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Abstract

We study the dynamic structure factor S(k, t) of proteins at large wavenumbers k, kRg ≫ 1,

where Rg is the gyration radius. At this regime measurements are sensitive to internal dynamics

and we focus on vibrational dynamics of folded proteins. Exploiting the analogy between proteins

and fractals, we perform a general analytic calculation of the displacement two-point correlation

functions, 〈(~ui(t)− ~uj(0))
2〉. We confront the derived expressions with numerical evaluations that

are based on protein data bank (PDB) structures and the Gaussian network model (GNM) for

a few proteins and for the Sierpinski gasket as a controlled check. We use these calculations to

evaluate S(k, t) with arrested rotational and translational degrees of freedom, and show that the

decay of S(k, t) is dominated by the spatially averaged mean square displacement of an amino

acid. The latter has been previously shown to evolve subdiffusively in time, 〈(~ui(t)− ~ui(0))
2〉 ∼ tν ,

where ν is the anomalous diffusion exponent that depends on the spectral dimension ds and fractal

dimension df . As a result, for wavenumbers obeying k2〈~u2〉 >∼ 1, S(k, t) effectively decays as

a stretched exponential S(k, t) ≃ S(k)e−(Γkt)
β

with β ≃ ν, where the relaxation rate is Γk ∼
(

kBT/mω2
o

)1/β
k2/β , T is the temperature, and mω2

o the GNM effective spring constant describing

the interaction between neighboring amino acids. The static structure factor is dominated by the

fractal character of the native fold, S(k) ∼ k−df , with negligible to marginal influence of vibrations.

The analytical expressions are first confronted with numerically based calculations on the Sierpinski

gasket, and very good agreement is found between simulations and theory. We then perform PDB-

GNM based numerical calculations for a few proteins, and an effective stretched exponential decay

of the dynamic structure factor is found, albeit their relatively small size. However, when rotational

and translational diffusion are added, we find that their contribution is never negligible due to finite

size effects. While we can still attribute an effective stretching exponent β to the relaxation profile,

this exponent is significantly larger than the anomalous diffusion exponent ν. We compare our

theory with recent neutron spin-echo studies of myoglobin and hemoglobin, and conclude that

experiments in which the rotational and translational degrees of freedom are arrested, e.g., by

anchoring the proteins to a surface, will improve the detection of internal vibrational dynamics.

PACS numbers: 87.15.-v,87.15.ad,05.40.-a,47.53.+n
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I. INTRODUCTION

In the last few years there has been renewed interest in the fractal-like nature of natively

folded proteins [1–13]. In analogy with mathematically constructed fractals, it has been

shown that each protein can be associated with characteristic broken dimensions. Diversity

was understood in terms of the unique exponents that characterize each protein [3, 5, 8].

This viewpoint has allowed description of protein dynamics on a universal level and has led to

a unified approach towards observed anomalies in the vibrational dynamics of proteins. On

the experimental side, evidence of fractality in proteins came from electron spin relaxation

measurements [11] and neutron scattering [12]. Indirect evidence came from single molecule

experiments that have reported anomalous behaviors involving power-laws in time [14] and

from molecular dynamics simulations that have shown anomalous diffusion of vibrational

energy [3], dihedral angels [15] and amino acids [16]. These observations were further backed

by various elastic network based studies [5–8, 10] concluding that anomalies in the vibrational

dynamics of proteins are a consequence of a fractal-like structure [8]. Biological relevance of

the fractal properties of proteins was discussed in Refs. [6–8, 13]. More recently, the fractal

analysis has been proven useful to explain the action of antibodies [17].

Fractals are characterized by a few broken dimensions [18, 19]: (i) the mass fractal di-

mension df , that governs the scaling M(r) ∼ rdf of the mass M(r) enclosed in concentric

spheres of radius r, (ii) the spectral dimension ds that governs the scaling g(ω) ∼ ωds−1 of

the vibrational density of states (DOS) g(ω) with frequency ω [19–21], and (iii) the topolog-

ical dimension dl that governs the scaling M(l) ∼ ldl of the mass M(l) enclosed in concentric

“spheres” of radius l in the topological (or “manifold”/“chemical”) space. One may also de-

fine, instead of dl, the chemical length (or minimal path) dimension dmin = df/dl that relates

the real space distance r between two points on the fractal to the minimal path distance l

between these points along the fractal network links, l ∼ rdmin. The dimensions df and ds

have been computed for a large number of proteins using the native fold structures obtained

from the protein data bank [7]. The fractal dimension df is computed from these structures

in a straight forward manner. The topological dimension dl has also been computed and

found close to the fractal dimension df [22]. The computation of ds requires a network

elasticity model, and the Gaussian network model (GNM) has been mostly used [23]. The

spectral dimension of the vast majority of proteins has been found to be smaller than two
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[4, 6, 7]. Importantly, it leads to the generalized Landau-Peierls instability, 〈u2〉 ∼ N
2
ds

−1

where u is an amino acid displacement (averaged over all amino acids) and N is the number

of amino acids [4, 6, 24]. By invoking marginal stability, that allows proteins to attain maxi-

mum fluctuations (or “flexibility”) but keep their native fold structure, a universal equation

of state that relates ds, df and N, for all natively folded proteins [6], has been deduced. The

equation has been validated for about 5,000 proteins and remarkable agreement has been

found, regardless of protein source or function [7].

Recent advances in high-resolution inelastic neutron scattering, available with neutron

spin-echo (NSE) spectroscopy, have turned this approach useful in the analysis of biomolecule

flexibility and vibrational dynamics [25, 26]. NSE studies that measure the dynamic struc-

ture factor S(k, t) have been recently performed on horse heart myoglobin and bovine

hemoglobin in solutions [27]. In the large wavenumber k regime corresponding to kRg ≫ 1,

where Rg is the gyration radius, and at low concentrations and times shorter than 1ns, the

result is a stretched exponential relaxation, S(k, t) ∼ e−(Γkt)
β

with β ≃ 0.4 ± 0.03 for both

proteins and independent of k. The relaxation rate has been found to scale as Γk ∼ k2/β.

Inelastic neutron scattering, a complementary method to NSE, is used for exploring protein

dynamics at high frequencies (“short times”) [28, 29]. Inelastic neutron scattering experi-

ments and MD simulations performed on lysozyme showed a non-Lorentzian spectra which

corresponds to a non-exponential decay with time of the dynamic structure factor [30]. These

findings are in accord with the NSE findings described above and with the theory developed

herein.

Phenomenologically, the non-exponential relaxation of S(k, t) can be approached by as-

suming that collective/averaged observables, associated with the internal dynamics of pro-

teins, follow fractional Brownian motion rather than regular Brownian motion [31, 32]. The

assumption is justified a posteriori by comparison to MD simulations and experiments. An-

other approach towards the anomalous relaxation of S(k, t) is based on an analogy with

polymer dynamics theory and one conjectures that S(k, t) decays mainly due to the time

evolution of the amino acid mean square displacement (MSD) [33–35]. Combined with the

above experimental observations, this conjecture suggests that the MSD evolves anomalously

in time, i.e., as ∼ tν with ν ≃ β. Yet, the anomalous diffusion exponent does not fit any of

the polymer theory exponents, 2/3 in the Zimm model and 1/2 in the Rouse model. More

importantly, a folded protein is clearly nothing like a solvated, open, flexible polymer, that
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fluctuates between its many available configurations without having any underlying scaffold.

Hence, the use of polymer theory can only serve as a guiding tool.

In this paper we take a first principles approach and relate the anomalies in the decay

of the dynamic structure factor with the fractal-like nature of proteins. We first note that

on timescales less than or of order nanosecond a protein is not expected to experience any

unfolding-refolding dynamics, even on a local scale, and all dynamics is expected to be

associated with (overdamped) vibrations about the folded structure. Due to the protein

fractal-like structure, the MSD of an amino acid, averaged over all amino acids of the

protein, have been shown to be subdiffusive, that is to scale at short times as ∼ tν . The

exponent ν depends on the fractal and spectral dimensions, ν = 1 − ds/2 in a Rouse type

model [5, 8, 35], ν = (2 − ds)/(2− ds + ds/df) in a Zimm type model [10], and ν = 2 − ds

for vanishing friction [5]. Note that although we constantly use the polymer physics terms

“Rouse” and “Zimm”, these terms are only used in order to emphasize the hydrodynamic

friction model in question. In a Rouse-type model the friction is local while in a Zimm-

type model the friction is long ranged due to hydrodynamic interactions. In contrast to

the original, polymeric, use of the terms “Rouse” and “Zimm”, we obviously do not assume

that a protein is modeled by a 1D Gaussian chain. On the contrary, as described later on,

the native 3D structure is most definitely taken into consideration. Hence the anomalous

diffusion exponents are in general different from their polymer values ν = 1/2 (Rouse) and

ν = 2/3 (Zimm) [33]. Special fractals may yield the linear polymer Zimm exponent ν = 2/3,

e.g., the Vicsek fractals studied numerically by Blumen and co-workers [35] (as can also be

verified by using the above analytic expression for ν), however, this is not typical. For

further discussion about the difference between the Zimm-like and Rouse-like models used

here, and those used in polymer theory, the reader is referred to Ref. [10].

Since all amino acids contribute to the dynamic structure factor, it should indeed exhibit

the spatially averaged MSD. However, this single amino acid picture fails to capture both

static and dynamic correlations between amino acids, e.g., it is unable to predict the static

structure factor S(k), and so this simplified viewpoint may not be complete. We thus

make a complete calculation of the dynamic structure factor based on the fractal analogy,

and delineate the regimes for which the decay of S(k, t) is dominated by the MSD, thus

connecting the fractal exponents ds and df to the stretched exponential decay of S(k, t). We

also predict the dependence of the relaxation rate on the effective spring constant describing
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the interaction between neighboring amino acids. Moreover, we add the non-trivial effect of

rotational diffusion on the relaxation profile. In addition, we demonstrate the signature of

protein fractal properties and fractal controlled vibrations on the static structure factor.

In order to obtain the dynamic structure factor, we calculate first the vibrational amino

acid pair correlation function 〈(ui(t)− uj(0))
2〉, which is a fundamental ingredient of the

dynamic structure factor. We expand this correlation function in normal modes, obtain its

scaling form, and relate it to two dynamical quantities that we have focussed on in the past:

(i) the MSD of an amino acid, and (ii) the autocorrelation function of the distance between

a pair of amino acids. We dwell on the different asymptotes of the pair correlation function

that are relevant for the decay profile of the dynamic structure factor. We show that above

a crossover time that signifies the passage of information (or energy [3]) between the two

residues, the pair correlation function in question approaches the MSD. As the latter is

subdiffusive, it leads to the stretched exponential decay of the dynamic structure factor.

II. MODEL DEFINITIONS

We repeat briefly the model definitions and assumptions, following the notations of Ref.

[5]. Protein vibrations are discussed using the Gaussian network model (GNM) [20, 23].

The model assigns identical springs between α-carbon pairs that are distant less than a

cutoff distance Rc, whose typical values range between 6 to 8 A. Each α-carbon, henceforth

named “bead”, is assigned an averaged amino acid mass. In what follows, we assume that

the network forms a disordered fractal. The index of a bead, or its coordinate in topological

space, is denoted symbolically by the “vector” ~l. The vector ~R(~l) denotes its position in real

space. (Note that this indexing method is equivalent to the indexing method used in the

Abstract and Sec. I. In what follows we will use the two indexing methods interchangeably.)

