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It has been generally recognized that stochasticity can play an important role in the information
processing accomplished by reaction networks in biological cells. Most treatments of that stochas-
ticity employ Gaussian noise even though it is a priori obvious that this approximation can violate
physical constraints, such as the positivity of chemical concentrations. Here, we show that even when
such nonphysical fluctuations are rare, an exact solution of the Gaussian model shows that the model
can yield unphysical results. This is done in the context of a simple incoherent-feedforward model
which exhibits perfect adaptation in the deterministic limit. We show how one can use the natural
separation of time scales in this model to yield an approximate model, that is analytically solvable,
including its dynamical response to an environmental change. Alternatively, one can employ a cutoff
procedure to regularize the Gaussian result.

PACS numbers: 02.50.Le, 05.65.+b, 87.23.Ge, 87.23.Kg

I. INTRODUCTION

The role of stochasticity in the functioning of cellular signal transduction networks is a question of great topical
interest [1]. Unlike typical condensed-matter systems, biological cells must carry out chemical manipulations with
small numbers of molecules, an inherently noisy situation. Noise comes in a variety of forms, including fluctuations
in chemicals to be sensed [2], fluctuations in the binding-unbinding of receptor arrays [3], fluctuations during the
processing of information [4], and fluctuations in the implementation of downstream actions [5].

In this context, almost all analytic studies of stochastic reaction dynamics utilize a small noise Gaussian approx-
imation. This assumption emerges naturally, for example, in the van Kampen system-size expression [6] where the
fluctuations in particle number are formally lower order and hence are treated as small and centered around the
mean value set by the deterministic reaction equations. The initial purpose of this paper is to point out that this
approach may give highly misleading results especially when some of the downstream reactions are nonlinear. We do
this by studying a specific example, that of an incoherent feedforward module processing data from a small number
of receptors [7]. Afterwards, we show how an alternate approach for the rapid activation versus slow inhibition limit
can provide a complementary analytic approach.

The example we choose to study is a part of the gradient sensing module underlying the chemotactic response of
Dictyostelium cells [8]. These cells appear to implement a control circuit incorporating a simple incoherent feedforward
loop topology for adapting out the constant concentration background [9, 10]. This circuit is instantiated by using
RAS-GEF as a positive signal and RAS-GAP as the complementary inhibitor [11]. These are both activated upon
the binding of cAMP by the G-protein coupled cAMP receptor and in turn drive the signaling hub protein RAS into
its active (GTP-bound), respectively inactive (GDP-bound) form. The circuit diagram is illustrated in Fig. 1. In the
limit where we are far from saturation, the system can be described by the following equations [10]:

dA

o = aS(t) —vA ,
dB
% = A(1-E)—-BE. (1)
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FIG. 1: Circuit diagram showing the activation of both A and B by the signal S. A in turn activates F, while B inhibits it.

Here F is the fraction of RAS molecules that have been activated and S is the external signal which drives both
the activator A and inhibitor B. It is trivial to verify that if S is a constant signal, the steady-state value of F,
Ey = ad/(ad + Bv) does not depend on its value. Hence this system in the deterministic limit is a perfectly adapting
module, exhibiting only a transient response to changes in its input.

In order to study the effect of noise in the input signal S(¢) on this system, it is standard to assume that S(t) is
the sum of a deterministic signal Sy (¢) plus stationary Gaussian noise. For simplicity, we consider the case where the
deterministic signal is a constant, Sy, and the noise, 7(t), has zero mean and correlator

(n(t)n(t"))

We point out for future reference that the white noise limit is obtained, with these definitions, for 2 — oo, 7 — 0,
o7 fixed, since as 7 — 0 we have exp(—|t — |/7)/7 — 6(t —t'). The advantage of assuming Gaussian noise is that
the system is then analytically tractable. The fields A and B can be expressed in term of the noise 7 as follows:

Gt —t') = g2e 101/ (2)

t
A(t) = 280+ o / dt e ¢y

t
B(t) = §So+5 / a5y “
Substituting this into the effector equation allows us to find
K t
E(t) = / dity gl(tl)e_ ftl dtz g2(t2) ’ (4)

with the definitions

t
gl(t) = %SO+/ v’ Oze_’y(t_t/)n(t/)7

=T
n(t) = (j + ’g) So+ /_ t (ae™= 4 B2 ) e (5)

From this expression, all moments of E can be calculated exactly. For example, let us focus on the expectation value
of E. The standard expressions for Gaussian processes, for example

