
x1 x2 x3 x4 x5 x6

)T
(7)

k =
(
k1 k2 k3 k4

)T
The incidence matrix H represents the permissible structure of a null graph model, and for
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(a) Network without self-loops (b) Network with self-loops

FIG. 2. (Color online) Two simple 4-node complete networks with different topological configurations.

example, can be a fully connected network with or without self-loops or even have missing

edges. Figure 2b gives an example of a network with self-loops; it is straightforward to

update the incidence matrix H and edge vector x for this case.

With the above notation, the conditional expectation of edge strengths now becomes:

E(x|k) = E(x|Hx = k) =

∫
x · P (x|Hx = k)dx (8)

D. Gaussian Random Network

While there is no general analytical solution to the conditional probability P (x|Hx = k)

of the above equation, a closed form exists for the multivariate Gaussian distribution. We

refer to the random network whose edges are Gaussian distributed with mean vector µx and

covariance Σx as a Gaussian random network.

Given that k is a linear transformation of x, k is also Gaussian distributed with mean

µk = Hµx and covariance Σk=HΣxH
T . The conditional probability P (x|Hx = k) is also a

multivariate Gaussian distribution with the conditional expected value and covariance [47]:

E(x|Hx = k) = µx|k = µx + ΣxkΣ
−1
k (k− µk) (9)

Σx|k = Σx −ΣxkΣ
−1
k Σkx (10)

where the cross covariance matrix is Σxk = ΣxH
T .

The above expression relaxes the non-negative edge weight assumption for the R null

model in [23]. Furthermore, the definition of mean and covariance of the edge vector x

allows us to provide prior information to the null network model. For example, network

edges may be correlated with each other or have different mean and variance because of
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measurement considerations and noise rather than a true underlying network structure;

adjusting the mean µx and variance matrix Σx can account for such effects.

E. Gaussian Random Network with Independent Identically Distributed Edges

For the special case of a Gaussian random network with independent identically dis-

tributed edges with µx = µ1 and Σx = σ2I, we can simplify equation (9). As derived in

Appendix B, the conditional expectation of the lth component of the edge vector x (or

equivalently the Aij element of the adjacency matrix) becomes:

E(Aij|k) = E(xl|k) =


ki+kj
N−2 −

2m
(N−1)(N−2) , i 6= j

0 , i = j
(11)

The first term on the right hand side of the above equation (when i 6= j) shows that the

expected value of a specific edge is positively correlated with the summation of the degrees

of the two associated nodes, whereas the second term shows that the expected edge strength

decreases when the total weight of the network increases while the associated degrees are

kept the same. In a real network this fact translates to the following. When two specific

nodes are more densely connected to the network, we expect the link between them to

be stronger. At the same time, if the degrees of the two nodes are kept the same, we

expect the connection between them to be weaker when the entire network becomes more

densely/heavily connected.

F. Non-Gaussian Random Networks and BLUE

Searching for a network null model can be seen as an estimation problem. Given the

degree vector k, we need to estimate the unknown edge vector x̂|k. We can consider the

best estimate in the minimum mean squared error sense (MMSE). An important property

of the MMSE estimator is that it is unbiased, which is highly desirable for graph clustering

because the criterion we use to partition a graph is the measured edge strength versus its

expected value. The MMSE estimator is defined as:

x̂MMSE

|k = arg min
x̂|k
F
(
x̂|k
)

= arg min
x̂|k

E
{∣∣x̂|k − x

∣∣2} (12)
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and is solved by setting the derivative to zero, which gives:

x̂MMSE

|k = E (x|k) = µx|k (13)

Therefore, the MMSE estimator of the unknown random edges x given observation k is

also the conditional expectation, as in equation (8). As we have shown, in the Gaussian case

this is found analytically using equation (9).

In practice the MMSE estimator, even if it exists, often cannot be found [47]. In this case

it is reasonable to resort to a suboptimal estimator, and a common approach is to restrict

the estimator to be linear in the data. We then find the linear estimator that is unbiased

and has minimum variance, which is termed the Best Linear Unbiased Estimator (BLUE)

[47]. In our case, the best linear (with respect to the degree observation k) estimator x̂ that

minimizes the mean square error is:

x̂BLUE

|k = arg min
x̂|k
F
(
x̂|k
)

such that x̂|k = Lk + b (14)

for some matrix L and vector b. The solution x̂BLUE

|k of the above minimization problem is

the same as equation (9):

x̂BLUE

|k = L̂k + b̂ = µx + ΣxkΣ
−1
k (k− µk) (15)

with the derivation given in Appendix C. This equivalence indicates that our null model

under the Gaussian assumption is also the BLUE estimator of the null model under any

probability distribution.

Notice that, in general, x̂BLUE

|k is not the expected network µx|k. However, x̂BLUE

|k best

explains the observed degree vector k among all linear estimations, while at the same time

remaining unbiased.

III. PARTITION IMPLEMENTATION

There are multiple methods to maximize modularity through graph partitioning: greedy

agglomerative hierarchical clustering [48–52], spectral partitioning [14, 23], external opti-

mization [53], simulated annealing [54], and many others. Comparison of these methods is

beyond the scope of this paper; rather we are interested in investigating the effectiveness of

our novel null models. To achieve this goal, we chose the sequential spectral partitioning

method [23] to perform clustering and a brief description follows below.
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We use two expressions for modularity; QA based on our null models (Table 1), which

we now jointly call ANULL

|k , and QB based on the null model R (equation (1)). Modularity is

maximized over an indicator vector sA (or sB) denoting group membership.