The ground configurational state of the protein is described by the set of coordinates ~Req(~l),

and deviations from the ground state are denoted by the displacements ~u(~l) = ~R(~l)− ~Req(~l).

The GNM Hamiltonian is

H
[

{~u(~l)}
]

=
1

2
mω2

o

∑

<~l~l′>

(

~u(~l)− ~u(~l′)
)2

, (1)

where < ~l ~l′ > stands for pairs connected by springs, ωo is the spring self-frequency, and m

is the bead mass (mω2
o is the spring constant). The eigenstates (normal modes) Ψα(~l) of the
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Hamitonian (1), are solutions of the eigenvalue equation

ω2
o

∑

~l′∈~l

[Ψα(~l
′)−Ψα(~l)] = −ω2

αΨα(~l) , (2)

where ωα is the mode frequency. Here ~l′ ∈ ~l denotes beads connected by springs to the bead

~l. {Ψα(~l)} form an orthonormal set [19, 21] such that

∑

~l

Ψα(~l)Ψβ(~l) = δα,β (3)

and
∑

α

Ψα(~l)Ψα(~l
′) = δ~l,~l′ . (4)

This allows to define a normal mode transform

~uα =
∑

~l

~u(~l)Ψα(~l) , (5)

and an inverse transform

~u(~l) =
∑

α

~uαΨα(~l) , (6)

where ~uα is the amplitude of the normal mode Ψα(~l). In the normal mode “space”, the

Hamiltonian is diagonal,

H [{~uα}] =
1

2
m
∑

α

ω2
α~u

2
α . (7)

Equipartition theorem then dictates that at thermal equilibrium

〈~uα · ~uβ〉T =
3kBT

mω2
α

δα,β . (8)

On a fractal, the normal modes Ψα(~l) are strongly localized in space, unlike the oscillatory

behavior characteristic of uniform networks. A disorder averaged eigenstate may be defined

according to

Ψ̄(ωα, |~ℓ− ~ℓ′|) = N〈Ψα(~ℓ)Ψα(~ℓ
′)〉dis , (9)

where 〈...〉dis denotes disorder averaging, i.e. averaging over all realizations of the fractal

keeping the nodes ~ℓ and ~ℓ′ fixed, or averaging, within a given realization, over all different

pair of nodes ~ℓ and ~ℓ′ that have the same topological space distance |~ℓ − ~ℓ′|. Note that

mode normalization implies 〈Ψα(~ℓ)
2〉dis = 1/N . It has been shown that Ψ̄(ωα, l) obeys the

following scaling form [18, 20, 21]

Ψ̄(ωα, l) = f
[

(ωα/ωo)
ds/dl l

]

, (10)

where f(y) is the scaling function. For y ≫ 1, f(y) is exponentially decaying, and, for y ≪ 1,

f(y) ≃ 1− C0 × y2 where C0 is a numerical constant [21, 36, 37].
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III. TWO-POINT CORRELATION FUNCTION AND MEAN SQUARE DIS-

PLACEMENT

A. Introduction

In order to derive the dynamic structure factor of proteins at large wavenumbers and

short times, we discuss first the relevant displacement pair correlation functions that are

needed for this calculation. We are specifically interested in the pair correlation function

〈(~u(~ℓ, t)−~u(~ℓ′, 0))2〉, where it is understood that spatial averaging, i.e. averaging over many

origins ~ℓ′ that are sufficiently far from the periphery, has been performed, thus making this

correlation function depend only on the relative separation |~ℓ− ~ℓ′| in topological space. In

particular, for ~ℓ = ~ℓ′, this correlation function reduces simply to the (spatially averaged)

MSD of an amino acid.

B. Basic dynamics

In Refs. [5, 8, 10] we derived the normal mode space Langevin equations for the fractal-

like protein in the high damping and vanishing damping limits. In the high damping limit,

which is our main focus here due to its relevance to protein dynamics in solutions, two

models were considered: (i) a Rouse type model in which the hydrodynamic friction is local,

and (ii) a Zimm type model where we accounted for the hydrodynamic interaction between

different amino acids, that is transmitted through the velocity field of the solvent. For both

models, the Langevin equations of motion in the mode space can be written in the form

d~uα

dt
= −Γα~uα + ~ζα(t) . (11)

where uα(t) is the amplitude of a normal mode α at time t,

Γα = mω2
αΛα (12)

is the mode relaxation rate, ~ζα(t) is thermal white noise that obeys the fluctuation-dissipation

theorem

〈~ζα(t)~ζβ(t′)〉 = 2kBTΛαδα,βδ(t− t′) , (13)
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and Λα is the mode mobility coefficient. Using Eq. (11), the time autocorrelation function

of a mode amplitude obeys a simple exponential decay controlled by Γα,

〈~uα(t) · ~uα(0)〉 = 〈~u 2
α 〉Te−Γαt . (14)

The dependence of Λα on ωα is sensitive to the hydrodynamic model in question. In the

Rouse model

Λα = 1/mγ (15)

independent of frequency, where mγ is the friction coefficient of a bead. Thus mγ ≃ 3πηb

for Stokes friction, where b is the bead diameter, taken for simplicity equal to the mean

bond length (b ≤ Rc). In the Zimm model,

Λα = (A/6πηb) (ωα/ωo)
ds
df

−ds
, (16)

where A is a numerical constant,

A =
dlπ

dl/2

Γ[dl/2 + 1]

∫ ∞

0
dx xdl−1−dl/dff(x) . (17)

(f(x) is the mode scaling function defined in Eq. (10).)

To account for both models in a single formula, we shall write the relaxation rate as

Γα ≃ Ā ω θ
α (18)

where (i) in the Rouse model:

θ = 2 ; Ā = 1/γ = m/(3πηb) , (19)

and (ii) in the Zimm model:

θ = 2− ds + ds/df ; Ā = A m/(6πηbω
ds
df

−ds

o ) . (20)

C. Two-point correlation function: Basic expressions

Expanding the two point correlation function in terms of the exact normal modes Ψα(~ℓ)

we find

〈(~u(~ℓ, t)− ~u(~ℓ′, 0))2〉 =
∑

α

〈~u 2
α 〉T

(

Ψα(~ℓ)
2 +Ψα(~ℓ

′)2 − 2Ψα(~ℓ)Ψα(~ℓ
′)e−Γαt

)

.

(21)
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Performing disorder average over Eq. (21) (see definition after Eq. (9)), and using the def-

inition of the disorder averaged normal mode Ψ̄(ωα, ℓ), Eq. (9), the two-point correlation

function which we focus on is found to be

〈(~u(~ℓ, t)− ~u(~ℓ′, 0))2〉 =
2

N

∑

α

〈~u 2
α 〉T

(

1− Ψ̄(ωα, |~ℓ− ~ℓ′|)e−Γαt
)

. (22)

If the fractal (protein) is sufficiently large, the frequency spectrum is dense and we can

approximate the sum by an integral over the frequency ω using the DOS g(ω) = noω
ds−1,

where no = Nds/ω
ds
o is chosen such that

∫ ωo

0 dωg(ω) = N . Making use of the equipartition

theorem, Eq. (8), we obtain

〈(~u(~ℓ, t)− ~u(~ℓ′, 0))2〉 = 6ds
kBT

mωds
o

∫ ωo

ωmin

dω ωds−3 ×
(

1− Ψ̄(ω, |~ℓ− ~ℓ′|)e−Āωθt
)

. (23)

Note that the lower and upper integration limits in Eq. (23) set the shortest and longest vi-

brational relaxation times in the system. The longest relaxation time τN is the inverse of the

smallest relaxation rate leading to τN = Γ(ωmin)
−1 ≃ Ā−1 ω −θ

min where ωmin ≃ ωo(Rg/b)
−df/ds ,

i.e.

τN ≃ Ā−1 ω −θ
o (Rg/b)

θdf/ds ∼ N θ/ds ; . (24)

The shortest relaxation time τ0 is is the inverse of the largest relaxation rate thereby

τ0 = Γ(ωo)
−1 = Ā−1 ω −θ

o . (25)

Focusing on the intermediate time regime τ0 ≪ t ≪ τN we may set the lower and upper

limits of integration in Eq. (23) to 0 and infinity, respectively. Changing the variable of

integration from ω to z, where zθ = Āωθt, and using the scaling form of the eigenstates,

Ψ̄(ω, l) = f
[

(ωα/ωo)
ds/dl l

]

, we obtain the following scaling form

〈(~u(~ℓ, t)− ~u(~ℓ′, 0))2〉 = kBT

mωds
o

(Āt)ν Φ
[

|~ℓ− ~ℓ′|/ℓ(t)
]

, (26)

where

Φ(v) = 6ds

∫ ∞

0
dzzds−3

(

1− f
[

zds/dlv
]

e−zθ
)

(27)

and where ℓ(t) = ωds/dl
o (Āt)

ds
dlθ is the (dimensionless) length describing the propagation with

distance, in topological space, of the bead-bead correlations or force/enregy perturbations.
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In real space, this (dimensioned) propagation length is

ξ(t) ≃ bℓ(t)dl/df = b ωds/df
o Āζ tζ (28)

where

ζ =
ds
dfθ

(29)

is the real space propagation length exponent. We note that in the Rouse model ζ = 1/dw,

where dw, the random walk (RW) anomalous diffusion exponent, is given by the Alexander-

Orbach relation [20]

dw =
2df
ds

(30)

(i.e. 〈r2(t)〉 ∼ t2/dw for random walk on the same network).

Molecular dynamics simulations aimed at characterizing the spread of vibrational energy

in proteins [3] and random walk simulations on proteins [8] have confirmed the power law

behavior of the propagation length both directly and indirectly. In particular, it was found

that in proteins dw > 2, i.e., propagation of correlations and force/energy perturbations in

the Rouse model is subdiffusive in time.

D. Mean square displacement

In particular, for ~ℓ = ~ℓ′ we recover the previously derived vibrational MSD of a bead,

averaged over all network beads. Provided that ds < 2, it shows the familiar anomalous

subdiffusion

〈∆~u(t)2〉 ≡ 〈(~u(~ℓ, t)− ~u(~ℓ, 0))2〉 = B tν . (31)

The exponent ν is

ν = (2− ds)/θ (32)

yielding

ν = 1− ds
2

(33)

in the Rouse model, and

ν =
2− ds

2− ds + ds/df
=

dw − df
dw − df + 1

(34)

in the Zimm model. The prefactor B is

B = Φ[0]
kBT

mωds
o

Āν . (35)
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Using f(0) = 1 and performing the integration in Eq. (27), we find (i) Φ[0] =
6dsΓ[

ds
2
]

2−ds

in the Rouse model, and (ii) Φ[0] =
6dsΓ[

1
dw−df+1

]

2−ds
in the Zimm model (Γ[x] is the Gamma

function). Importantly, we have verified Eq. (31) for about 500 proteins by calculating its

RW counterpart, the probability of return to the origin, which is exactly proportional to the

time derivative of the Rouse model vibrational MSD [8].

The anomalous subdiffusion is expected to hold for times τ0 ≪ t ≪ τN . For t >∼ τN

the MSD saturates at 〈∆~u(∞)2〉 = 2〈~u2〉, i.e. it is proportional to the so-called (mean) B-

factors. As previously shown, the latter exhibits the generalized Landau-Peierls instability

〈~u2〉 ∼ N2/ds−1. The Landau-Peierls instability may be deduced from the integral expression

〈~u2〉 = 6ds
kBT

mωds
o

∫ ωo

ωmin

dω ωds−3 (36)

that for ds < 2 diverges at the lower limit ωmin,

〈~u2〉 ≃ 6ds
2− ds

kBT

mωds
o

ωds−2
min ≃ 6ds

2− ds

kBT

mω2
o

(

Rg

b

)dw−df

∼ N2/ds−1 . (37)

Interestingly, for τ0 ≪ t the MSD may be shown to obey a simple scaling formula that

includes the crossover to saturation

〈∆~u(t)2〉 = 〈~u2〉φ [t/τN ] . (38)

Note that the anomalous diffusion exponent ν = (2− ds)/θ can be deduced solely from the

demand that, for t ≪ τN , the MSD should not depend on N . Thus φ[z] ∼ z(2−ds)/θ for

z ≪ 1, and φ[z] → 2 for z → ∞.