<e—f77(t/)h(t’)dt'> _ e%fdt/dt”h(t’)G(t/,t”)h(t”) 7 (6)
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FIG. 2: (color online). Left) Excerpt of a simulation of the Gaussian model with So = 1/3, 0> =2/9, a =1,y = 2.5, § = 0.4,
B = 1.7, showing a large negative fluctuation of E/Ey (solid blue trace). Note that 8 is chosen to be exactly the critical value
at which Eq. (9) is violated and (E) diverges, Also shown are S(t)/So (dashed black line), A(t)/Ao (solid red line with open
circles) and B(t)/Byo (solid green line with filled squares). Right) Larger time series of E(t)/Eo showing the intermittent nature
of the large fluctuations.

for general functions h(t), allow us after a tedious calculation to derive the following expression for (E):

o0 [e]3 S
() = [T aduesiriet ) (250 apag) )
0 v
From this, one can immediately recover the aforementioned o2 = 0 deterministic result, (E) = M‘Sfﬁ,y. The exact

expression for Ag(u), given in Appendix A, is not particularly informative; its only critical feature is that it decays
to a constant at large u. The factor 0?®(u) in the exponent is much more significant. Again, we leave the full form
for Appendix A, and merely give the large u behavior:

o2®(u) ~ uo?r (: + 5)2 . (8)

This term represent the diffusive growth of (the integral of) S? and has a well-defined form even in the white-noise
limit for S where 7 — 0 with 027 fixed.
The starting point of our work is the observation that the integral defining (FE) fails to converge unless

So > o1 (: + ?) . (9)

It is easy to show that similar, but more stringent, bounds hold for all moments of F, which therefore are predicted
to grow without bound (starting from any initial state) if the noise is too large. The problem arises from the fact that
the S fluctuations are unbounded below for Gaussian noise and hence can drive A and/or B negative. This gives rise
to transient periods during which |E| grows exponentially. This behavior can be directly seen in a simulation of the
Gaussian noise model, as presented in the left panel of Fig. 2. (In passing, these large excursions are rare events if
o is sufficiently small, and hence getting an accurate measure of (E) from the simulations can be difficult. We will
return to this point in more detail later). As the noise gets large these growth periods lead to ever increasing values of
|E| and the anomalous contributions to (E) never saturate. It is important to note that even when Sy/0 < 1, so that
the negative fluctuations of A and B are rare, nevertheless the Gaussian model can yield unphysical, infinite results,
if a/y+ B/9 is large enough. Thus, our finding depends essentially on the nonlinear coupling of the noisy signal to
the E field, so that the noise acts multiplicatively on E. This troublesome behavior persists in the white noise limit,
since the above condition, Eq. (9), involves the white noise amplitude, o%7.



II. BINOMIAL NOISE

Clearly, the Gaussian noise approach is in general unacceptable. We must treat the noise in a more realistic fashion
if we are to have a well-defined model. If the source of the noise is the finite number of receptors [12, 13], we are led to
consider a model wherein the incoming signal is a random variable reflecting the fraction of bound sensors. Assuming
that the N receptors are independent and bind a ligand of fixed concentration, ¢y, the signal can be exactly described
via the master equation for the probability distribution, P(s,t), for the number s = 0,1..., N of occupied receptors.
where the signal S = s/N; i.e., the fraction of occupied receptors:

OP(s,t)

Y = —[kots + konco(N — )| P(s,t) + kor(s + 1) P(s + 1,1)

+ konco(N —s+1)P(s — 1,t) . (10)
We call the model with this discrete noise the binomial noise model, as the equilibrium distribution of s is binomial,

N! (konco)® (kog) N %
8'(N - S)' (konco + koff)N

Peq(s) = (11)

For large N, we recover a Gaussian noise process, except in the tails, as can be seen via the following argument. Our
discrete stochastic process, Eq. 10, is well approximated for large N by the Ornstein-Uhlenbeck process, described
by the Fokker-Planck equation

OPg(S,t) 0 , 0?Pg
—— = — [(§ = Sy) P —_— 12
T ot as [( O) G]+US 852 ’ ( )
with Sy = konco/(konco + kott), 771 = kot + konco and 0% = kokonco/(N (konco + kom)?) so that in the limit the
stochastic function S(¢) is Gaussian with variance og. Here, of course, the equilibrium distribution is Gaussian,