ŝA = arg max
sA

QA = arg max
s1

{
sA

T (A−ANULL

|k )sA

4m

}
(16)

ŝB = arg max
sB

QB = arg max
sB

{
sB

T (A−R)sB
4m

}
(17)

Specifically, the ith element of sA (sB) is 1 or −1, depending on which of the two groups the

ith node belongs to after one partition. Partitioning proceeds by selecting vectors sA and sB

that maximize modularity. Based on spectral graph theory, when sA and sB are allowed to

have continuous values, maximization of QA and QB is achieved by selecting the maximum

eigenvalues and eigenvectors of matrices A−ANULL

|k and A−R respectively. The elements

of vectors sA and sB are then discretized to {−1, 1} by setting a zero threshold. Because

of discretization, sA and sB do not align with the eigenvector with largest eigenvalue and

further fine tuning is necessary to approach the global maximum, which can be done using

the Kernighan-Lin algorithm [55]. We have further optimized this algorithm by randomizing

the sequence of nodes and allowing them to change group membership more than once. This

still does not guarantee a global optimum, but represents a trade-off between computational

cost and accuracy.

To partition the network into more than two groups, we recursively dichotomize the re-

sulting sub-networks by maximizing equations (16) and (17) for each sub-network separately.

After sufficient partitioning steps, QA and QB will stop increasing at which point we have

reached maximum modularity for the entire network and therefore no more sequential par-

titioning should be performed. This corresponds to a formal partition stopping criterion,

which is an attractive property of modularity not shared by other clustering methods as we

discuss in Section VII.

IV. PARTITION PROPERTIES

A. Node Degrees

An important property of the null graph models ANULL

|k and R is that they have the same

node degrees as the original graph. For the model ANULL

|k this is enforced by construction,
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because it is conditioned on the node degrees k of the original graph. For the model R

we can show this property as follows. Since the degree of a node is defined as the sum of

edges that connect to this node, multiplication of the adjacency matrix A with a unit vector

results in the degrees of all the nodes of the network: A · 1 = k. Similarly, for the expected

network R, the degree of node i is the ith column of R · 1:

(R · 1)i =
N∑
j=1

Rij =
N∑
j=1

kikj
2m

= ki ·
N∑
j=1

kj
2m

= ki (18)

Considering all nodes, we have R · 1 = k, which implies that the degrees of all nodes of the

expected network R are the same as those of the original network A. It can also be shown

that ANULL

|k · 1 = k. For example, consider the Gaussian random network in equation (11):

(
ANULL

|k · 1
)
i

=
N∑
j=1

(
ANULL

|k
)
ij

=
N∑

j=1,j 6=i

{
ki + kj
N − 2

− 2m

(N − 1)(N − 2)

}
= ki (19)

As a consequence of preserving the node degrees, the two networks satisfy:

(
A−ANULL

|k
)
· 1 = 0 (20)

(A−R) · 1 = 0 (21)

As described in the previous section, maximization of modularity is performed by selecting

the maximum eigenvalues and eigenvectors of matrices A−ANULL

|k and A−R. Based on the

above equations, vector 1 is always an eigenvector of these matrices with 0 contribution to

modularity (its eigenvalue). This is reminiscent of the matrix known as the graph Laplacian

[46] and is important in the spectral graph cut algorithm for the following reason. The unit

vector indicates trivial partitioning, because it leads to grouping of all nodes into one cluster

while at the same time the other cluster is left empty. This property gives a clear stopping

criterion for dividing a graph: when the largest eigenvalue of A−ANULL

|k or A−R is zero,

there is no way to further divide the nodes into two clusters to increase modularity.
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B. Network Topology

Even though both null models maintain the node degrees of the original network, network

R does not maintain the same topology. In particular, even though a real network often

involves nodes where self-loops are not allowed or are not meaningful, network R always

includes self-loops:

Rii =
k2i
2m
6= 0

The positive values assigned to self-loops lead to a bias in the R random model such

that the diagonal values of the adjacency matrix are overestimated, whereas the rest of

the connections are generally underestimated. This does not happen with the ANULL

|k model

because the allowed network topology is already included in matrix H by construction. For

example, equation (11) was derived for an expected network where self-loops are not allowed

and therefore:

(ANULL

|k )ii = 0

C. Isolated Nodes

A network node i is isolated if it does not connect to other nodes in the graph, which im-

plies Aij = 0, ∀j 6= i. Random network models ANULL

|k and R treat isolated nodes differently.

Null model R leaves these nodes isolated and it does not matter where they will eventually

be assigned. In contrast, model ANULL

|k assigns non-zero expected connections between the

isolated nodes and the rest of the network, based on the underlying probability distribu-

tion. As a result, isolated nodes are eventually assigned to clusters rather than treated as

“don’t-cares”.

Connecting isolated nodes to specific clusters may seem counterintuitive at first glance,

but there is an argument that supports such behavior. An isolated node is a part of the

network, so the fact that it did not connect to any node can be considered an unexpected

and noteworthy event. Consider two examples: a) a network with two clusters of unequal

size, N1 � N2, but with equal within-cluster edge strength; b) a network with two clusters

of equal size, N1 = N2, but with larger within-cluster edge strength for the first cluster.

In the former case, it is more surprising that the isolated node did not connect to the

larger cluster rather than the smaller cluster, because many potential connections exist in
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the larger cluster. In the latter case, it is more surprising that the isolated node did not

connect to nodes which have overall strong connections. Our partition algorithm favors the

least surprising of the above events, so it tends to assign isolated nodes to small clusters

consisting of nodes with overall small degrees. Furthermore, the assignment of isolated nodes

to clusters is non-trivial for networks with both positive and negative edges, for instance

correlations vs. anti-correlations in functional brain networks [56], friends vs. foes in social

networks [57], ferromagnetic vs. antiferromagnetic couplings in ising/spin-glass models [58]

etc. In such cases, a zero edge is stronger than a negative edge.