E. Autocorrelation of distance

A closely related correlation function is the autocorrelation function 〈~x(t) · ~x(0)〉 of the
fluctuations ~x(t) in the vector of separation between two points, where ~x(t) can be related

to the displacements by ~x(t) = ~u(~ℓ, t) − ~u(~ℓ′, t). Note that 〈~x(t) · ~x(0)〉 is not identical

to 〈(~u(~ℓ, t) − ~u(~ℓ′, 0))2〉. However, under disorder averaging we can exactly write the two-

particle correlation function in question as the sum of the single particle MSD and the

distance autocorrelation function (see Appendix A.1),

〈(~u(~ℓ, t)− ~u(~ℓ′, 0))2〉 = 〈∆~u(t)2〉+ 〈~x(t) · ~x(0)〉 (39)
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(A similar expression holds without disorder averaging, see Appendix A.2.)

〈~x(t) · ~x(0)〉 has been previously analyzed in great detail for short and long times. In

particular, for ds < 2 the static variance 〈~x 2〉 has been shown to diverge with distance as

[5, 8, 38] 〈~x 2〉 ∼ R
dw−df
ll′ , where

Rll′ ≡ |~Rℓ − ~Rℓ′ | (40)

is the Euclidean distance between beads ~ℓ and ~ℓ′. This demonstrates the divergence with

distance of the inter-particle separation fluctuations (in accord with the Landau-Peierls

instability), as recently verified numerically for about 500 proteins [8]. More precisely,

putting t = 0 in Eqs. (39) and (23) we find, provided that ds < 2 and 2ds
dl
+ds > 2 (assuming

f(y) ≃ 1− C0y
2 for y ≪ 1),

〈~x 2〉 = 6ds
kBT

mωds
o

×
∫ ∞

0
dω ωds−3

(

1− f
[

(ω/ωo)
ds/dl l

])

≃ C
kBT

mω2
o

(

Rll′

b

)dw−df

(41)

where C = 6ds
∫∞
0 dz zds−3

(

1− f(zds/dl)
)

. Note that the static variance may be described

by an effective harmonic potential 1
2
mω2

eff~x
2 with [21] ω2

eff ≈ ω2
o(Rll′/b)

df−dw . Importantly,

it has been proven proportional to the RW mean first passage time between ~ℓ and ~ℓ′ on the

same network, a fact that has far reaching consequences [8, 38, 39]. For ds ≥ 2 a different

behavior is obtained that is rarely relevant to proteins and is therefore not discussed here

[8, 38, 39].

We repeat briefly the asymptotic analysis of 〈~x(t) · ~x(0)〉 for short and long times. From

Eqs. (39) and (23) we find

〈~x(t) · ~x(0)〉 = 6ds
kBT

mωds
o

∫ ωo

ωmin

dω ωds−3 ×
(

1− Ψ̄(ωα, |~ℓ− ~ℓ′|)
)

e−Āωθt , (42)

which may be expressed in the following scaling form

〈~x(t) · ~x(0)〉 = kBT

mωds
o

(Āt)ν Ω
[

|~ℓ− ~ℓ′|/ℓ(t)
]

, (43)

where

Ω[v] = 6ds

∫ ∞

0
dzzds−3

(

1− f
[

zds/dlv
])

e−zθ . (44)

Note the subtle, yet fundamental, difference between Eqs. (43)-(44) and Eqs. (26)-(27).
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If ℓ(t) ≪ |~ℓ−~ℓ′| (short times), the two beads’ motion is uncorrelated, and (see Sec. III.D)

each bead performs anomalous subdiffusion. To find the asymptote in this limit we add and

subtract 1 to the integrand in Eq. (42) to obtain

〈~x(t) · ~x(0)〉 =

6ds
kBT

mωds
o

∫ ωo

ωmin

dω ωds−3
(

1− Ψ̄(ωα, |~ℓ− ~ℓ′|)
)

− 6ds
kBT

mωds
o

∫ ωo

ωmin

dω ωds−3
(

1− Ψ̄(ωα, |~ℓ− ~ℓ′|)
)

×
(

1− e−Āωθt
)

.

(45)

We can then neglect Ψ̄(ωα, |~ℓ−~ℓ′|) in the second integral in Eq. (45), consistent with ℓ(t) ≪
|~ℓ−~ℓ′| and exponentially decaying normal modes (see discussion after Eq. (10)). This can be

easily understood by changing the integration variable of the second integral to z = ω(Āt)1/θ,

and use f
[

zds/dl |~ℓ− ~ℓ′|/ℓ(t)
]

≪ 1 for non-vanishing z (since for vanishing z the contribution

to the integral is negligible). The second integral then becomes identical to the MSD.

Provided that ds < 2, at short times we thus find

〈~x(t) · ~x(0)〉 ≈ 〈~x 2〉 − Btν (46)

where B is given by Eq. (35).

At long times such that ℓ(t) ≫ |~ℓ−~ℓ′| the motion of the two particles is highly correlated,

which leads to a vanishing autocorrelation of ~x(t). Using f(y) ≃ 1− C0 × y2 for y ≪ 1 (C0

is of order 1), we find, provided that 2 < 2ds
dl
+ ds,

〈~x(t) · ~x(0)〉 ≃ C1
kBT

mω
ds(1+2/dl)
o

(

Rll′

b

)2df /dl

(Āt)−µ (47)

where µ = 2ds/(dlθ)− ν, thereby

µ =
ds
dl

+ ds/2− 1 (48)

in the Rouse model, and

µ =
2ds
dl
+ ds − 2

2− ds + ds/df
=

2
df
dl

+ df − dw

dw − df + 1
(49)

in the Zimm model. The numerical prefactor C1 is C1 = 6dsC0Γ[(ds(1 + 2/dl)− 2)/θ]/θ.
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To summarize the time dependencies, we find

〈~x(t) · ~x(0)〉 ∼
{

1− const.× tν for t ≪ t∗(Rll′)

t−µ for t ≫ t∗(Rll′),
(50)

where

t∗(r) = Ā−1ω−θ
o

(

r

b

)df θ/ds

. (51)

Thus t∗(r) ∼ rdf θ/ds and, in particular, t∗(r) ∼ rdw for the Rouse model.

F. Two-point correlation function: Scaling expressions

Combing the asymptotic results for 〈~x(t) · ~x(0)〉 with 〈∆~u(t)2〉 we obtain the following

asymptotic behavior of the two-point correlation function under study. For short times,

t ≪ t∗(Rll′), the correlation function is very close to its static value

〈(~u(~ℓ, t)− ~u(~ℓ′, 0))2〉 ≃ C
kBT

mω2
o

(

Rll′

b

)dw−df

. (52)

Corrections to this result are of higher order than those discussed here. A crossover to a

subdiffusive behavior occurs at t ∼ t∗(Rll′), and for long times, t∗(Rll′) ≪ t ≪ τN , we find

〈(~u(~ℓ, t) − ~u(~ℓ′, 0))2〉 ≃ B tν +

C1
kBT

mω
ds(1+2/dl)
o

(

Rll′

b

)2df/dl

(Āt)−µ .

(53)

The second term in Eq. (53) is a small correction to the dominant time behavior 〈(~u(~ℓ, t)−
~u(~ℓ′, 0))2〉 ∼ tν that is independent of Rll′ .

To end this discussion, note that all scaling properties described in this section can be

transformed from topological space to the real 3D Euclidean space. Thus the two-point

correlation function, Eq. (26), can be rewritten as

〈(~u(~ℓ, t)− ~u(~ℓ′, 0))2〉 = kBT

mωds
o

(Āt)ν Φ1

[

Rll′

ξ(t)

]

, (54)

where Φ1[u] = Φ[udf/dl ]. Φ1[u] has the following asymptotes: (i) Φ1[u] ≃ const. for u ≪ 1

(to leading order), or, more precisely, Φ1[u] ≃ Φ[0]+ const.×u2df /dl (where the second term

is negligible); and (ii) Φ1[u] ∼ udw−df for u ≫ 1. Other equivalent expressions are

〈(~u(~ℓ, t)− ~u(~ℓ′, 0))2〉 = kBT

mωds
o

(Āt)ν Φ2

[

t

t∗(Rll′)

]

, (55)
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where Φ2[u] = Φ[u−ds/(dlθ)], and

〈(~u(~ℓ, t)− ~u(~ℓ′, 0))2〉 = kBT

mω2
o

(

Rll′

b

)dw−df

Φ3

[

t

t∗(Rll′)

]

, (56)

where Φ3[u] = uνΦ[u−ds/(dlθ)]. Φ3[u] has the following asymptotes: (i) Φ3[u] ≃ const. for

u ≪ 1, and (ii) Φ3[u] ∼ uν for u ≫ 1 (to leading order), or, more precisely, Φ3[u] ≃
Φ[0]uν + const.u−µ (where the second term is negligible). Eq. (56) is particularly useful for

the numerical analysis that we perform next.

G. Numerical results for the Sierpinski gasket and proteins

1. Sierpinski gasket

To test the above analytic expression we first evaluate numerically the pair correlation

function 〈(~u(~ℓ, t) − ~u(~ℓ′, 0))2〉 on a vibrating Sierpinski gasket [18, 20] (fractal and spectral

dimensions: df = ln(3)/ln(2) ≃ 1.585,ds = 2ln(3)/ln(5) ≃ 1.3652) having N = 6561 nodes

(7th generation) and gyration radius Rg = 42.6nm. The values of model parameters were

chosen such that they are similar to their values in native proteins: bond length and bead

(amino acid) diameter b = 5 × 10−10m, mass of a single bead m = 4 × 10−25Kg, spring

natural frequency ωo = 1012s−1, viscosity of water η = 8.94×10−4Pa s, and the temperature

was set to T = 298K. With these parameters the short cutoff, “amino-acid”, relaxation time

τ0 = γ/ω2
o = 3πηb/(mω2

o) ≃ 10.53ps is within the range of typical values for proteins [23].

We solve numerically for the exact normal modes and eigen-frequencies of the Sierpinski

gasket, and evaluate the pair correlation function according to Eq. (21), in the framework

of the Rouse model, for all pairs in the network that are separated by the same distance r

within an interval δr = 0.5A. We then calculate the average value over all such pairs, for

each point of time. We have used four values of r: 5,15,25,50 A. The results are shown in

Fig. 1.

In Fig. 1(a) we plot, on a log-log scale, the four averaged two-point correlation functions

vs. the time t. Note the crossover from a constant value, that increases with increasing

r as predicted by Eq. (52), to an anomalous subdiffusion time regime, identical to that of

the single particle MSD (effectively equal to the correlation function for r = b = 5A). In

the subdiffusion regime, correlation functions obey Eq. (53) and the behavior is essentially
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independent of the distance r. Also note that the crossover time increases with increasing r

as implied by Eq. (51). For long times, all curves saturate to the same value. This emerges

from the fact that the saturation, t → ∞, limit is always 2 < ~u2 >T , and from the fact that

in the Sierpinski gasket averaging over relatively small subset of nodes (i.e. those in the

range of r ± δr) is approximately identical to any other (say, different r) subset average, or

to the complete spatial average.