Po,eq(S) = exp [~ (5 = $0)° /202 , (13)
and the steady-state autocorrelation function is
< SH)SH) > — 82 = gle T (14)

Nevertheless, for all finite NV, the signal S in the binomial process is always non-negative, and no anomalous behavior
can occur, with E(t) strictly bounded from below by 0. The striking difference in the two models is apparent by
comparing the Gaussian simulation presented in Fig. 2 to the simulation of the corresponding binomial model in Fig.
3. The well-behaved nature of the binomial model for all N is consistent with the fact that our condition for the
convergence of the first moment in the Gaussian model, Eq. (9), is always satisfied in the large N limit, given that
the noise amplitude a% is small, of order O(1/N). The large-N limit, however, is only an asymptotic approximation,
since for any finite value of the noise amplitude 0% of the Gaussian model, sufficiently high moments of E do indeed
diverge.

An additional perspective on the difference between the binomial and its parallel Gaussian model is afforded by
examining the equilibrium (F) as a function of the parameter §. This is presented in Fig. 4. In the Gaussian noise
model, the divergence condition condition is obviously satisfied for 8 > (., where

ﬂcza[s;)—“} 7 (15)

o°T Yy

since the right-hand size of Eq. (9) grows linearly with S. The incipient divergence of (E) for the Gaussian model at
B. = 1.7 is apparent from the figure. The binomial model, on the other hand, shows no special behavior at the critical
B at which (F) diverges in the Gaussian model. The binomial model (E) exhibits a broad minimum at 8 ~ 3.9 and
then rises toward unity as g increases. Even before the divergence, the Gaussian model deviates significantly from
its binomial counterpoint, since binomial noise is far from Gaussian when N is small. The third curve in this figure
results from a cutoff version of the Gaussian model, to be discussed later. For smaller noise, (equivalently, larger N in
the binomial model), however, as depicted in Fig. 5, the difference between the two models is small, essentially right
up to the divergence, as binomial noise is very well approximated by Gaussian noise, except in the tails, which are
irrelevant (at least for the first moment, (E)) as long as one is a finite distance below .. The onset of the deviation
for small noise in the Gaussian model is extremely close to 5.. For example, the Gaussian model (E) crosses zero at
a distance of the order of 107'8 below f3. for the parameters of Fig. 5.



1y
1I|l|IL

\Y
0 S
1000 1005 1010 1015 1020 1025

FIG. 3: (color online). Excerpt of a simulation of the N = 1 binomial model with parameters parallel to those of the Gaussian
simulation in Fig. 2: konco =1, keg =2, a=1,7v=25,0 =04, = 1.7.
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FIG. 4: (color online). Variation of (E) with 8 for the Gaussian model, Eq. 7, (red short dashed line) and the corresponding
N = 1 binomial model (blue dashed-dotted line), derived from averaging 10* simulations. The parameters of the Gaussian
model (except 3) are as in Fig. 2; for the binomial model as in Fig. 3. These results are compared to that of the cutoff model,
defined later in the text (solid black line).
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FIG. 5: (color online).Variation of (E) with S for the Gaussian model, Eq. 7, (black dotted line) and the corresponding
binomial model (blue solid line), derived from averaging 10* simulations. Here N = 10 in the binomial model, and similarly
the Caussian model has 0? = 4/90, so that the Gaussian (E) diverges at 8 = 17.84. The other parameters are as in Fig. 4.
These results are compared to that of the cutoff model, defined later in the text (red dashed line).

III. SUDDEN/ADIABATIC (S/A) APPROXIMATION

Unfortunately, the binomial model does not admit an analytic solution for finite N (which is of course the interesting
case, since otherwise the effect of the noise is infinitesimal). We can however make use of the natural ordering of
time scales in the problem to construct a solvable limit. For the circuit to show a significant transient response,
it is necessary for the time scale of the A dynamics to be much faster than the B dynamics, otherwise the system
adapts too rapidly to the changing signal and the transient response is aborted. Furthermore, the time scale of the
E dynamics, 1/(Ag + By), should be intermediate to those of the A and B fields. If the E dynamics is too fast,
then the system is limited in any case to respond no quicker than A, and if the E dynamics is too slow, A and B
have reequilibrated by the time E starts to respond, and again there is no transient response. Also, the time scale of
the noise dynamics should be intermediate. Too fast noise would just get averaged away, and too slow noise would
be adapted away. Thus, we are led to consider the limit where the A dynamics is much faster than all the other
processes, and the B dynamics much slower. This limit is analytically treatable, as we now proceed to show.