D. Resolution Limit

Modularity has a resolution limit that may prevent it from detecting relatively small

clusters with respect to the entire graph, even though such small clusters can be defined as

communities using local properties, for example cliques [24, 59, 60]. Originally derived using

a Potts model approach, one solution to this problem is to introduce a resolution parameter

that weights the null model when computing modularity [61, 62]:

QB(λ) =
1

2m

∑
i,j

(A− λR)ij δ (Ci, Cj) (22)

and then solve for the partitioning results Ci that maximize the above equation. The same

approach can be applied with our null models, in which case we maximize:

QA(λ) =
1

2m

∑
i,j

(
A− λANULL

|k
)
ij
δ (Ci, Cj) (23)

and similarly tune the resolution parameter λ to focus either on local structures (λ > 1) or

global structures (λ < 1).

V. PARTITION EVALUATION

To evaluate the accuracy of partition algorithms, rather than requiring perfectly accurate

partition results, we assess the overall similarity between the resulting and correct partition

using the normalized mutual information (NMI) measure [63–66]. Denoting the number of

true communities as CT and the number of communities, resulting either from equation (16)
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(a) Performance (b) A (c) A−ANULL
|k (d) A−R

N
1
/N

=
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N
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5

FIG. 3. (Color online) Partition results for Gaussian graphs. a) Performance against different values

of variance (σ2) of the Gaussian distribution and zero additive noise (σ2
N = 0); b) adjacency matrix; c)

difference between adjacency matrix of original graph versus null model ANULL
|k ; d) same for R null model.

Top row: 12 vs. 8 cluster size; bottom row: 10 vs. 10 cluster size. Method QA accurately partitions the

graph for all values of σ2, whereas method QB fails for low values of σ2.

or (17) as CR, NMI is defined as:

NMI(CT , CR) =
−2
∑

i∈CT

∑
j∈CR

Nij

N
log (

NijN

Ni·N·j
)∑

i∈CT

Ni·
N

log (Ni·
N

) +
∑

j∈CR

N·j
N

log (
N·j
N

)
(24)

where Nij is the number of nodes in the true community (cluster) i that appear in the

resulting community j. For the case where an algorithm is unable to perform a partition

and incorrectly finds the whole graph to be a single cluster (inseparable graph), we define

NMI= 0.

VI. RESULTS

We assessed the performance of QA and QB modularity-based algorithms in partitioning

simulated graphs as well as real world networks. Modularity QA assumes several null models,

depending on the underlying edge strength distribution (Table 1), whereas QB is based on

the null model in equation (1). We simulated graphs that follow a Gaussian or Bernoulli

distribution of edge strength, as assumed by the null models in Table 1. Moreover, to

test whether the BLUE estimator performs well on non-Gaussian cases, we measured its
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performance on Bernoulli networks. Real world networks include the Karate Club Network in

[67], a structural brain network in [18], and a resting state functional brain network from the

1000 Functional Connectomes Project (http://www.nitrc.org/projects/fcon_1000/).

A. Gaussian Random Networks

We simulated Gaussian graphs by drawing from an i.i.d. Gaussian distribution with

fixed mean µ = 8 and several levels of variance σ2. For each level of variance, we simulated

two clusters with variable size N1 ≥ N2, such that N1 + N2 = N , where N = 20 is the

total number of nodes. This community structure was enforced by randomly allocating the

stronger values of the Gaussian distribution as intra-cluster edges and the weaker values as

inter-cluster edges. To test robustness against noisy measurements, we added i.i.d. Gaussian

noise with mean zero and variance σ2
N . Our goal is to evaluate the performance of partition

algorithms for several levels of edge variance σ2, noise variance σ2
N , and cluster size ratio

N1/N . For each configuration of the above parameters, we simulated 1000 random network

realizations and then used equations (16) and (17), which maximize modularity QA and QB

respectively, in order to partition graphs. For QA modularity, we used the null model in

equation (11), which is optimal for i.i.d. Gaussian networks. Partition quality is measured

with NMI and averaged across the 1000 realizations.

Figure 3a displays the NMI similarity metric, averaged over the 1000 random networks,

across several levels of edge variance σ2, for the case of no noise (σ2
N = 0) and cluster size

ratio N1/N = 0.6 (top row; 12 vs. 8 cluster size) and N1/N = 0.5 (bottom row; 10 vs.

10 cluster size). Figure 3bcd displays sample realizations of the network adjacency matrix

A, and its difference with the null models used for QA and QB, A−ANULL

|k and A−R,

respectively.

Partition results based on QA are practically identical with the underlying structure of

the simulated network, as indicated by NMI = 1, for all values of σ2. Conversely, for the

configuration parameters in Figure 3, method QB has a considerable performance drop with

decreased values of variance σ2, eventually reaching NMI = 0. In fact, for low values of

variance it was unable to divide the network, considering it inseparable most of the times.

Figure 4 shows the performance of the two partition methods for several levels of edge

variance σ2, noise variance σ2
N , and cluster size ratio N1/N . As expected, the additive
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FIG. 4. (Color online) Partition results of Gaussian graphs for several levels of edge variance σ2, noise

variance σ2
N , and cluster size ratio N1/N . Method QA is more robust to noise, and method QB fails for

small values of σ2 but performs better for large values of σ2

N
M

I

Gaussian noise deteriorates the partition performance, as indicated by the drop of NMI

when σ2
N increases. However, the QA method is much more robust to noise interference than

QB.

Changing the edge variance σ2 has little effect on method QA performance. This is not

the case with method QB, which fails completely for small values of σ2, however it performs

better than QA for large values of σ2. Both methods deteriorate when cluster sizes are very

asymmetric, with very low NMI values when N1/N is close to 1.