In order to test the predicted scaling behavior of the two-point correlation function, in

particular the version stated in Eq. (56), we normalize the correlation function by rdw−df and

the time by t∗(r). The results are shown in Fig. 1(b). Data collapse to a single master curve

is observed for times much longer than the shortest (“amino acid”) vibrational relaxation

time τ0, and much shorter than the saturation time τN . Outside this range, data does not

collapse to a single curve. Thus for r = 5A, the short time behavior does not obey scaling

since for this distance t∗(r) ≃ τ0. Likewise, all curves diverge from each other close to

saturation, t ∼ τN .

2. Proteins

Next, we perform numerical calculations of the pair correlation function for the protein

LysX, PDB code 1UC8, containing N = 505 amino acids, using an identical procedure to the

one done for the Sierpinski gasket. For this purpose the GNM is used with a cutoff distance

Rc = 6 × 10−10m and mω2
o is determined via fit of the mean theoretical (GNM) B-factor

value to the experimental value reported in the PDB. Correcting for the over-stiffness of

crystalline structures (studied by x-rays) in comparison to structures in solution (studied by

NMR), the value of mω2
o is further divided by a factor of four as suggested in Yang et al. [40]

to yield mω2
o = 0.1305N/m. The mass m is determined separately as the mean amino-acid

mass and a value of m = 1.66 × 10−25Kg is obtained. The rest of the parameters are set

as in the Sierpinski gasket: bead (amino acid) diameter b = 5 × 10−10m, viscosity of water

η = 8.94× 10−4Pa s, and temperature T = 298K. Hence the molecular, “amino-acid”, time

is given by τ0 = γ/ω2
o = 32.29ps. The density of states g(ω) and mass distribution M(r) of

this protein is shown in Ref. [7], from which we have deduced the following values of the

fractal and spectral dimension: ds = 1.73, df = 2.51.

In Fig. 2(a) we plot, on a log-log scale, the averaged two-point correlation functions
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vs. the time t, for a few separation distances r. Note again the crossover from a constant

value, that increases with increasing r as predicted by Eq. (52), to an effective anomalous

subdiffusion time regime, where the crossover time increases with increasing r as implied

by Eq. (51). Here, unlike the Sierpinski gasket, curves do not saturate to the same value,

showing that the average of 〈~u2〉T over one given subset of amino acids (given r) may not be

identical to the average over a different subset (different r), and may also differ from a full

spacial average. Moreover, a clear subdiffusion regime is obtained only for the MSD (r = 0)

due to the fact that τN is only a few times larger than t∗(r) (finite size effects) and the low

value of the anomalous diffusion exponent ν.

In Fig. 2(b) we normalize the time by rδ and the correlation function by rα, and search for

the exponents δ and α that collapse the data into a single master curve in the time regime

τ0 ≪ t ≪ τN . Unlike for the Sierpinski gasket, we avoid using the predicted exponents

δ = dw (for the Rouse model where θ = 2) and α = dw − df , that are supposed to collapse

the data. This is because, as found earlier [8], finite size effects lead to modified exponents.

Thus our scaling hypothesis is similar to Eq. (56) but with α replacing dw−df and δ replacing

dw (in t∗(r)). We find that the values α = 0.464 and δ = 3.09 best collapse the data, these

values are not too far from the predicted values α = dw − df = 0.392 and δ = 2.90 [7]. Thus

we can infer the anomalous diffusion exponent for a protein whose topology is identical to

LysX but whose size is “infinite”, by demanding that for t ≫ t∗(r) the dependence on r

disappears (ignoring the vanishing algebraically decaying term ∼ r2df/dlt−µ). This implies

Φ3[u] ∼ uα/δ for u ≫ 1 leading to ν = α/δ = 0.150, quite close to the predicted exponent

ν = 1− ds/2 = 0.135.

IV. DYNAMIC STRUCTURE FACTOR

A. Introduction

The dynamic structure factor of complex fluids can be measured by various techniques,

e.g, dynamic light scattering [41], inelastic neutron scattering [30], neutron spin-echo [25–

27, 42], and x-ray photon correlation spectroscopy [43]. All methods measure dynamic

correlations of density fluctuations of the scatterers and each method focuses on a different

wavelength range and time regime. Among the four, the two relevant methods for detection
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of intramolecular protein dynamics are inelastic neutron scattering and neutron spin-echo.

The individual scatterers will be defined here as the individual amino acids, and it will be

assumed (as a simple but common approximation) that they all contribute equally to the

scattering, irrelevant of their specific identity. The small variation in the scattering proper-

ties between one amino acid and the other is supposedly averaged out in the measurement.

The structure factor is thus defined in the following way [41]

S(~k, t) =
1

V

∫

V
d3~r

∫

V
d3~r ′ei

~k·(~r−~r ′) 〈c(~r, t)c(~r ′, 0)〉 (57)

where c(~r, t) is the stochastic number density, ~k is the scattering wavevector, and V is the

macroscopic system volume.

To proceed, one inserts the stochastic number density [41]

c(~r, t) =
∑

i

δ(~r − ~ri(t)) , (58)

where the sum runs over all amino acids in the system, to obtain

S(~k, t) =
1

V

∑

ij

〈

ei
~k·(~ri(t)−~rj(0))

〉

. (59)

We assume that the system is a dilute solution of Np individual proteins {p}, all equivalent,
each one having a different, yet random, orientation. Let ~Rp be the center of mass vector of

protein p. We therefore have ~ri(t) = ~Rp + ~Ri,p(t) where ~Ri,p is the position vector of amino

acid i (represented by its α-carbon) in the center of mass coordinate frame of protein p,

leading to

S(~k, t) =
1

V

Np
∑

p,p′=1

〈

ei
~k·(~Rp(t)−~Rp′ (0))

〉

×

N
∑

ij=1

〈

ei
~k·(~Ri,p(t)−~Rj,p′ (0))

〉

. (60)

For dilute solutions, the internal dynamics in each protein is decoupled from the internal

dynamics of all other proteins, yet, as they are all identical, it bears exactly the same

stochastic evolution. In addition, proteins diffuse independently of each other. Thus, the

summation over terms with p 6= p′ contributes only to ~k = 0 (“forward scattering”), and for

~k 6= 0 only terms with p = p′ survive to give [41]

S(k, t) =
N

V

Np
∑

p=1

〈

ei
~k·(~Rp(t)−~Rp(0))

〉

〈

Sp(~k, t)
〉

~k
, (61)
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where N is the number of amino acids in a single protein. Here we have defined the single

protein structure factor (with 1/N normalization factor)

Sp(~k, t) =
1

N

〈

N
∑

i,j=1

ei
~k·(~Ri(t)−~Rj (0))

〉

, (62)

where ~Ri is the position vector of amino acid i in the center of mass coordinate frame and

the sum runs over all amino acids in a single protein. Sp(k, t) ≡
〈

Sp(~k, t)
〉

~k
denotes angular

averaging, i.e. averaging over all different orientations of the protein with respect to the

scattering wavevector ~k. This is required since each protein participating as a scattering

center is, at any particular time, at random orientation with respect to ~k.

If proteins perform simple diffusion in the solvent we find [33, 41]

S(k, t) = c e−k2DcmtSp(k, t) , (63)

where c is the (mean) amino acid number density, i.e. c = Ncp where cp = Np/V is the

protein number density, and Dcm is the center of mass diffusion coefficient of a single protein.

The latter can be estimated using the Stokes-Einstein relation, Dcm ≃ kBT/6πηRh, where Rh

is the hydrodynamic radius which is approximately proportional to the gyration radius Rg,

with a proportionality constant that weakly depends on the number of beads (amino-acids)

N and fractal dimension df [33, 44, 45]. Rotational diffusion [46] is considered explicitly

in the subsequent section and in Appendix B as part of the (ensemble averaged) protein

structure factor.

B. Protein structure factor: Exact results

We now calculate the ensemble average structure factor of proteins in dilute solution.

First, consider a protein having a fixed but arbitrary orientation with respect to the wavevec-

tor ~k, with rotational motion arrested. Orientational average will be performed at a later

stage. Writing ~Ri(t) = ~Ri,eq + ~ui(t) we obtain

Sp(~k, t) =
1

N

N
∑

i,j=1

ei
~k·(~Ri,eq−~Rj,eq)

〈

ei
~k·(~ui(t)−~uj (0))

〉

. (64)

Note that, relating to the notations of Secs. II and III, ~ui ≡ ~u(~l) and ~uj ≡ ~u(~l′).

Consider now the stochastic variable ~ui(t) − ~uj(0). Recall that the dynamics of ~ui(t)

is governed by the linear Langevin equation (11), in which the stochastic force is a white
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noise obeying Gaussian statistics. By a general theorem of stochastic processes [47], the

statistics of ~ui(t), being the solution of Eq. (11), is also Gaussian, and so is the combination

~ui(t) − ~uj(0). Using the well-known property of Gaussian fluctuations [33, 47], and the

isotropy of scalar elasticity (GNM), i.e. the fact that the statistics of all three components

of ~ui(t) is identical, we thus find

〈

ei
~k·(~ui(t)−~uj (0))

〉

= e−
k2

6
〈(~ui(t)−~uj (0))

2〉 . (65)

Using Eqs. (65) in Eq. (64) we have, omitting from now on the subscript “eq” in ~Ri,eq,

Sp(~k, t) =
1

N

N
∑

i,j=1

ei
~k·(~Ri−~Rj)e−

k2

6
〈(~ui(t)−~uj (0))

2〉 . (66)

Performing angular averaging we find

Sp(k, t) =
1

N

N
∑

i,j=1

sin [kRij ]

kRij

e−
k2

6
〈(~ui(t)−~uj (0))

2〉 , (67)

where Rij = |~Ri− ~Rj | is the Euclidean, real-space, distance between amino-acids (represented

by their α-carbons) i and j. Eq. (67) is a good starting point for numerical evaluation of

both the static (t = 0) and dynamic protein structure factor for specific proteins based on

their 3D structure. Noteworthy, this expression does not include any unfolding-refolding

dynamics which may occur on the sub-microsecond timescale or longer.

When short time rotational diffusion is included, followed by the required angular aver-

aging, the result is (see Appendix B)

Sp(k, t) ≃
1

N

N
∑

i,j=1

〈ei~k·(~Ri−~Rj)e−k2R2
i
sin2

θiDrott〉~k ×

e−
k2

6
〈(~ui(t)−~uj(0))

2〉 , (68)

where Drot is the rotational diffusion coefficient (Drott ≪ 1 is assumed), θi is the angle

between ~k and Ri, and 〈...〉~k means angular average over all directions of ~k at fixed protein

orientation. The rotational diffusion coefficient of a protein may be estimated from the

Stokes-Einstein-Debye expression [48] Drot ≃ kBT/8πηR
3
g. The angular averaging in Eq.

(68) requires numerical integration for accurate evaluation. In the following section and

Appendix B it is also evaluated approximately to obtain the dominant behavior.

21



C. Protein structure factor: Approximate results

In this section we present approximate and scaling expressions that can be obtained for

fractals and proteins (based on their fractal-like structure). In doing so, we rely on results for

the pair correlation function discussed in Sec. III, 〈(~u(~ℓ, t)−~u(~ℓ′, 0))2〉 (recall that ~ui ≡ ~u(~l)).

The details of the approximations are given in Appendix C.