Formally, we define our approximate theory, which we denote the Sudden/Adiabatic (S/A) theory, by taking both
B — 0 and 0 — 0, with a fixed ratio B, = (8/d). Since the time scale of the B dynamics is so long, the noise in
the signal is completely averaged over and we can just set B = By = Bp(kon¢o/(konCo + Koft)), its average value. In
addition, we take the limit of large o and ~y (with fixed ratio A,) which guarantees that the activator dynamics is fast
enough to precisely follow the noise, i.e. A(t) = S(t)A,.

We first examine the case N = 1. To proceed, we decompose the equation for the probability distribution of E into
Py1(E), the joint probability of E and the input signal S being 0 or 1, respectively, so that P(E,t) = Py(E,t)+P1(E, ).
We immediately derive that, in steady state,

oP. )
aTl = honcoPo — kotPy + - ([(Bo + A,)E — Ay)) P) =0,
P,

0
5 = —koncoPo + kogP1 + B (BoEPRy) =0 . (16)
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FIG. 6: The probability distribution function, P(E) = Py (E) 4+ P_(FE) as a function of E for the N = 1 binomial model with
a =100,y =10, 8 =10.2, 6 = 0.1, konco = kog = 0.4, compared with the N =1 S/A model, with parameters A, = 10, By = 1.

Adding the two equations and integrating gives
E,—FE E
P(E)= ———
5 B =305

where E, = A,/(A, + By). Substituting this back into Eqs. 16 and defining ry = kog/(Ap + Bo), r— = konco/Bo, we
can find the normalized probabilities defined on the interval 0 < £ < E,,,

F(T++7”_+1) _ BO ry—1
pp=—~*t"1 - gt 0 pr (R — E)*
! Lr)T(r-) P konCo + kogt (Ep ) ’
Pirp +r-+1) _ A, + By _
Ph= —~+t " =t (i) P T 0 pr =1 T 18
0 Cr)T(r_) P konCo + Koft (By — B) (18)

The total probability P(E) has the interesting behavior of switching from being peaked at the interval center to the
interval endpoints, as the parameters are varied [14]. For r; < 1, the probability density diverges at E,, and for
r_ < 1, the density diverges at 0. The above expression immediately gives the prediction
r— + konCO/(konCO + koﬁ)

ry+r_+1 '

(E) = Ep (19)
To compare this to the full binomial model, we conducted a simulation with a@ = 100, v = 10 (giving A, = 10),
B8 =020 = 0.1, and konco = kog = 0.4, (giving By = 1). Here, the above theory predicts (E)/Ey = .684, where
the deterministic Ey = koncoAp/(konCoAp + (konCo + kofr) Bo). The simulation gave (E)/Ey = .691 and indeed the
histogram is peaked at the endpoints, as predicted by the analysis. This is seen in Fig. 6.

In particular, our limiting theory predicts that as a function of By, i.e. 8, (E)/Ey starts at a value of unity at
By = 0, which is reasonable since the system is saturated and so (E) is unity independent of the noise. For small By,
(E)/Ey falls with an an initial slope of kofr/(konco(konco + koft)). As a function of By, (E)/Ey reaches a minimum at
By = \/Apkonco and then turns back up, approaching unity at large By. This qualitative behavior is in accord with
what we saw in Fig. 4, even though there the parameters are far from fulfilling the separation of scales assumed in
the analysis. For konco = ko, the value of (E)/Ey at the minimum is

((E)/Eo)min = m; r \/m . (20)



This decreases from unity for small r to a value of 1/2 at large r. Thus the larger A, /konco, the larger the noise-induced
relative suppression of (E), since the effective noise amplitude increases as konco decreases. When kog < konco, the
value at the minimum approaches unity, so there is no suppression. On the other hand, when kog > konco, the value
at the minimum approaches kog/(kog + Ap), which indicates the maximal suppression occurs at A, > ko > konCo.