The null model R in modularity QB requires positive edge strength to ensure that the

product of degrees of two nodes is a meaningful measure of their expected connection. There

is no such constraint for the null models in QA. Figure 5 displays a network with negative

connections. It consists of two equal size clusters of 10 nodes each. Connections follow
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(a) A (b) A−ANULL
|k (c) A−R

FIG. 5. (Color online) Partitioning graphs with both positive and negative connections. a) Adjacency

matrix; b) difference between adjacency matrix of original graph versus null model ANULL
|k ; d) same for R

null model. In the presence of negative connections, null model R fails to partition the graph, as indicated

by the lack of structure of matrix A−R.

a Gaussian distribution with mean ±0.4 (positive for inter-cluster and negative for intra-

cluster connections) and variance 0.04. When subtracting the null model from the adjacency

matrix A, network structure is still visible in the A−ANULL

|k case, but not in the A−R

case. We further address the issue of networks with negative connections in the Discussion

section.

B. Binary Random Networks

Random rewiring schemes, involving permutation of existing edges of a network, have

been proposed to construct binary random networks [68]. Here we explore the similarity of

our null graph models to these networks.

We consider the random rewiring scheme proposed in [68], which keeps the degrees of all

network nodes constant. A numerical algorithm first selects a pair of edges, eAB and eCD,

connecting nodes A-B and C-D, respectively. The two edges are then rewired to connect

nodes A-C and B-D, effectively eliminating the original two edges and replacing them with

eAC and eBD. To avoid multiple edges connecting the same nodes, the rewiring step is

aborted if at least one of the edges, eAD or eBC , already exists. Following a modification in

[69], the constraint of no self-loops is added to the rewiring algorithm by requiring nodes A,

B, C, and D to be different. To produce a sufficiently random binary graph, the rewiring

step is repeated multiple times.
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Our Monte Carlo simulation includes generating 200 different binary undirected networks

of size N without self-loops. For each network, we create 1000 random rewired graphs, each

produced by multiple rewiring steps, and then average them to produce a mean adjacency

matrix W. The number of rewiring steps was set to be equal to Nr times the total number

of edges in the graph for values of Nr from 25 to 400.

We compute the distance d(W,A|k
NULL) between W and our null model A|k

NULL using

the root mean square difference between the elements of the two corresponding adjacency

matrices:

d(W,A|k
NULL) =

√∑
i,j (A|k

NULL −W)2
ij

N2
(25)

The above procedure results in 200 estimates of the distance metric for each null model

tested. We evaluated the null models in equations (1) and (5), as well as the BLUE null

model in equation (15). In the later case, we assumed i.i.d. edges with diagonal covariance

matrix, so the BLUE model is the same as equation (11).

For a fixed network size N = 10, we repeated the above analysis for various values of Nr.

As shown in figure 6a, Nr does not affect the distance between the rewiring networks and

the null models. Furthermore, the Bernoulli null model is the most similar to the rewiring

procedure, followed by the BLUE model and then the R model, which either includes (QB)

or does not include (Q∗B) the diagonal terms in the calculation of Equation (25). We consider

both Q∗B and QB to test whether the deviation of the R model from the random rewiring

graphs is only attributed to the diagonal terms (cf. section IV B, which indicates that

the topology of network R always requires self-loops, even though they are not necessarily

present in the original network). Although a considerable amount of dissimilarity is explained

by the diagonal terms, Q∗B is still more distant from a rewiring graph than our null models.

We also evaluated networks with various sizes N , as shown in Fig. 6b, while fixing

Nr = 50. Overall, Bernoulli and BLUE null models were closer to the rewiring scheme than

the R model for all values of N . However, the difference dissipates with increased N . The

BLUE estimator is best for network sizes N < 8, whereas the Bernoulli estimator is best for

larger networks.

To test the performance of the partition methods QA and QB in binary networks, we

simulated a graph introduced in [54]. The graph consists of 128 nodes, arranged in four

cluster of 32 nodes each. Edges follow Bernoulli distribution with probability pi for within-
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FIG. 6. (Color online) Comparison of null graph models against a random rewiring scheme. Distance

is expressed as root mean square difference between the elements of the adjacency matrices of the graphs

(Eq. (25)). For each box plot, the central mark is the median, the edges of the box are the 25th and 75th

percentiles, and the whiskers extend to the most extreme data points not considered outliers. Left: Distance

does not depend on the number of rewiring steps Nr. Right: As the size of graph N increases, distance

becomes smaller. Overall, QA null models are closer to an actual rewiring scheme than QB models.

cluster connections and po for between-cluster connections. The average degree k of each

node has two components: ki = 31pi from connections within the same cluster, and ko = 96po

from connections to nodes in other clusters. Probabilities pi and po are selected such that

the average degree of each node is k = ki + ko = 16. We created 100 realizations of this

network, each for different values of ko, ranging from 1 to 15. High values of ko lead to less

community structure, as displayed in the top row of Fig. 7.

We quantified the performance of method QB, as well as method QA using the Bernoulli

null model, with probability value p = 16/127, and the BLUE model. The probability value

was selected because each node on average connects to 16 out of 127 potential nodes to

the rest of the graph. All three methods had roughly the same performance, as shown in

the bottom row of Fig. 7. Partition accuracy drops as ko increases, given that community

structure is less detectable when nodes from different clusters become more and more densely

connected.

We further tested all methods with another benchmark introduced in [70], and online code

available at http://sites.google.com/site/andrealancichinetti/files. This bench-

mark generates random binary graphs with a fixed number of nodes and a desired average

degree. Node degrees, as well as the size of communities, were sampled from power-law

distributions. Each node had a fraction 1 − µ of its links with its community, where µ is
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ko = 1 ko = 5 ko = 8

Performance

FIG. 7. (Color online) Partition results for the binary network described in [4]. Top row: higher values of

ko lead to less community structure of the network; bottom row: Partition results for different values of ko.