Consider first the protein static structure factor. To examine the effect of vibrations on

the static structure factor we define a “frozen network” structure factor in which vibrations

are arrested

S̃p(k) =
1

N

∑

i,j

sin [kRij ]

kRij
. (69)

For kRg ≫ 1 we obtain the well known result S̃p(k) ∼ k−df , which can be also obtained by

scaling approach [19, 33, 49, 50]. When vibrations are included we find, to leading order,

the first order correction to Sp(k) ∼ k−df in the form

Sp(k) ≈ S̃p(k)− const.× k2−dw + ... (70)

However, due to the smallness of the prefactor of the second term, this correction is negligible

and Sp(k) ≃ S̃p(k).

Next we consider the protein dynamic structure factor. It will be later shown that the

rotational diffusion time dependence in Sp(k, t) is rather weak for t <∼ τN . We shall therefore

evaluate first the dynamic structure factor with rotational diffusion arrested (Eq. (67)). For

short times, t ≪ τ(k), where τ(k) ∼ k−df θ/ds , information did not have time to negotiate a

“blob” of linear size ∼ k−1 and we find that the dynamic structure factor did not decay much

and is left almost equal to the static structure factor, Sp(k, t) ≃ Sp(k). A more accurate

description yields, to leading order,

Sp(k, t) ≃ Sp(k)− const.× k2 t2/θ . (71)

For the Rouse model (θ = 2) this implies that the short time decay is roughly exponential.

At longer times, τ(k) ≪ t ≪ τN , i.e. when 1 ≪ kξ(t) ≪ kRg, information has propagated

beyond the scattering wavelength ∼ 1/k. Physically, this implies that the “blob” of size

∼ 1/k, that is controlling the relaxation at wavevector ~k, is now moving almost coherently

as if it was a single bead. This leads to a stretched exponential decay of the dynamic structure

factor,

Sp(k, t) ≃ S̃p(k) exp [− (Γkt)
ν ] (72)
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where

Γk = (B/6)1/νk2/ν . (73)

Note that the stretching exponent is exactly the anomalous diffusion exponent ν. The

stretched exponential decay, together with the dependence of the stretching exponent ν, is

thus a strong signature of the fractal structure.

Next we estimate the effect of rotational diffusion using Eq. (68) at short times, Drott ≪ 1.

We find that the effect is highly sensitive to the value of k and the observed time regime.

Two regimes of time can be distinguished depending on whether kRg

√
Drott is smaller or

larger than unity. If kRg

√
Drott ≫ 1, as can occur for very large k’s and not too short times,

we find in Appendix C that the contribution of rotational diffusion leads, to leading order,

to a powerlaw, ∼ t−df/2, pre-exponential factor. Adding translational diffusion according to

Eq. (63), we find

S(k, t) ≈ const. c S̃p(k) t
−df/2 exp [− (Γkt)

ν ]×

exp

[

−k2 kBT

6πηRg

t

]

. (74)

In the opposite limit where kRg

√
Drott ≪ 1 (but still large wavenumbers kRg ≫ 1), we

obtain for the combined effect of rotational-translational diffusion

S(k, t) ≈ c S̃p(k) exp [− (Γkt)
ν ]×

exp

[

−k2 3df + 4

12π(df + 2)

kBT

ηRg
t

]

. (75)

In case that Rg ≫ b (not quite the situation for proteins) we have Btν ≫ (kBT/ηRg)t in the

relevant time regime t ≪ τN . In this limit Eq. (75) reduces to a pure stretched exponential

decay, S(k, t) ≈ c S̃p(k) exp [− (Γkt)
ν ].

D. Numerical results for the Sierpinski gasket and proteins

1. Sierpinski gasket

As done for the pair correlation function, we first evaluate numerically the single particle

dynamic structure factor Sp(k, t) for the Sierpinski gasket. Using the single molecule struc-

ture factor Eq. (67), where rotational and translational diffusion are arrested, allows us to
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focus on the intramolecular vibrations. As argued above, for kRg ≫ 1 rotational and trans-

lational diffusion have negligible effect in the measurable time regime where the structure

factor did not yet decay to a vanishing value. For simplicity and clarity, we use below only

the Rouse model of friction, although our conclusions apply equally to the Zimm model.

We calculate the dynamic structure factor for four generations of the Sierpinski gasket such

that the number of nodes N in the gasket (i.e. gasket “size”) varies between N ≃ 200 and

N ≃ 7000.

In Fig. 3 we plot the static and dynamic structure factors for the Sierpinski gasket.

The inset shows the static structure factor on a log-log scale for the largest gasket in the

series. Note the clear Sp(k) ∼ k−df powerlaw behavior in the regime R−1
g ≪ k ≪ b−1,

showing that vibrations have negligible effect on the static structure factor for realistic

spring constants and temperatures. The dynamic structure factor (main figure) of the four

gasket generations is shown as −log 10[Sp(k, t)/S̃p(k)] vs. t/τ0 on a log-log scale, such that a

stretched exponential decay would show on this plot as a straight line whose (positive) slope

is the stretching exponent. Note that we divided the dynamic structure factor by the “frozen

network” static structure factor, S̃p(k), in accord with Eq. (72). The results are presented

for a particular wavenumber, k = 1010m−1 for which kRg ≃ 426 ≫ 1 for the largest gasket

in the series (N = 6561), and kRg ≃ 53 ≫ 1 for the smallest gasket (N = 243). Note that a

straight line, whose slope is positive, is formed on an intermediate time window that widen

up as we move from a smaller to a larger gasket, demonstrating the diminishing contribution

of finite size effects as the system size increases. The stretching exponent that is obtained

from the plot, β ≃ 0.325, is very close to the theoretical value β = ν = 1− ds/2 ≃ 0.317.

In Fig. 4a we plot the dynamic structure factor for the largest gasket studied (N = 6561)

for different wavenumbers k, plotting −log 10[Sp(k, t)/Sp(k, t = 0)] vs. t/τ0 on a log-log scale.

Note that here we divided the dynamic structure factor by the true static structure factor

Sp(k) ≡ Sp(k, t = 0). This is done in order to verity the quality of the stretched exponential

behavior when such an experimental-type analysis of the data is being performed, since S̃p(k)

is not a measurable quantity, unlike Sp(k). A clear straight line whose slope is positive is

formed on an intermediate time window that widens up as k increases. This is in accord

with the theoretical prediction associating the stretched exponential behavior with the time

regime τ(k) ≪ t ≪ τN where τ(k) ∼ k−df θ/ds ∼ k−2.32. For the smaller k’s studied one

can also observe an early exponential-like decay, shown as a straight line with slope ≃ 1
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on this plot, in accord with Eq. (71). This exponential decay slowly crosses over to the

stretched exponential decay. Despite the use of Sp(k) rather than S̃p(k), the numerically

obtained stretching exponent for the largest k in the series (upper curve), β ≃ 0.30, is

remarkably close the theoretical value β = ν = 1 − ds/2 ≃ 0.317, demonstrating that this

experimental-like analysis yields reliable exponents. Fig. 4a is accompanied by Fig. 4b

in which we perform local slope analysis. This is done by plotting the first derivative of

log 10[−log 10[Sp(k, t)/Sp(k)]] vs. log 10[t/τ0]. Note the very clear ‘shoulders’ whose width

increase for increasing k, signifying constant slopes in Fig. 4a. Fig. 4b thus provides a

complementary assessment of the stretched exponential behavior.

2. Proteins

As done for the Sierpinski gasket, we perform numerical evaluation of the protein dynamic

structure factor Sp(k, t), Eq. (67), arresting the rotational and translational diffusion. We

study three different proteins of variable sizes: 1FTR (N = 1184), 1UC8 (N = 505, studied

in Sec. III.G.2), and 3TSS (N = 190). The GNM is used and parameters are chosen as

described in section III.G.2. Parameter values slightly differ form one protein to another

and we find: mω2
o = 0.1898, 0.1305, 0.2510N/m and m = 1.65×10−25, 1.66×10−25, 1.76×

10−25Kg respectively. This leads to the following value of molecular, “amino-acid”, time

τ0 = γ/ω2
o = 22.19, 32.29, 16.78ps, respectively. The density of states g(ω) and and mass

distribution M(r) of the three proteins is shown in Ref. [7], from which we take the following

values of the fractal and spectral dimension: 1FTR – ds = 1.93, df = 2.66; 1UC8 – ds = 1.73,

df = 2.51; 3TSS – ds = 1.52, df = 2.50. Since each protein has a different ds value, we

expect a different stretching exponent β = ν = 1−ds/2 for each one: ν = 0.035, 0.135, 0.24,

respectively.

In Fig. 5a we plot the dynamic structure factor of the proteins mentioned above. The

theoretical prediction associates a stretched exponential behavior in the time regime τ(k) ≪
t ≪ τN that translates to 0.1τ0 ≪ t ≪ 70τ0, and the fitted data shown in Fig. 5a is

well within this regime. Indeed, within this intermediate regime the decay is clearly non-

exponential, a fingerprint of the fractal-like structure. However, due to finite size effects,

the stretching exponents (i.e. the slopes) obtained from the fits , β = 0.119, 0.1584, 0.199

respectively, deviate from the predicted values of ν stated above. Fig. 5a is accompanied
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by Fig. 5b in which we perform local slope analysis. This is done by plotting the first

derivative of log 10[−log 10[Sp(k, t)/Sp(k)]] vs. log 10[t/τ0]. It is possible to observe very weak

shoulders, signifying the existence of roughly constant slopes, in the regimes that correspond

to the fitted regimes in Fig. 5a (apparently more visible for 3TSS). It appears that finite

size effects are strong in proteins and that a pure stretched exponential behavior is hardly

obtained when we consider vibrations alone. Although one could have naively expected (in

analogy with the Sierpinski gasket) that for proteins with ∼ 1000 amino acids or more (e.g.,

1FTR in this study) finite size effects would be less significant, this is not the case. As it

turns out, in such proteins the value of ds is usually very close to 2, consequently leading

to vanishing stretching exponents ν. Such an exponent is difficult to determine accurately

as it is highly sensitive to the short and long time, non-stretched-exponential, dynamics.

Nevertheless, the values obtained from our fits of the effective exponents quantify the non-

exponential behavior as a whole. Since the GNM (and hence our numerical calculations)

are solely based on protein structure, the non-exponential behavior we observe is a direct

manifestation of the fractal-like structure of proteins.

3. Proteins: Including rotational and translational diffusion and comparison with neutron spin-

echo experiments

Next we further examine the decay of the dynamic structure factor when rotational

and translational diffusion are included. Consider first the effect of rotational diffusion

for the above three proteins. Adding rotational diffusion according to Eq. (68) (or Eq.

(B11)), using Rh = Rg where Rg is calculated from the PDB structure, we plot in Fig. 6

−log 10[Sp(k, t)/Sp(k)] vs. t/τ0 on a log-log scale. We observe a clear, effective, stretched

exponential decay of the dynamic structure factor in an intermediate time regime, yielding

stretching exponents β = 0.34, 0.28, 0.32 for 3TSS, 1UC8, and 1FTR respectively. Note that

these exponents are higher than those obtained from vibrations alone. The inset in Fig.

6 includes also the contribution of translational diffusion using again Rh = Rg. Following

Ref. [27], we define t0 = 0.01ns, and plot S(k, t)/S(k, t0) vs. the time in nano-seconds.