A. Moment Equations

One cannot extend the above approach to compute the an exact closed-form expression for the steady-state distri-
butions for N > 1. However, one can make progress by recognizing that the moment equations take a particularly
simple form. Consider the steady-state master equation for the case of general N. We have, in an obvious notation,

d
0 = koncoPy—1 = ZkoPy + == ([(Bo + 4B — 4,2 ) |

dE
0 = —jkoncoPj — (N — j)kogPj + (N — j + 1)koncoPj—1 + (j + 1)kogPj11
d jA iA _
— B, ZP)Vgp L2 p =2..N-—-1
(i) e-Tlm)
0 = —NkoncoPo + kogPr + +i ByEF,) . (21)
dFE

Because of the form of these equations, we can get a closed linear system for the moments z, = [ dEP,(E)E:

0= _(N _j)koncozj - jkoffzj + (N _j + 1)kOnCOZj—l + (.] + 1)k0ffzj+l - (BO + j;é?) Zj = % H] . (22)
where II,, = [ dEP,(FE) are just the binomial occupation probabilities and z_; = zy41 = 0. This (N + 1) x (N + 1)
linear system can immediately be solved for the z’s for any given N. In Fig. 7, we plot the results obtained by solving
these equations to determine (F) = Zg:o Zn.-

For large N, the distribution II; becomes highly peaked around its mean, j = Nkonco/(konCo + kot) = NZ, and so
does z;. Thus, to leading order, we can approximate jA,/N by its mean, Ay = A,Z, allowing us to solve the resulting
system,

Zj = 250) = AQ/(A() + Bo)H]‘ = E()Hj . (23)

Thus, (E) = Ey, and moreover the mean value of F, conditioned on the value of the input j is in fact independent of 7,
so that adaptation become perfect for large N. To investigate the finite IV effects, we expand around z;, z; = z](»o) +A;
using the fact that for all the important modes, j/N — Z is small, of order O(N~'/2). To solve the resultant system,

we can approximate it by an ODE for A(y) thought of as a function of the continuous variable y = VN (n/N — z).
This calculation is presented in Appendix B, and leads to the result

(E) ~ E, A, oo (24)
T 0T N(Ag + Bo)?(Ag + By +w)
where w = 1/7 = konco + koge- Thus,
AoBo(1 — 7
1 (E)/Ey ~ oBo(l = 7) (25)

NE(AO + BO)(AO + By + w) '

Thus again (E)/FEy starts at 1 for By = 0 but here falls initially with slope (1 — z)/(NZ(Ap + w)). Note that this
is quite different from the B = 0 slope for N = 1, which was independent of Ay. Again, (E)/Ey has a minimum as

2
a function of By, here at By = Agy/1 + w/Ag, with a value at the minimum of (1 — Z)/ (Ngc <1 + /1 +w/A0) )

Thus again the suppression is largest for kog < konco. Note that for small kg, cq, the suppression appears to grow
without bound, although it is in fact bounded above by unity, indicating that the smaller Z, the larger N has to be
in order for the large N results to be valid. Nevertheless, the suppression is still strong in this limit.

As mentioned above, our system of reactions, Eq. (1) was recently found to describe the RAS activation response of
Dictyostelium cells to global cAMP stimulation. This is the first verified case of the incoherent feedforward structure
in an actually biological process. The kinetic parameters derived for this model [10] are roughly in the range where
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FIG. 7: The scaled suppression of the equilibrium (E), N(1 — (E)) as a function of By in the reduced model, for various N = 1,
2, 5, and 20 along with the asymptotic large-N result (in ascending order, with N = 1 at the bottom and the large N result,
denoted N = co at the top). The parameters are Ag = 10, konco = kog = 0.4.

our approximations apply, namely the inhibition timescale is larger than the noise correlation time which in turn is
larger than that of the activation. In that system, the downstream effector is actually fast; this is not the most general
possibility, but our methodology is able to handle this limiting case without any issues. Perhaps more importantly,
the RAS system couples to a huge number of receptors (then of thousands) and hence stochastic effects cannot play
any role for the global response of interest here [16] . Direct testing of our results will have to await the discovery of
a gene expression problem which utilizes this network structure and where the number of “receptors” (here promoter
regions on the DNA) involved in signal sensing can be as small as one.

IV. GAUSSIAN MODEL - LARGE N LIMIT

We have seen that the binomial model becomes Gaussian in the large N limit. It is interesting to check that our
results for the S/A limit of the binomial model agree with the corresponding limit of the Gaussian model for small
noise. For small noise, the Gaussian model gives a finite answer, since our criterion is automatically satisfied. Indeed,
upon expanding Eq. 7 to linear order in 0% and performing the integral we get

(B) ~ By |1 o2 372 7B(y = 8) (70 + SoB + Soa) (aSodT + So YT + °yT + 8v°T +79)
0 5 (aSod + SoB +702) (07 + 1)(7 + 6)(Sod + SoBy + 7126)(SodT + So YT +78) (77 + 1)y

(26)

and then taking a and v to co with /vy = Ag/Z and taking 8 and ¢ to zero with §/6 = By/Zz, and setting Sy = Z,
O'?; = 0?/N, we indeed reproduce our large N result, Eq. 25. In addition, the general result confirms that the
suppression is maximized in our distinguished limit v > §.