Performance of all methods is practically equal.

a mixing parameter with values between 0 and 1. We used a network size of N = 500 and

averaged results of 100 realizations of networks. Methods QBLUE
A , QBernoulli

A , and QB have

almost identical performance, as shown in Figure 8.

We also explored the performance of partitioning binary networks with variable cluster

size ratio. Similar to the Gaussian case described earlier, we simulated N = 20 node

graphs and varied the cluster size ratio N1/N , but now edge strength followed a Bernoulli

distribution with parameters p = 0.8, and 0.1 for within and between-cluster connections,

respectively. Parameters were selected so that the graph has community structure in the

weak sense [21], which requires that for every cluster the sum of within connections is larger

than the number of between connections divided by two. This was true for the cluster size

ratio simulated, which included clusters of size ≤ 17 .

For each cluster size ratio, we simulated 1000 random graph realizations and then applied
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〈k〉 = 15 〈k〉 = 20 〈k〉 = 25

FIG. 8. (Color online) Results of benchmark in [70] for QA and QB methods. The performance of all

methods is almost identical for all values of mixing parameter µ and average degree 〈k〉.

(a) N1/N = 0.5 (b) N1/N = 0.85 (c) performance

FIG. 9. (Color online) Partition results for a binary network for different values of cluster size ratio. a)

Adjacency matrix for 10 vs. 10 cluster size; b) Adjacency matrix for 17 vs. 3 cluster size; c) Performance is

very similar for all methods, across all cluster size ratio values.

QA and QB methods to segment the graph. For QA, we used both the BLUE model, and

the Bernoulli model with p value estimated from the data. Fig. 9 shows that all methods

have practically the same performance for all tested cluster size ratios.

C. Real World Networks

We tested QA and QB modularity partition methods on the karate club network given

in [67]. In this binary network, individual members are represented by nodes on the graph,

and edges connect nodes if a relationship exists between the corresponding individuals.

After a conflict between the club officers and the instructor, the club was divided into two

organizations. We tested whether QA and QB partition methods predict the actual division

of the group. QBernoulli
A is the QA method based on the Bernoulli random network model in
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equation (5), and QBLUE
A is the QA method based on the BLUE null model in equation (15).

The original paper that presented the Karate Club network [67] describes two possible

partitions, one based on the factions of its members and the other on the actual split of the

network. The two partitions are almost identical, with the exclusion of person 9, who was

friendly to both groups, with two friends in the instructor’s group (relationship strength 2

and 5) and three friends in the officer’s group (relationship strength 3, 4 and 3). The faction

partition weakly assigns person 9 to the officer’s group, however after split he actually joined

the instructor’s group, for reasons explained as personal interest to obtain his black belt.

In this paper, we use the actual split of the network as a reference partition, because it is

the most objective measure describing the network; as described in [67], “The factions were

merely ideological groupings, however, and were never organizationally crystallized. There

was an overt sentiment in the club that there was no political division, and the factions were

not named or even recognized to exist by club members”.

Figure 10 shows the Karate Club network, with color indicating the actual subsequent

club split due to conflicts. Table 2 shows the modularity achieved by three methods, QB,

QBernoulli
A , and QBLUE

A , for three different ways of bi-partitioning the network: the club split,

club split with the exception of node 9 classified into the other group, and club split with

the exception of node 9 and 10 classified into the other group. Bold fonts indicate maximum

modularity for each method, which also represents the final partition results achieved with

our implementation of each method. Modularity values are shown based on the binary values

of indicator vectors sA and sB. Only QBernoulli
A precisely predicted the true split of the club.

However, all methods produced very similar results, and inspection of figure 10 shows that

nodes 9 and 10 are actually very close to both groups.

We additionally applied the above methods to the weighted version of the Karate Club

network (Figure 3 in [67]). All methods achieved maximum modularity for the actual club

split with the exclusion of node 9, which effectively corresponds to the faction partition of the

network. We also point out that modularity can increase further, both for the unweighted

and weighted versions of the Karate Club network, with subsequent partition into four

communities.

We further applied the QA and QB clustering methods to structural brain network data

described in [18]. In this undirected weighted network, each node represents one of the 66

FreeSurfer-parcellated regions of the cerebral cortex, and edges represent the connection of
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FIG. 10. (Color online) Karate club network. Nodes indicate 34 club members and color indicates the

actual split of the group after a conflict between its members.

TABLE II. (Color online) Results of karate club binary network partitioning using 3 methods: QB , QBernoulli
A ,

and QBLUE
A . Values represent modularity achieved for the 3 partition results on the columns of the table.

Bold font indicates maximum modularity, which also represents the final partition results achieved by each

method.

Club split Club split except node 9 Club split except nodes 9 and 10

QB 0.3582 0.3715 0.3718

QBernoulli
A 0.4671 0.4667 0.4662

QBLUE
A 0.3741 0.3872 0.3869

regions in terms of axonal fiber density. Axonal fibers were extracted from diffusion spectrum

imaging data, and then averaged across 5 subjects as described in [18]. Figure 11ab displays

the complete network, and Figure 11cd shows our clustering results with methods QA and

QB. For method QA we used the BLUE null model in equation (15). Nodes for different

groups are plotted using different colors. We also label hub nodes with larger spheres. Hub

nodes denote regions that are highly connected to the network, and were identified as those

with a participation coefficient greater than 0.5 [18].

Although the ground truth for this network is unknown, we observe that method QA

produced a more symmetric between-hemisphere sub-network structure than method QB
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(a) A (b) Brain Network

(c) Method QA (d) Method QB

(e) Method QA (f) Method QB

FIG. 11. (Color online) Graph analysis of a structural network based on diffusion brain imaging. a)

Adjacency matrix with the upper-left and lower-right quadrants corresponding to regions of interest on the

right and left hemispheres respectively; b) structural brain network with edges greater than 0.1; c) partition

results for method QA. Color indicates cluster membership; d) same as before for method QB ; e) partition

results for method QA, but now spheres indicate ROIs and larger spheres indicate network hubs; f) same as

before for method QB

(figure 11cd). Furthermore, several resting state studies [56] have identified the central role

of precuneus and posterior cingulate in regulating brain activity in the default network.