The cumulative effect of all three dynamical processes gives rise to a non-exponential decay

that can be well fitted by a stretched exponential in the time interval t ∈ [0.01ns, 1ns]. The

effective stretching exponents are β = 0.72, 0.42, 0.65 for 3TSS, 1UC8 and 1FTR respectively,
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and are significantly higher than those obtained from vibrations and rotations alone. We

conclude that, in proteins, the exact value of the effective stretching exponent is sensitive

to the interplay between vibrations, rotations and translations.

Next we consider two proteins, horse heart myoglobin (Mb, PDB code 3LR7) and bovine

hemoglobin (Hb, PDB code 2QSP), that have been recently investigated in dilute solutions

by neutron spin-echo. Analyzing the vibrational density of states of these proteins we find

ds = 1.56 for Mb and ds = 1.74 for Hb, leading to ν = 1−ds/2 = 0.22, 0.13 for Mb and Hb,

respectively. Adding translational and rotational diffusion, and normalizing the dynamic

structure factor by the effective static structure factor at t =10ps (similar to the procedure

in Ref. [27]), we find that for the experimental value of k, k = 0.579A−1, an effective

stretched exponential decay is obtained in the experimental time window 10ps ≤ t ≤ 1ns,

with stretching exponents β = 0.89 (Mb) β = 0.86 (Hb). These exponents are quite close

to unity, suggesting that in the case of these two proteins, either that effect the vibrations

have been underestimated or that the translational-rotational effect has been overestimated.

Support for the latter possibility appears in the data of Ref. [27] that shows that the

translational diffusion coefficient is concentration dependent, suggesting that the solution

is (perhaps) not sufficiently dilute to prevent aggregation (oligomerization) of proteins so

that aggregate (oligomer) diffusion coefficients should be used instead of those of individual

proteins. Another possibility that can lead to a large hydrodynamic radius is the formation

of a thick hydration shell. Exploring this option we introduce an effective radius R∗
g, vary it

between the single protein value Rg and 4 times this value, and use it to evaluate Drot and

Dcm. We find that for R∗
g ≃ 4Rg, the stretching exponent lowers to β ≃ 0.75. Moreover,

increasing slightly the value of k to k = 1A−1 the stretching exponent further goes down

to β ≃ 0.52. This shows that the exact value of the stretching exponent is not universal

and results from an interplay between vibrations, rotations, and translations. However, it is

gratifying that one can obtain a low value of β, due to the very low value of ν that serves

as an effective lower bound for β.

V. CONCLUSIONS

We have integrated and advanced upon our previous studies on the vibrational dynamics

of fractals in general, and of proteins as fractals, and presented a through study of the
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dynamic structure factor S(k, t) of vibrating fractals and proteins in dilute solutions. Our

study is highly detailed and may allow comprehensive comparison with experiment. Our

main result is however simple and shows that so long as kRg ≫ 1 and kū >∼ 1, where

ū ≡
√

〈u2〉, and with rotational and translational degrees of freedom arrested, the decay

of the dynamic structure factor is strongly influenced by the anomalous diffusion of amino

acids (beads) at short times, 〈∆~u(t)2〉 = B tν . The value of ν depends on the fractal

(df) and spectral (ds) dimensions, ν = 1 − ds/2 in the Rouse model of friction and ν =

(2 − ds)/(2 − ds + ds/df) in the Zimm model, and those are easily calculated for proteins

based on their published PDB structures [7, 51]. This anomalous diffusion is thus a direct

signature of the fractal structure of proteins. The result for large proteins (fractals) is a

stretched exponential decay of the dynamic structure factor, S(k, t) ≈ S(k) exp
[

− (Γkt)
β
]

,

with anomalous k dependence of the relaxation rate, Γk ∼ k2/β , and a stretching exponent

β that identifies with the anomalous diffusion exponent ν. Besides proteins, our theory can

be used for other systems exhibiting fractal structures, e.g., colloidal gels [52], chromatin

[53], and colloidal glasses [54].

The anomalous wavenumber dependence of the relaxation rate, Γk ∼ k2/ν , and the anoma-

lous diffusion, 〈∆~u(t)2〉 ∼ tν , can be explained using simple scaling hypotheses. For the

relaxation rate we assume Γk = Dk2h(kū), where h(x) is a scaling function and D is the

center of mass diffusion coefficient of the fractal. Note that the scaling variable is kū rather

than kRg, as for flexible polymers. We make use of the generalized Landau-Peierls instabil-

ity, ū ∼ N1/ds−1/2, and take D ∼ N−1 and D ∼ R−1
g ∼ N−1/df for the Rouse and Zimm type

models of friction [33], respectively. Demanding that Γk is independent of N for kū ≫ 1,

the scaling function for x ≫ 1 must satisfy h(x) ∼ x2ds/(2−ds) (for the Rouse model) and

h(x) ∼ x2ds/[df (2−ds)] (for the Zimm model), leading to Γk ∼ k2/ν with ν = 1− ds/2 (Rouse)

and ν = (2 − ds)/(2 − ds + ds/df) (Zimm) as stated. Similarly, for the MSD we assume

〈∆~u(t)2〉 = ū2φ(t/τN) where φ(x) is the scaling function and τN is the longest vibrational re-

laxation time. Assuming τN ≃ ū2/D, such that τN ∼ N2/ds (Rouse) and τN ∼ N2/ds−1+1/df

(Zimm), and demanding that for t ≪ τN the MSD is independent of N , it follows that

φ(x) ∼ xν for x ≪ 1 (with ν taking the above stated values associated with the Rouse and

Zimm models) leading to 〈∆~u(t)2〉 ∼ tν .

Numerical evaluation for proteins in solutions demonstrates that the small size of most

proteins, combined with the influence of rotational and translational diffusion processes,
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leads to significant deviations of the value of β from its “infinite network” limit ν. Never-

theless, β remains a fingerprint of the fractal nature of proteins. Moreover, ν influences the

value of β, and serves as an effective lower bound for it. Comparison with recent neutron

spin-echo studies on hemoglobin and myoglobin is not entirely satisfactory and may moti-

vate further studies in this direction. As a practical conclusion we suggest to perform such

experiments with proteins bounded to a surface [55, 56] in similarity to what was done in

[57]. This will diminish to a minimum the contribution from translational and rotational

degrees of freedom and will thus allow for better exploration of internal degrees of freedom.
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Appendix A: Proof of Eq. (39)

1. Disorder averaged correlation functions

To prove Eq. (39) we develop the correlation functions in this equation. Note that here

it is implicitly assumed that disorder average/spatial average (summing over ~ℓ and ~ℓ′ and

dividing by N2) is being performed in addition to the thermal/time average. This eliminates

any real positional dependence, leaving only the relative distance between the two amino

acids as a variable. It is easy to show that

〈(~u(~ℓ, t)− ~u(~ℓ′, 0))2〉 = 〈~u(~ℓ, t)2〉+ 〈~u(~ℓ′, 0)2〉

−2〈~u(~ℓ, t) · ~u(~ℓ′, 0)〉 =

2〈~u 2〉 − 2〈~u(|~ℓ− ~ℓ′|, t) · ~u(0, 0)〉 (A1)

〈∆~u(t)2〉 = 2〈~u 2〉 − 2〈~u(0, t) · ~u(0, 0)〉 (A2)
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〈~x(t) · ~x(0)〉 = 〈(~u(~ℓ, t)− ~u(~ℓ′, t)) · (~u(~ℓ, 0)− ~u(~ℓ′, 0))〉 =

〈~u(~ℓ, t) · ~u(~ℓ, 0)〉+ 〈~u(~ℓ′, t) · ~u(~ℓ′, 0)〉 −

〈~u(~ℓ, t) · ~u(~ℓ′, 0)〉 − 〈~u(~ℓ′, t) · ~u(~ℓ, 0)〉 =

2〈~u(0, t) · ~u(0, 0)〉 − 2〈~u(|~ℓ− ~ℓ′|, t) · ~u(0, 0)〉 .

(A3)

Using the above three equations in Eq. (39) leads to an identity.

2. Exact correlation functions

Here we derive an expression that is equivalent to Eq. (39) using exact correlation

functions. To do so, first consider the combination of two-point correlation functions

〈(~u(~ℓ, t)−~u(~ℓ′, 0))2〉+ 〈(~u(~ℓ′, t)−~u(~ℓ, 0))2〉, that is symmetric for exchange between ~ℓ and ~ℓ′

(regardless of the present, model-dependent, symmetry of each one),

〈(~u(~ℓ, t)− ~u(~ℓ′, 0))2〉+ 〈(~u(~ℓ′, t)− ~u(~ℓ, 0))2〉 =

〈~u(~ℓ, t)2〉+ 〈~u(~ℓ′, t)2〉+ 〈~u(~ℓ, 0)2〉+ 〈~u(~ℓ′, 0)2〉

−2〈~u(~ℓ, t) · ~u(~ℓ′, 0)〉 − 2〈~u(~ℓ′, t) · ~u(~ℓ, 0)〉 =

2〈~u(~ℓ)2〉+ 2〈~u(~ℓ′)2〉

−2〈~u(~ℓ, t) · ~u(~ℓ′, 0)〉 − 2〈~u(~ℓ′, t) · ~u(~ℓ, 0)〉 . (A4)

Next, consider the MSDs of the specific (non-disorder averaged) amino acids ~ℓ and ~ℓ′,

〈∆~u(~ℓ, t)2〉 = 2〈~u(~ℓ)2〉 − 2〈~u(~ℓ, t) · ~u(~ℓ, 0)〉 , (A5)

〈∆~u(~ℓ′, t)2〉 = 2〈~u(~ℓ′)2〉 − 2〈~u(~ℓ′, t) · ~u(~ℓ′, 0)〉 . (A6)

Finally, consider the autocorrelation function of the fluctuations in distance 〈~x(~ℓ, ~ℓ′, t) be-

tween the specific amino acids ~ℓ and ~ℓ′,

〈~x(~ℓ, ~ℓ′, t) · ~x(~ℓ, ~ℓ′, 0)〉 =

〈(~u(~ℓ, t)− ~u(~ℓ′, t)) · (~u(~ℓ, 0)− ~u(~ℓ′, 0))〉 =

〈~u(~ℓ, t) · ~u(~ℓ, 0)〉+ 〈~u(~ℓ′, t) · ~u(~ℓ′, 0)〉 −

〈~u(~ℓ, t) · ~u(~ℓ′, 0)〉 − 〈~u(~ℓ′, t) · ~u(~ℓ, 0)〉 .

(A7)
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Combining Eqs. (A4)-(A7), and using now the symmetry for exchange between ~ℓ and ~ℓ′,

〈(~u(~ℓ, t)−~u(~ℓ′, 0))2〉 = 〈(~u(~ℓ′, t)−~u(~ℓ, 0))2〉, that follows from Eq. (21), leads to the following

identity

〈(~u(~ℓ, t)− ~u(~ℓ′, 0))2〉 =
1

2

[

〈∆~u(~ℓ, t)2〉+ 〈∆~u(~ℓ′, t)2〉
]

+ 〈~x(~ℓ, ~ℓ′, t) · ~x(~ℓ, ~ℓ′, 0)〉 .

(A8)

Appendix B: Effect of rotational diffusion

Here we evaluate approximately the effect of protein rotations on the dynamic structure

factor for short times. An alternative, more complete, calculation, can be found in Ref.