Thus, the Gaussian model is perfectly acceptable in the small noise limit. One can ask if there is way to extend
it beyond this limit. Clearly just increasing the noise amplitude leads to problems, as we have seen. We have seen
in Fig. 4 that the problem is not restricted just to noise levels bigger than the critical value. Rather, for this case
of large noise, the Gaussian answer is not accurate even when we are not close to the critical value. The problem is
of course the already demonstrated large negative excursions. For small or intermediate noise levels, the problematic
negative excursions of A and B are actually quite rare. To understand this better, consider the distribution of E(t),

for some given t. For short times this is well-behaved, but when one exceeds the time-scale of the E dynamics, the
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FIG. 8: (color online) Gaussian Model: Probability Distribution Function for 1 — E(¢s), conditioned on E(¢y) < 0, plotted in
log-log scale, for a = 1.4 (solid black line), 2.2 (dashed red line) and 3.0 (dotted blue line). The tails approach straight lines
for large |E(ty)|, indicating asymptotic power-law distributions with approximate exponents of 2.2, 1.8 and 1.6, respectively.
N =0.5,t5 = 20 All other parameters are as in Fig. 1. For each data set, 10° runs were performed, yielding 146,000, 203,000
and 234,000 data points satisfying E(ty) < 0, respectively and the data was binned logarithmically using 25 bins.

distribution develops a power-law tail for large negative E(t); this can be seen in Fig. 8. If § < ., the exponent
of this distribution is greater than 2 in magnitude, and so the first moment is finite. Of course, there is a range for
which the first moment is finite but the second and higher are already divergent. Since the exact formula shows that
there is no divergence of any moment at finite ¢, there must be a cutoff in the power-law tail at some extremely large
t dependent value, which however is very difficult to see from the numerics [15]. For g > ., on the other hand, the
power decreases and the first moment diverges as well (subject to the same extremely large cutoff). As the noise
level decreases, the above picture still holds. The probability of E(t) < 0, however, decreases exponentially with N.
Thus, while for 8 > ., the first moment diverges, it becomes exponentially more difficult to see this in a simulation
at intermediate noise levels. For small noise, it is well-nigh impossible. Thus, simulating the Gaussian model will,
for small and intermediate noise give perfectly physical answers, which is, however, the incorrect answer for the true
ensemble average, which is dominated by extremely rare huge events. Of course, if one wishes to rely on simulations,
one can simulate directly the binomial noise model.

This line of reasoning leads to an alternate approach for extending the Gaussian model, loosely motivated by
the successful use of simple cutoffs in regularizing reaction-diffusion equations which arise from the large N limit of
Markov processes and which overemphasize the growth at small concentrations by missing the essential role of particle
number discreteness [17-19]. (In fact, it has been recently proven that adding a cutoff to the Fisher equation [20-22]
exactly reproduces the anomalous front velocity correction for asymptotic large particle number N [23]). Here, we
cut off the integral in Eq. 7 at the point where either the integrand becomes (unphysically) negative or (unphysically)
increasing as u increases. Fig. 4 presents results for N = 1 showing that this method not only prevents blow-up (by
construction) but also does a decent job in capturing the true answer. It is clear that this method becomes more and
more accurate as N increases, since for large N the unphysical neglected integrand is exponentially small in N (even
though diverging as u — 00); this can be seen in Fig. 5. This is reminiscent of the situation we encountered with the
Gaussian simulations, where the part of the distribution that has diverging mean has exponentially small probability.
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FIG. 9: (color online) The ensemble-averaged (FE(t)) for the binomial model when ¢y is suddenly increased by a factor of 2 at
tp = 100. The average over 10* runs is denoted by the curve labeled Simulation (black dotted line). The adiabatic approximation
where the equilibrium value of E is shown with By taken to be its ensemble average BO(t) = Bf — (Bf — Bo(tp))e **~*) and
the other parameters post-pulse are taken to be their new values is shown by the trace labeled Adiabatic (red dashed line). The
numerical solution of the moment equations with Bo(t) taken as above and II; (t) = & — (&' — z)e~°*~*) is marked by ODE
(blue solid line). The parameters are N =1, « = 100, 8 =1, v = 10, § = 0.1, and kg = 0.8. The initial value of konco = 0.08,
and post-pulse konco = 0.16. Thus Z = 1/11 and &' = 1/6. The deterministic equilibrium value of E is 1/2, both pre- and
post-pulse.