Method QA identified several hub nodes in this area, with a more symmetric organization

than method QB (figure 11ef).

To test QA and QB methods on a network with both positive and negative connections,
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QA QB QG
B

FIG. 12. (Color online) Partitioning results with QA, QB , and Q±B [73] methods of a real functional brain

network. Different modules detected by the algorithm are labeled by color. First row indicates the symmetric

across-hemisphere results while the second row highlights the asymmetric ROIs.

we used the Beijing data set from the 1000 Functional Connectomes Project in NITRC

(http://fcon_1000.projects.nitrc.org/). The data set consists of 191 subjects of age

18-26, each having 7.5 minutes resting state fMRI recordings. The available data was already

motion corrected, registered into the Harvard-Oxford probabilistic atlas, segmented, spatial

smoothed, bandpass filtered, and subjected to nuisance analysis [71]. We constructed a

functional network using a total of 96 available cortical ROIs as nodes and computed the

correlation coefficient between the fMRI recordings in every pair of ROIs. The correlation

coefficients were then transformed to z-values using the Fisher transform z = arctanh(r)

[72], which produces a weighted adjacency matrix A.

This real world network contains both positive and negative connections, the former repre-

senting correlated spontaneous fluctuations within a network, and the latter anti-correlations

between networks [56, 74]. We applied QA and QB methods to partition the network, as

well as a generalization of QB, denoted as Q±B, that can deal with negative connections [73].
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Figure 12 shows thatQA is the only method that achieves perfect across-hemisphere sym-

metry. The dark blue spheres represent the task-negative network, which includes a set of

regions often termed the “default network”, namely the posterior cingulate, precuneus, me-

dial prefrontal areas, and others [56]; the cyan spheres represent the task-positive network,

which includes the insula, sensory and motor cortices, and others; the red spheres represent

the visual cortex, which has no intrinsic preference for either network.

Method QB has unpredictable behavior with the presence of negative connections, and

does not accurately cluster the task-negative network. Method Q±B produces very similar

results to QA, however there are 4 asymmetric nodes and an additional cluster of yellow

spheres which encompasses the left/right middle medial frontal cortex and the right Broca’s

area.

VII. DISCUSSION

We have proposed several null models for modularity-based graph partitioning. Apart

from being optimal for specific parametric distributions of edge strength, these models are

also not limited by two constraints of the R null model, namely non-negative edge strength

and the assumption of self-loops.

Model R uses the product of degrees of two nodes to evaluate their expected connection

strength. This measure becomes meaningless when negative edges are allowed, because it

can arbitrarily change sign. As a result, A−R has a random structure and is not useful

to partition graphs, as indicated in figure 5c. This is a well known constrain and there are

multiple studies generalizing the modularity definition to accommodate the negative values

[73, 75, 76]. The basic idea behind these methods is to calculate modularity based on a

weighted summation of two terms, each based on separate null models derived either from

positive or negative edges. Although they overcome the problem of negative edges, these

methods represent heuristic solutions with a required selection of weighted coefficients that

affects clustering results [76]. In contrast, the Gaussian and BLUE null models require no

model modifications or selection of mixing parameters. Nodes with negative connections are

treated not only as disjoint, but also as repelling each other. The functional brain network

in Fig. 12 illustrates such an example, with negative edges representing anti-correlations.

Unlike the conventional method (QB) and its extension for negative edges (Q±B), the BLUE
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null model achieves perfectly symmetric partition results.

As discussed in Section IV, model R always assumes self-loops, because the diagonal

elements of the adjacency matrix are non-zero. However, real world networks often do

not allow self-loops, for example traffic networks, brain networks etc. As a result, model

R often over-estimates self-loop connections. This by itself may not seem important for

partitioning graphs. But, given that model R has the same node degrees as the original

graph (total sum of edges is constant), this also means that it under-estimates all between-

node connections. Figure 3d displays A−R, which has a negative bias in diagonal elements

and a positive bias in off-diagonal elements. In particular, diagonal elements are strongly

negative, while off-diagonal elements are mostly positive, even in the terms corresponding

to inter-cluster connections (top right and bottom left quadrants). The later causes the

graph to often become inseparable with method QB, leading to NMI= 0 as indicated in our

results. Method QA does not suffer from similar bias, and network topology can be properly

modeled using matrix H.

Figures 3 and 4 show that method QB greatly benefits from increased values of σ2. This

is because increased σ2 amplifies the difference between inter and intra-cluster connections,

which is a consequence of our graph simulation approach: we randomly draw from the

Gaussian distribution and assign stronger values as intra-cluster edges and weaker values

as inter-cluster edges. After some threshold, the difference between inter and intra-cluster

connections is so large that the aforementioned bias in the QB approach no longer makes the

graph inseparable (figure 3a). On the other hand, method QA does not benefit as much from

increased σ2, because the null model (11) does not depend on the variance of the Gaussian

distribution.

Both QA and QB methods have decreased performance when cluster sizes become very

asymmetric (N1/N very large). This is because the community structure becomes less

prominent, eventually not even satisfying the weak sense community structure property

[21].

Rewiring results in figure 6 show that method QB is not as close as QA to an actual

rewiring scheme. This is true regardless of whether we include (QB) or exclude (Q∗B) diagonal

terms, and is explained by the aforementioned bias of the conventional null model towards

increased self-loop connections and decreased inter-cluster connections. The QBernoulli
A model

outperforms the QBLUE
A model for all cases other than N < 8, where the small size of the
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network severely limits possible rewiring selections using the algorithm in [68].