[46], however, the approximate calculation below suffices for our purposes. Rotations result

in a change of the angle between the wavevector ~k and the vector of each residue i, ~Ri(t),

in the protein center of mass coordinate frame. At t = 0 this angle is a random variable,

changing from one protein to the other within the scattering ensemble. As a result of protein

rotational diffusion, this angle is changing with time and we may describe this change by

the unit vector n̂i(t) which denotes the direction of the vector ~Ri(t), ~Ri(t) = Rin̂i(t), where

it is understood that the dependence on time in ~Ri(t) is solely due to rotations, as vibrations

are included separately. Consider the average

〈...〉 ≡ 〈ei~k·(~Ri(t)−~Rj (0))〉 . (B1)

Accordingly we write ~Ri(t) = ~Ri(0) +Ri (n̂i(t)− n̂i(0)) leading to

〈...〉 = ei
~k·(~Ri−~Rj)〈eiRi

~k·(n̂i(t)−n̂i(0))〉 (B2)

where, for brevity, we have defined ~Ri = ~Ri(0) and ~Rj = ~Rj(0).

At early times, Drott ≪ 1, where Drot is the rotational diffusion coefficient, the vector

~si(t) = n̂i(t)−n̂i(0) is almost perpendicular to n̂i(0), being almost tangent to the unit sphere

at n̂i(0). Its radial component, along n̂i(0) is negligible. Hence this 2D vector represent a

2D (almost) regular diffusion, and its two components are independent and obey almost

exactly Gaussian statistics. We denote by ~kt the 2D projection of ~k on the plane that is

tangent to the unit sphere at n̂i(0), so that the magnitude of ~kt is kt = ksinθi where θi is
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the angle between ~k and Ri. Using these definitions

〈...〉 ≃ ei
~k·(~Ri−~Rj)〈eiRi

~kt·~si(t)〉 . (B3)

Thus, using the nearly Gaussian statistics property of the 2D vector ~si(t),

〈...〉 ≃ ei
~k·(~Ri−~Rj)e−

1
4
k2tR

2
i 〈~si(t)

2〉 . (B4)

Here we require the calculation of the unit vector MSD

〈~si(t)2〉 = 〈(n̂i(t)− n̂i(0))
2〉 = 2 (1− 〈n̂i(t) · n̂i(0)〉) . (B5)

In rotational diffusion theory one finds [33]

〈n̂i(t) · n̂i(0)〉 = e−2Drott , (B6)

where Drot is the rotational diffusion coefficient. Hence

〈(n̂i(t)− n̂i(0))
2〉 = 2

(

1− e−2Drott
)

≃ 4Drott , (B7)

where the last equality holds for short times Drott ≪ 1. This shows that rotation angle

δΩ(t) between n̂i(t) and n̂i(0) obeys 〈δΩ(t)2〉 ≃ 4Drott.

Using these results in the dynamic structure factor that now includes both rotations (as

~Ri(t)) and vibrations

Sp(~k, t) ≃
1

N

∑

i,j

〈

ei
~k·(~Ri(t)−~Rj (0))

〉

e−
k2

6
〈(~ui(t)−~uj(0))

2〉 , (B8)

leads to

Sp(~k, t) ≃
1

N

∑

i,j

I(~k, t)e−
k2

6
〈(~ui(t)−~uj(0))

2〉 . (B9)

where

I(~k, t) = eikRijcosθijexp
[

−k2R2
i sin

2θiDrott
]

, (B10)

and θij is the angle between ~k and ~Rij ≡ ~Ri − ~Rj. Performing the angular average over the

initial angles is equivalent to rotating the wavevector ~k in all directions, yielding 〈I(~k, t)〉~k
and thus 〈Sp(~k, t)〉~k. Since one has to keep the angle between the vectors Ri and Rj fixed,

this implies that the angles θi and θij are dependent. Therefore, for accurate analysis we

turn to numerical evaluation. The angularly averaged dynamics structure factor (excluding

translational diffusion) is thus

Sp(k, t) =
1

N

∑

i,j

〈I(~k, t)〉~ke−
k2

6
〈(~ui(t)−~uj(0))

2〉 . (B11)

Eq. (B11) allows to estimate the effect of rotational diffusion at short times, Drott ≪ 1.
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Appendix C: Protein structure factor – derivation of approximate results

Here we evaluate approximately Eq. (68) using the two-point correlation function derived

in Sec. III. As Eqs. (52)-(53) already involve positional averaging, we may ignore details of

the protein structure.

1. Static structure factor

Consider first the static structure factor

Sp(k) =
1

N

N
∑

i,j=1

sin [kRij ]

kRij
exp

[

−k2

6
C
kBT

mω2
o

(

Rij

b

)dw−df
]

. (C1)

To examine the effect of vibrations on the static structure factor we also define a “frozen

network” structure factor that does not include the vibrational contributions

S̃p(k) =
1

N

∑

i,j

sin [kRij ]

kRij

. (C2)

If the network is assumed “infinitely” large we can ignore (as in Eqs. (52)-(53)) boundary

effects, and perform the summation over j. Transforming the sum to an integral we may

formally write

Sp(k) =
1

bdf

∫

Vg

ddf r
sin [kr]

kr
exp

[

−k2

6
C
kBT

mω2
o

(

r

b

)dw−df
]

. (C3)

and similarly for S̃p(k) (with the second, exponential, term in the integrand equal to unity).

For kRg ≫ 1 and in case of a “frozen network” this leads to the well known result S̃p(k) ∼
k−df , as can be also obtained by scaling approach. More precisely,

S̃p(k) ≃
π(df+1)/22df−1

Γ
[

3
2
− df

2

]

bdf
k−df . (C4)

Yet, some contribution, even if small, is obtained from the vibrations, similar to the broad-

ening of the x-ray Brag peaks. Expanding the second term in the integrand of Eq. (C3) to

leading order we obtain the first order correction to Sp(k) ∼ k−df in the form

Sp(k) ≈ S̃p(k)

− Cdfπ
(df+1)/22dw−1Γ[1 + dw/2]

6dwΓ[1 + df/2]Γ
[

3
2
− dw

2

]

kBT

mω2
ob

dw
k2−dw

+ ... . (C5)
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2. Dynamic structure factor: Vibrations

Next we consider the dynamic structure factor. It will be later shown that the rotational

diffusion time dependence in Sp(q, t) is rather weak for t <∼ τN . Taking this as an assumption

for now, the dominant relaxation is due to vibrations. For the first level of analysis, we shall

therefore ignore rotational diffusion and use Eq. (67).

For short times, t ≪ τ(k), where τ(k) = t∗(r = k−1) ≃ Ā−1ω−θ
o (kb)−df θ/ds , we may use

Eq. (52) to find that the dynamic structure factor did not decay much and is left almost

equal to the static structure factor, Sp(k, t) ≃ Sp(k). A more accurate description may be

obtained as follows. For all pairs for which “information” has already propagated between

them, Rij < ξ(t) < 1/k, we should use Eq. (53). For all pairs for which information has not

yet arrived, ξ(t) < Rij , we should use Eq. (52). Thus

Sp(k, t) =
1

N

N
∑

i,j;Rij<ξ(t)

sin [kRij ]

kRij
exp

[

−k2

6
B tν

]

×

exp

[

−k2

6
C1

kBT

mωds
o

(Rij/b)
2df /dl (Āt)−µ

]

+
1

N

N
∑

i,j;Rij>ξ(t)

sin [kRij ]

kRij
exp

[

−k2

6
C
kBT

mω2
o

(

Rij

b

)dw−df
]

.

(C6)

It appears as a very good approximation to set the third, exponential, term in the sum

running on Rij < ξ(t) to unity, since its argument is much smaller than one in the relevant

timescales. Transforming the sum running on pairs with Rij < ξ(t) to an integral and

evaluating the integral approximately for kξ(t) ≪ 1, Eq. (67) becomes

Sp(k, t) ≃
πdf/2

Γ[df/2 + 1]bdf
ξ(t)df ×

(

1− df
6(2 + df)

k2ξ(t)2 + ...

)

exp

[

−k2

6
B tν

]

+

1

N

N
∑

i,j;Rij>ξ(t)

sin [kRij]

kRij
exp

[

−k2

6
C
kBT

mω2
o

(

Rij

b

)dw−df
]

.

(C7)

Equivalently,

Sp(k, t) ≃ Sp(k)−
πdf/2

Γ[df/2 + 1]bdf
ξ(t)df ×
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(

1− df
6(2 + df)

k2ξ(t)2 + ...

)(

1− exp

[

−k2

6
B tν

])

,

(C8)

which, using ξ(t) ≃ ℓ(t)dl/df ≃ ω
ds/df
o (Āt)

ds
df θ and expanding for short times (using ν+ds/θ =

2/θ), yields, to leading order,

Sp(k, t) ≃ Sp(k)− C3 k2 t2/θ , (C9)

where

C3 =
πdf/2

6Γ[df/2 + 1]bdf
ωds
o Ā

ds
θ B . (C10)

Note that for the Rouse model (θ = 2) this implies that the short time decay is roughly

exponential.

At longer times, τ(k) ≪ t ≪ τN , i.e. when 1 ≪ kξ(t) ≪ kRg such that information

has propagated beyond the scattering wavelength ∼ 1/k, we may use Eq. (53) in Eq. (67).

This is true even though the sum in Eq. (67) include all pairs, thus it includes also pairs

for which information has not yet propagated between them and hence obeying Eq. (52).

However, these pairs are distant much further than 1/k apart, k−1 ≪ ξ(t) ≪ Rij , hence they

contribute a vanishingly small value to the sum due to the familiar property of the Fourier

transform. Physically, this implies that the “blob” of size ∼ 1/k, which is controlling the

relaxation at wavevector ~k, is moving almost together as if it was a single bead. This leads

(setting again the third, exponential, term in the sum running on Rij < ξ(t) to unity) to a

stretched exponential decay of the dynamic structure factor,

Sp(k, t) ≃ S̃p(k) exp

[

−k2

6
B tν

]

, (C11)

where S̃p(k) is the “frozen fractal” static structure factor. As shown above, for not too soft

vibrations S̃p(k) ≃ Sp(k). Equivalently, this result may be written as

Sp(k, t) ≃ S̃p(k) exp

[

−k2

6
〈∆~u(t)2〉

]

, (C12)

or, more conveniently, as

Sp(k, t) ≃ S̃p(k) exp [− (Γkt)
ν ] , (C13)

where

Γk = (B/6)1/νk2/ν . (C14)

The stretched exponential decay, together with the dependence of the stretching exponent

ν, is thus a strong signature of the fractal structure.
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3. Dynamic structure factor: Vibrations and rotational diffusion

To estimate the corrections to this result due to rotational diffusion, c.f. Eq. (68), we

first introduce a decoupling approximation to the angular average of 〈I(~k, t), Eq. (B10),

〈I(~k, t)〉~k ≃ 〈eikRijcosθij〉~k〈exp
[

−k2R2
i sin

2θiDrott
]

〉~k , (C15)

in which we ignore the coupling between the angles θij and θi. Thus we can use

〈eikRijcosθij〉~k =
sin [kRij ]

kRij

(C16)

and

〈exp
[

−k2R2
i sin

2θiDrott
]

〉~k =
F [kRi

√
Drott]

kRi

√
Drott

, (C17)

where F [x] is the Dawson integral defined by F (x) = e−x2 ∫ x
0 dy ey

2

. Next we take the

“infinite” fractal limit, and replace sums by integrals, to obtain

Sp(k, t) ≃ 1

N
exp

[

−k2

6
B tν

]

1

b2df

∫

Vg

ddf r
∫

Vg

ddfr′ ×

sin [k|~r − ~r ′|]
k|~r − ~r ′|

F
[

kr′
√
Drott

]

kr′
√
Drott

×

exp

[

−k2

6
C1

kBT

mωds
o

(|~r − ~r ′|/b)2df/dl (Āt)−µ

]

.