V. DYNAMIC BEHAVIOR

Up to this point, we have focused exclusively on the steady-state properties of the model. It is also interesting to
investigate the dynamic behavior of the model, especially since in the deterministic limit adaptation implies that the
steady-state behavior is independent of the environment, and the only nontrivial behavior is the transient response of
the system to changes in the input. In our distinguished S/A limit where the A dynamics is fast and the B dynamics
is slow, we can get a complete picture of the dynamics. Imagine that the input signal suddenly changes to a new value.
The A field will immediately respond to this change. The B field will only relax slowly to the change. As before, the
relatively fast noise is averaged over by B, and so the B dynamics can be taken to be a deterministic exponential
relaxation to its new equilibrium value B}, on the slow time scale. Thus, we can consider the changes in B as adiabatic,
with the system in quasi-equilibrium with the current value of By. Thus, the value of E, averaged over the relatively
quick fluctuations will be that given by our above solution for (E) with By = By(t) = B} + (B} — Bo(t,))e (¢t
where t,, is the time of the pulse, and koncp is given by its new value, with A, and k. unchanged. We see this plotted
for the case of N =1 in Fig. 9, together with the full simulation, averaged over 10* runs. We see that this treatment
captures very well the dynamics on the long 1/§ time scale of the B dynamics. We see that for this strong a noise, the
transient response of the system is swamped by the shift in the equilibrium value of (E). One can in fact do better
by solving the time-dependent moment equations, with IT;(t) = #’ — (' — Z)e~°(*~*»). This resolves the initial period
of the rise in (E(t)), during which the noise equilibrates to its new statistics. This is also shown in the figure.



12
VI. SUMMARY

In summary, we have shown that the Gaussian noise model in the context of nonlinear downstream reactions fails in
principle beyond a critical value of 3, the strength of the inhibitor production. This renders a full analytic treatment
impossible. The cause of this can be traced to the interaction of the signaling nonlinearity with the fact that Gaussian
noise does not respect the constraint that chemical signals must be positive. One can get rid of this effect by linearizing
the reaction equation, but this completely eliminates the possibility of investigating the extent to which the perfect
adaptation seen in the deterministic limit is undermined by signal stochasticity.

Even though it cannot be solved exactly, one can make analytic progress for the most interesting range of parameters,
namely where the activation is fast and the inhibition slow, as compared to the noise time scale . These can be used
as a guide to determining the actual deviation of (F) from its signal-independent mean-field value. Also, it is possible
to devise a cutoff procedure which accurately predicts the results of the binomial model for intermediate and large N
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Appendix A: Gaussian Noise

We present here the formulas for ® and AF(u) appearing in the expression for the average F for the Gaussian noise
model.

O(t) = — 5 (a+ 20 )(1—e‘“)

Y21 =72712) \v v +46
. Tﬂ é 2a . _5t
52(1 — 5272) (5 * 7+5> (1=

- (’y +a1/r i 5+ﬁl/7> <7 —al/T *5 —61/7) (1)

2
+T<a+§> 3 (A1)
TQ ot 27 st
26(0) = = (=) + e g (1)
T « ﬁ —eit/T
Jr'y—i—l/T (’}/—1/7'+(5—1/T> (1 ) (A2)

Appendix B: Large N Limit

We begin by writing the exact equation satisfied by A; = z; — Eoll;:

j— Nz

. , . : A
0= —(N—])]{:OHCOAJ‘—]kOﬁAj—l—(N—j-i-l)k'onCOAj,l+(]+1)kOﬁAj+1— (Bo + j]\;) Aj+ N Ap(l—Eb)Hj . (Bl)

where T = konco/(konco+kos). To proceed, we transform this difference equation into an ODE in terms of the variable
y = (j — N7)/V'N, and writing A; = N~12("D(y) + N=3/22(2)(y). To leading order in N we get (w = konco + koft):

w (dyz<1>(y> + 02d2z“><y>> SV RO — L ——C (B2)
dy dy? (Ag + Bo)V2ro?
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the solution of which is