Our partition results on binary networks show that all methods perform similarly. This

includes the BLUE model, which is statistically optimal for Gaussian distributions of edge

strength, but still performs well for the Bernoulli distribution. This may be indicative of

a more general robustness of the BLUE model in cases that deviate from the multivariate

Gaussian assumption.

Our Karate network partition results with QB method are different from the ones reported

in [22], even though both use the same null model R. This is because [22] used a different

implementation of the Kernighan-Lin algorithm (discretization of elements of vector SB),

which may have resulted in a local maximum that produces different results for node 10.

However, method QB achieves higher modularity for the partition result in the third column

of Table 2. Given that nodes 9 and 10 are about equally connected to both clusters and

modularity is very close for all partitions, these results seem rather coincidental. For the

Karate club network, even higher modularity can be achieved by subsequent partitioning of

the network into four subnetworks. However, by tuning the resolution parameter lambda in

equation (23), results can be restricted to two clusters by selecting a value λ < 0.59 for the

BLUE null models (a value smaller than 1 biases towards a more global structure).

To perform clustering, we selected the spectral partitioning method proposed in [23]. This

method performs sequential bipartitions of the graph until maximum modularity is achieved.

A variant of this method would be to use multiple eigenvectors to directly estimate multiple

clusters [14, 27, 46, 77]. While such method can potentially achieve better clustering results,

this requires a priori knowledge of the number of clusters, a general problem dealt with by

many methods with different levels of success [78–82].

Selecting which null model to use for clustering depends on the network at hand. In

general, we recommend using the BLUE model in equation (16). Our results indicate that

it performs reliably in a variety of networks regardless of the probability distribution of the

network edges. It is also the optimal estimator (in the MMSE sense) when edges follow a

Gaussian distribution. In the most common case of no prior information, the covariance

matrix Σx is identity and the BLUE model is estimated by equation (11). Furthermore, if

network topology allows for self-loops, the BLUE model can be estimated using equation

(9) with an appropriate incidence matrix H. For the specific case of binary networks, the

Bernoulli expected network in equation (5) and the BLUE model in equation (11) perform
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nearly equivalently.

Regarding the estimation of parameters for the null models, the mean in equation (4)

can be estimated as µ = 2m
N(N−1) , while the probability parameter p in equation (5) can be

estimated as p = 2m
N(N−1) . The mean µx and covariance Σx in equation (16) depend on the

prior information about the network. The commonly used null model in equation (11) does

not require any parameter estimation.

VIII. CONCLUSION

Graph partition algorithms based on modularity have become increasingly popular in

identifying network community structure. In this paper, we introduced null models that are

consistent for their assumed underlying distributions, and in some cases lead to improved

graph partitioning. The BLUE model performed well in all cases, and therefore can be

considered as a general method for graph partitioning and not restricted in its use to only

Gaussian edge distributions.

Our models do not have some of the limitations of the R model, namely they do not

assume self-loops and can deal with negative connections. In addition, they accommodate

possible network topology changes and can be more robust to noise. They performed well

in our simulations and also appeared to successfully detect the community structure of real

world networks.

Appendix A: Random network partially conditioned on node degrees

Here we derive equations (4) and (5), namely the conditional expected network for the

cases of Gaussian and binary networks respectively. First, consider the conditional expected

network in equation (3) for a Gaussian random network with independent identically dis-

tributed edge strengths with mean µ and variance σ2. We assume a complete graph, i.e. a

graph where every pair of distinct nodes is connected by a unique edge. We exclude self-

loops, therefore the degree of a node in the graph is the sum of N − 1 Gaussian variables.

For two nodes i and j with degrees ki and kj and connected with edge strength Aij = t, we

define two new random variables: k
′
i = ki − t and k

′
j = kj − t. These variables represent the

sum of all edges connected to nodes i and j, respectively, excluding the common connection
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Aij. Therefore, their distribution is the sum of N−2 Gaussian independent random variables

with mean µ and variance σ2. The conditional expectation in the right side of equation (3)

becomes:

P (ki, kj|Aij = t) = P (k
′

i = ki − t, k
′

j = kj − t)

= P (k
′

i = ki − t) · P (k
′

j = kj − t) (A1)

where the first equality uses the newly defined random variables and the second equality

results from the independence of k
′
i and k

′
j, since they do not share any common edges.

We can now substitute in the right hand side of equation (3) the known distributions:

P (Aij = t) =
1√

2πσ2
exp

{
−(t− µ)2

2σ2

}
(A2)

P (k
′

i = ki − t) =
1√

2π(N − 2)σ2
exp

{
−(ki − t− (N − 2)µ)2

2(N − 2)σ2

}
(A3)

which produces the expression in equation (4).

For the binary network, the Bayesian formula (3) can be written as:

E(Aij|ki, kj)

=
1∑
t=0

t · P (Aij = t|ki, kj)

=
1∑
t=0

t
P (ki, kj|Aij = t)P (Aij = t)∑1
u=0 P (ki, kj|Aij = u)P (Aij = u)

(A4)

Following the same analysis as above for the Gaussian case, if we assume all edges in the

binary network follow i.i.d. Bernoulli distribution with parameter p, we have:

P (ki, kj|Aij = t)P (Aij = t) =

P (k
′
i = ki − 1) · P (k

′
j = kj − 1) · p, t = 1

P (k
′
i = ki) · P (k

′
j = kj) · (1− p), t = 0

(A5)

In this case, the corresponding node degrees ḱi follow a binomial distribution, as the sum of

N − 2 i.i.d. Bernoulli random variables. For example:

P (k
′

i = ki − 1) =

(
N − 2

ki − 1

)
pki−1(1− p)N−1−ki (A6)

To obtain equation (5) for a binary network whose edges follow i.i.d. Bernoulli distribution,

we apply equations (A5) and (A6) to equation (A4).
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Appendix B: Gaussian Random Network with Independent Identically Distributed

Edges

For the case of Gaussian random networks with independent identically distributed edge

strengths, we have µx = µ1 and Σx = σ2I, which simplify the covariance matrices:

Σk = HΣxH
T = σ2HHT

Σxk = ΣxH
T = σ2HT

Therefore, equation (9) now becomes:

E (x|Hx = k) = µ1 + HT
(
HHT

)−1
k∗ (B1)

where k∗ ≡ k− µk. The product HHT has the structure:

(HHT )ij =

N − 1 , i = j

1 , i 6= j
(B2)

and we can write HHT in the following format:

HHT = (N − 2)IN + 1N1TN (B3)

The physical meaning of
(
HHT

)
ij

is the number of common edges that nodes i and j share.