(C18)

We now assume very large k such that kRg

√
Drott ≫ 1 (although our short time assump-

tion Drott ≪ 1 still holds). Integrating over r′ leads to

Sp(k, t) ≃
dfπ

3/2+df /2Csc[dfπ/2]

4Nb2dfΓ[3/2− df/2]Γ[df/2 + 1]D
df/2
rot

×

k−df t−df/2exp

[

−k2

6
B tν

]

×
∫

Vg

ddf r
sin [kr]

kr
exp

[

−k2

6
C1

kBT

mωds
o

(r/b)2df/dl (Āt)−µ

]

.

(C19)

Integrating over r, and expanding the second, exponential, term in the integrand to leading

order, we find

Sp(k, t) ≈ const.k−df t−df /2 exp

[

−k2

6
B tν

]

×
(

S̃p(k)− const.
kBT

mωds
o b2df/dl

k2−df−2df/dl(Āt)−µ

)

.

(C20)
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Thus we find that, to leading order, the dynamics structure factor decays according to

Sp(k, t) ≈ t−df/2exp
(

−1

6
k2Btν

)

≈ t−df/2exp [− (Γkt)
ν ] . (C21)

In the case of not so large k or very short times, such that kRg

√
Drott ≪ 1 (but still

kRg ≫ 1), we find, to leading order,

Sp(k, t) ≈ exp

[

−k2

6
B tν

](

1− 2df
3(2 + df)

k2R2
gDrott

)

×
(

S̃p(k)− const.
kBT

mωds
o b2df/dl

k2−df−2df/dl(Āt)−µ

)

.

(C22)

Assuming Rg ≫ b we have Btν ≫ (kBT/ηRg)t in the relevant time regime t ≪ τN . In this

case we find, to leading order, a pure stretched exponential decay,

Sp(k, t) ≈ exp
(

−1

6
k2Btν

)

≈ exp [− (Γkt)
ν ] . (C23)
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FIG. 1: (a) Two point correlation function for the Sierpinski gasket. The pair correlation

function < (~u(~l, t) − ~u(~l′, 0))2 > is evaluated numerically for bead pairs located on a vibrating

Sierpinski gasket with 6561 nodes. Here, we focus on four groups of bead pairs, distanced r =

5, 15, 25, 50 ± 1
2A apart correspondingly. For a fixed value of the inter-bead distance r, < (~u(~l, t)−

~u(~l′, 0))2 > is calculated for all pairs distanced r± 1
2A apart. For every point in time, the correlation

functions, in each distance group, are averaged over all pairs in that group. We plot the averaged

two-point correlation functions vs. the normalized time t/τ0, on a log-log scale. Note the crossover

from a constant value, that increases with increasing r as predicted by Eq. (52), to an anomalous

subdiffusion time regime, identical to that of the single particle MSD (plotted for comparison).

As implied by Eq. (51), the crossover time to the anomalous subdiffusion regime, increases with

r. In the subdiffusion regime, the correlation function obeys equation (53). As the second term

in equation (53) is only a small correction, behavior is expected to not depend on the inter-bead

distance. Indeed, a common power law behavior is observed for all distance groups. For long times,

all curves saturate to a fixed value equal to 2 < u2 >T , i.e. twice the static MSD.

(b) Scaled plot of (a). Following the predicted scaling behavior stated in Eq. (56), we normalize

the correlation functions from (a) by rdw−df and the time by t∗(r) ∼ rdw . Data collapse to a single

master curve is observed for τ0 ≪ t ≪ τN . The slope ν in the subdiffive time regeim is found to

be 0.317, in excelet agrrement with the theoretical, Rouse model, value of ν = 1− ds
2 ≃ 0.317.
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FIG. 2: (a) Two point correlation function for the protein LysX, PDB code 1UC8,

N = 505. The pair correlation function < (~u(~l, t) − ~u(~l′, 0))2 > is evaluated numerically for

amino acids pairs in a procedure identical to the one used for the Sierpinski gasket. We plot,

on a log-log scale, the averaged two-point correlation functions vs. the the normalized time t/τ0,

for r = 10, 15, 20A. Note again the crossover from a constant value, that increases with r as

predicted by Eq. (52), to an effective anomalous subdiffusion time regime. As implied by Eq.

(51), the crossover time increases with r. Unlike the Sierpinski gasket, finite size effects are clearly

discernible. Curves do not saturate to the exact same value, showing that the average of < u2 >T

over a given subset of amino acids may not be identical to the average over a different subset,

and may also differ from the complete spacial average. In addition, a clear subdiffusion regime is

apparent only for the MSD.

(b) Scaled plot of (a). Similar to Fig. 1(a) we normalize the correlation functions from (a) by

rα and the time by rδ. As finite size effects may modify exponents [8], we allow α and δ to deviate

from dw − df and dw respectively, and search for exponents that collapse the data into a single

master curve in the time regime τ0 ≪ t ≪ τN ). We find that the values α = 0.464 and δ = 3.09

best collapse the data, these values are not too far from the predicted values α = 0.392 and δ = 2.9.
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FIG. 3: Dynamic structure factor of Sierpinski gaskets of various sizes. In order to

demonstrate the stretched exponential decay of the dynamic structure factor for fractal objects

we plot log 10

[

−log 10

[

S(k, t)/S̃(k)
]]

vs. log 10(t/τ0) for Sierpinski gaskets of various sizes. Here

S̃(k) is the frozen structure factor, k = 1010m−1, τ0 = 10.53ps and t ranges from 10ps and up to

10µs. A clear stretched exponential decay, the onset of which starts at t ≃ 10τ0, is visible for all

gaskets. As expected, the time regime into which this decay extends is shown to grow with the

size of the gasket. For the largest gasket (7th generation, N = 6561, Rg = 42.6nm), the stretched

exponential decay persists for approximately three decades. Fitting the data for this gasket, in the

time interval log 10(t/τ0) ∈ (0.81, 3.9), we find an exponent of ≃ 0.325, with excellent agreement

with the theoretical value of 1− ds
2 ≃ 0.317.

Inset: The static structure factor of the Sierpinski gasket We plot S(k, t = 0) vs. the wave

number k on a log-log scale. Here k ranges from 107m−1 and up to 3.16× 1010m−1. A clear power

law decay, terminating at roughly k ≃ 109.5m−1, is visible for all gaskets. As expected, the wave

number regime in which this decay is observed is shown to grow with the size of the gasket. For

the largest gasket the power law decay persists for about two decades. Fitting the data for this

gasket, in the wave number interval log 10(k) ∈ (7.8, 9.5), we find an exponent of −1.583. This

value stands in excellent agreement with the theoretical value of df ≃ 1.585. We note that in

contrast to the frozen structure factor S̃(k), the static structure factor S(k, t = 0) does take into

account the contribution of thermal vibrations (see main text). However, as is evident from the

plot, vibrations have a negligible effect on the static structure factor for realistic spring constants

and temperatures.
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FIG. 4:

(a) Dynamic structure factor of the Sierpinski gasket – wavenumber dependence. In

order to demonstrate the dependence of the stretched exponential decay upon the wave number k

we plot log 10 [−log 10 [S(k, t)/S(k, t = 0)]] vs. log 10(t/τ0) for various values of k. Here S(k, t = 0)

is the static structure factor, τ0 = 10.53ps and t ranges from 10ps and up to 10µs. All data is

plotted for the 7th generation Sierpinski gasket (N = 6561, Rg = 42.6nm). As expected, as the

wave number k decreases, the onset of the stretched exponential decay (roughly proportional to

τ(k) ∼ k−df θ/ds) is pushed towards later times. For k = 1010m−1 we fit the data in the time interval

log 10(t/τ0) ∈ (0.81, 3.9) and find an exponent of 0.30, in excellent agreement with the theoretical

value of 1 − ds
2 ≃ 0.317. Note that in this figure we have used S(k, t = 0) as a normalizing factor

for S(k, t). This is done in order to verity the quality of the stretched exponential behavior when

such an experimental-type analysis of the data is being performed, since S̃(k) is not a measurable

quantity, unlike S(k).

(b) Local slope analysis of the data plotted in (a). The first derivative of

log 10[−log 10[S(k, t)/S(k)]], with respect to log 10[t/τ0], is plotted vs. log 10[t/τ0]. A clear plateau

(“shoulder”) region is formed on an intermediate time window that widens up as k increases. For

the smallest k studied, this region is visible for log 10[t/τ0] ∈ (3, 3.75) and for the largest k studied

it extends across log 10[t/τ0] ∈ (0.5, 3.75). The height of the plateau region corresponds to the

value of the exponent which characterizes the stretched exponential decay. As k increases, the

height of the plateau region slowly converges to a value of ≃ 0.30, remarkably close the theoretical

value β = ν = 1− ds/2 ≃ 0.317
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(a)

(b)

FIG. 5: (a) Dynamic structure factor of proteins. −log 10[Sp(k, t)/Sp(k)] vs. t/τ0 is plotted

on a log-log scale for three different proteins, 1FTR (N = 1184), 1UC8 (N = 505), and 3TSS

(N = 190). Here τ0 = γ/ω2
o = 22.19, 32.29, 16.78ps respectively and k = 1010m−1. As in Fig.

4a, we divide the dynamic structure factor by the static structure factor Sp(k) ≡ S(k, t = 0). The

decay is clearly non-exponential. However, unlike Fig. 4a we do not observe a clear straight line

in an intermediate time window that spans across several time decades, indicating that the decay

is not a pure stretched exponential. The effective stretching exponents that are obtained in an

approximate fit are β = 0.119, 0.1584, 0.199, respectively. (b) Local slope analysis of the data

plotted in (a). The first derivative of log 10[−log 10[S(k, t)/S(k)]], with respect to log 10[t/τ0], is

plotted vs. log 10[t/τ0]. The horizontal dashed lines are the slope values obtained from the fits in

(a). It can be seen that these lines cross the derivative lines in the middle of a weak “shoulder”

that signifies an approximate stretched exponential regime.
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FIG. 6: The joint effect of vibrations and rotations on the dynamic structure factor

of proteins. Numerically evaluating Sp(k, t), Eq. (68) (or Eq. (B11)), we study the joint effect

of vibrations and rotations on the dynamic structure factor. We plot −log 10[Sp(k, t)/Sp(k)] vs.

t/τ0 on a log-log scale for the same three proteins that appear in figure 5. We observe a clear,

effective, stretched exponential decay of the dynamic structure factor in an intermediate time

regime. The effective stretching exponents are β = 0.34, 0.28, 0.32 for 3TSS, 1UC8 and 1FTR

respectively. Note that these exponents are higher than the ones obtained when only vibrations

were taken into account. Inset: The contribution of translations. Numerically evaluating

S(k, t), Eq. (63), we add the contribution of translations to that of vibrations and rotations. We

now follow Ref. [27], define t0 = 0.01ns, and plot S(k, t)/S(k, t0) vs. the time in nano-seconds.

The cumulative effect of all three terms give rise to a non-exponential decay that can be well fitted

by a stretched exponential in the time interval t ∈ [0.01ns, 1ns]. The effective stretching exponents

are β = 0.72, 0.42, 0.65 for 3TSS, 1UC8 and 1FTR respectively. Note again that, as expected, these

exponents are higher than the ones obtained when only vibrations and rotations are taken into

account. Since the decay due to translations is purely exponential, we conclude that the origins of

the apparent stretched exponential are the contributions due to vibrations and rotations. However,

the exact value of the effective stretching exponent is sensitive to the interplay between vibrations,

rotations and translations. It is therefore non-universal and may vary from protein to protein and

with external conditions.
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