ApBo ye_y2/202
(A0+B0+UJ)(A0+B())V27TO'2 '

20(y) = (B3)

This correction reflects the breakdown of perfect adaptation for finite NV, but due to its asymmetry, does not lead to
a correction in (E). To obtain the leading order correction for this quantity, we have to go to next order:

d d? w(l —Qi‘) &2 y2(1 —253) y2 A, B, 2 /6 2
4@ 2T @\ (4 BY® s, W —28) 47 gy y (A —23) (0 Y\ ApBo  _y20n
w (dyyz +o z ) ( o+ O)Z YApz 9 dyZyZ +20.2,/2ﬂ-0-2 ( 302 A0+Boe
(B4)

The solution is then

ApBoeiy2/202
(Ao + Bo)(A() + BO + w) \% 2mo?

y)=—

Ayo? Y 20 Y y?
=4+ — T —1 = - = . (B5
(A0+Bo+2w) <0‘2+A0+BO +(1' /2) 304 o2 ( )
The second term does not contribute to (E), interestingly enough, and

A}%.B()U2
(Ao + Bo)?(Ao+ Bo +w)

<E>%E0—N

[1] M.B. Elowitz, A.J. Levine, E.D. Siggia, and P.D. Swain, Science 207, 1183 (2002); P.S. Swain, M.B. Elowitz, and E.D.

Siggia, Proc. Natl. Acad. Sci. U.S.A. 99, 12795 (2002).

H.C. Berg and E.M. Purcell, Biophys. J. 20, 193 (1977).

B. Hu, W. Chen, W.J. Rappel, and H. Levine, Phys. Rev. Lett. 105, 048104 (2010).

Gagper Tkatik, T. Gregor, and W. Bialek, PLoS ONE 3, e2774 (2008).

Y. Tu and G. Grinstein, Phys. Rev. Lett. 94, 208101 (2005).

N. G. Van Kampen, Stochastic Processes in Physics and Chemistry, Elsevier (2007).

W. Ma, A. Trusina, H. El-Samad, W. A. Lim, C. Tang, Cell 138, 760 (2009).

C.A. Parent and P.N. Devreotes, Science. 284, 765 (1999).

A. Levchenko, P. A. Iglesias, Biophys. J. 82, 50 (2002)

K. Takeda et a;, “Incoherent feedforward control governs adaptation of activated Ras in a eukaryotic chemotaxis pathway”,

submitted to Sci. Sig. (2011)

[11] A GEF (guanine nucleotide exchange factor) converts the inactive form of RAS (RAS-GDP) to its active form by changing
the GDP to a GTP. A GAP (GTPase Activating Protein) catalyzes the reverse reaction.

[12] W.-J. Rappel and H. Levine, Proc. Natl. Acad. Sci. U.S.A. 105, 19270 (2008); B. Hu, D. Fuller, W.F. Loomis, H. Levine,
and W.-J. Rappel, Phys. Rev. E 81, 031906 (2010).

[13] R.G. Endres and N.S. Wingreen, Proc. Natl. Acad. Sci. U.S.A. 105, 15749 (2008); R.G. Endres and N.S. Wingreen, Phys.
Rev. Lett. 103, 158101 (2009).

[14] J. Ohkubo, N. Shnerb and D. A. Kessler, J. Phys. Soc. Japan 77, 44002 (2008).

[15] D. A. Kessler and E. Barkai, Phys. Rev. Lett. 105, 120602 (2010).

[16] Noise can be important for RAS activation by a spatial gradient; see D. Fuller, W. Chen, M. Adler, A. Groisman, H.

Levine, W. J. Rappel and W. F. Loomis, “External and internal noise limits to eukaryotic chemotaxis”, PNAS 107, 9656

(2010).

E. Brener, H. Levine, and Y. Tu, Phys. Rev. Lett. 66, 1978 (1991).

T. B. Kepler and A. S. Perelson, Proc. Natl. Acad. Sci. U.S.A. 92, 8219 (1995).

L. S. Tsimring, H. Levine and D. A. Kessler, Phys. Rev. Lett. 76, 4440 (1996)

E. Brunet and B. Derrida, Phys. Rev. E 56, 2597 (1997)

D. A. Kessler, Z. Ner, and L. M. Sander, Phys. Rev. E 58, 107 (1998).

L. Pechenik and H. Levine, Phys. Rev. E 59, 3893 (1999).

C. Mueller, L. Mytnik and J. Quastel, Invent. Math 184, 405 (2011)