In a complete graph without self-loops there is only one edge that links two distinct nodes

while there are N − 1 edges associated with one node (on the diagonal of HHT ).

To calculate the inverse of HHT , we apply the matrix inversion lemma [83] to equation

(B3):

(A + UCV)−1 = A−1 −A−1U(C−1 + VA−1U)VA−1 (B4)

with A = (N − 2)IN , U = 1N , V = 1TN , and C = 1. We denote IN the identity matrix with

dimension N and 1N a unit column vector with dimension N . The inverse becomes:

(HHT )−1ij =


1

N−2 −
1

2(N−1)(N−2) , i = j

− 1
2(N−1)(N−2) , i 6= j

(B5)
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For the lth element of x, the conditional expectation in equation (B1) is:

E(xl|Hx = k) =
(
µ1 + ΣxkΣk

−1k∗
)
l

= µ+
(
HT
)
l

(
HHT

)−1 · k∗
= µ+

k∗i + k∗j
N − 1

−
N∑

s=1,s 6=i,s 6=j

k∗s
(N − 1)(N − 2)

=
ki + kj
N − 2

− 2m

(N − 1)(N − 2)
(B6)

where HT
l denotes the lth row of HT . In the above we used the fact that the ith and jth

are the only non-zero elements of row HT
l . They are equal to 1, indicating which nodes are

associated with edge xl. Therefore, a left multiplication with HT
l results in the addition of

ith and jth rows of matrix (HHT )−1.

Appendix C: Derivation of Best Linear Unbiased Estimator (BLUE)

To solve for the BLUE estimator x̂BLUE

|k = L̂k + b̂ in equation (14), we set the correspond-

ing derivatives with respect to L̂ and b̂ to zero:

∂F
(
x̂|k
)

∂b̂

∣∣∣∣∣
x̂|k=x̂BLUE

|k =L̂k+b̂

= 0 (C1)

∂F
(
x̂|k
)

∂L̂

∣∣∣∣∣
x̂|k=x̂BLUE

|k =L̂k+b̂

= 0 (C2)

The objective function F(x̂|k) can be written as:

F(x̂|k) = E
{

(x̂|k − x)T (x̂|k − x)
}

= E
{
tr(x̂|k − x)(x̂|k − x)T

}
(C3)

To compute (C1) and (C2), we need to estimate derivatives of the trace of several matrix

products. We will therefore use the following formulas, which are true for any matrices

A,B,C, and X that result in an n× n argument for trace tr():

∂tr(AXB)

∂X
=
∂tr(BTXTAT )

∂X
= ATBT (C4)

∂tr(AXBXTC)

∂X
= ATCTXBT + CAXB (C5)
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A proof of these formulas is given later in this section.

The derivatives are now estimated as follows:

∂F
(
x̂|k
)

∂b̂
=

∂

∂b̂

{
E
[
tr((L̂k + b̂− x)(L̂k + b̂− x)T )

]}
= E

[
∂

∂b̂

{
tr((L̂k + b̂− x)(L̂k + b̂− x)T )

}]
= E

[
2L̂k + 2b̂− 2x

]
= 2L̂µk + 2b̂− 2µx (C6)

∂F
(
x̂|k
)

∂L̂
=

∂

∂L̂

{
E
[
tr((L̂k + b̂− x)(L̂k + b̂− x)T )

]}
= E

[
∂

∂L̂

{
tr((L̂k + b̂− x)(L̂k + b̂− x)T )

}]
= E

[
2L̂kkT + 2b̂kT − 2xkT

]
= 2L̂E

[
kkT

]
+ 2b̂E

[
kT
]
− 2E

[
xkT

]
= 2L̂

(
Σk + µkµ

T
k

)
+ 2b̂µT

k − 2
(
Σxk + µxµ

T
k

)
(C7)

By setting both derivatives to zero and solving the resulting system of equations with

respect to L̂ and b̂, we get:

⇒

b̂ = µx −ΣxkΣ
−1
k µk

L̂ = ΣxkΣ
−1
k

(C8)

Therefore, the BLUE estimator becomes the same as equation (9), also given here for con-

venience:

x̂BLUE

|k = L̂k + b̂ = µx + ΣxkΣ
−1
k (k− µk) (C9)

Equations (C4) and (C5) are given in the calculus section in [84], and a brief proof follows.

Assume ei a vector containing 1 in ith position and zeros elsewhere. Then dX/dxij = eie
T
j

[85]. Consequently,

d/dxij(tr(AXB)) = tr(Aeie
T
j B)

= tr(eTj BAei)

= eTj BAei

= (BA)ji

=
(
ATBT

)
ij

(C10)
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Similarly,

d/dxij(tr(AXBXTC)) = tr(Aeie
T
j BXTC + AXBeje

T
i C)

= tr(Aeie
T
j BXTC) + tr(AXBeje

T
i C)

= tr(eTj BXTCAei) + tr(eTi CAXBej)

= (ATCTXBT + CAXB)ij (C11)
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