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Using molecular dynamics simulation, we calculate fluctuations and response for steadily sheared
hard spheres over a wide range of packing fractions φ and shear strain rates γ̇, using two different
methods to dissipate energy. To a good approximation, shear stress and density fluctuations are
related to their associated response functions by a single effective temperature Teff that is equal to
or larger than the kinetic temperature Tkin. We find a crossover in the relationship between the
relaxation time τ and the the nondimensionalized effective temperature Teff/pσ

3, where p is the
pressure and σ is the sphere diameter. In the solid response regime, the behavior at fixed packing
fraction satisfies τ γ̇ ∝ exp(−cpσ3/Teff), where c depends weakly on φ, suggesting that the average
local yield strain is controlled by the effective temperature in a way that is consistent with shear
transformation zone theory. In the fluid response regime, the relaxation time depends on Teff/pσ

3 as
it depends on Tkin/pσ

3 in equilibrium. This regime includes both near-equilibrium conditions where
Teff ' Tkin and far-from-equilibrium conditions where Teff 6= Tkin. We discuss the implications of
our results for systems with soft repulsive interactions.

I. INTRODUCTION

Many applications require understanding how disor-
dered materials flow under an external load such as
a shear stress [1, 2]. Deriving such an understand-
ing from thermodynamic principles requires identifying
relationships between thermodynamic parameters and
transport. Since external loads drive systems out of
equilibrium, their thermodynamics cannot be described
solely in terms of equilibrium parameters like temper-
ature and pressure. However, simulations [3–10] and
experiments [11–13] show that sheared spherical parti-
cles possess an effective temperature that relates low-
frequency fluctuations of various observable quantities to
their associated response functions [14, 15]. This effec-
tive temperature is likely to feature prominently in any
thermodynamics-based description of flow in glassy ma-
terials [16]. First, the relationship between transport and
effective temperature must be established.

In Ref. [17] we begun to establish a relationship be-
tween mobility and effective temperature Teff by study-
ing the behavior of a mixture of soft, repulsive disks in
two dimensions at a packing fraction above random close
packing over a range of shear strain rates γ̇ and kinetic
temperatures Tkin. We found that the system only flows
under shear if Teff exceeds a threshold value similar to
the dynamic glass transition temperature. Under strong
shearing, we found that the average shear stress is pro-
portional to a Boltzmann factor containing the effective
temperature. These results imply that the effective tem-
perature plays a key role in facilitating the mobility of
sheared systems.

Here, in order to further elucidate this role, we deter-
mine the relationship between mobility and Teff over a
wide range of parameters for a hard sphere model. The
advantages of the hard sphere model are twofold. First,
due to the hard-core nature of the interactions, Teff can

only control the behavior of the model via a dimensionless
parameter. Using the dimensionless parameter Teff/pσ

3,
where p is the pressure and σ is the sphere diameter, fa-
cilitates a direct comparison with the equilibrium system,
where T/pσ3 is the relevant control parameter. Second,
the relationship between mobility and Teff/pσ

3 should
capture the leading order behavior of soft repulsive sys-
tems, provided that parameters continue to be expressed
in dimensionless form [18–20].

We find a crossover in the relationship between Teff and
the relaxation time τ that characterizes the mobility. In
the solid response regime, τ depends on Teff at fixed pack-
ing fraction according to τ γ̇ ∝ exp(−cpσ3/Teff), where c
depends weakly on φ, suggesting that the average local
yield strain is proportional to a Boltzmann factor con-
taining the effective temperature. This is consistent with
the effective temperature’s role in shear transformation
zone theory, where Teff controls the density of zones that
are susceptible to shear deformation [16]. In the fluid re-
sponse regime, the relaxation time depends on Teff/pσ

3

as it depends on Tkin/pσ
3 in equilibrium. This regime in-

cludes both near-equilibrium conditions where Teff ' Tkin

and far-from-equilibrium conditions where Teff 6= Tkin.
This suggests that the mechanisms that control transport
for the equilibrium fluid persist under shear even where
the slow degrees of freedom responsible for transport fall
out of equilibrium with fast degrees of freedom.

II. MODEL AND METHODS

Our model is a mixture of 4096 hard spheres of mass
m, half each of diameter σ and 1.4σ to avoid crystalliza-
tion. We conduct event-driven molecular dynamics sim-
ulations [21–23] at fixed packing fraction φ and uniform
shear strain rate γ̇ under Lees-Edwards boundary condi-
tions. Maintaining such a system in steady state requires
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dissipating energy. Given our incomplete understanding
of how the dissipation mechanism affects the dynamics of
sheared spheres [24–26], we perform two separate sets of
simulations: inelastic simulations that dissipate energy
locally and thermostatted simulations that dissipate en-
ergy through a mean-field interaction with a thermostat.
Our inelastic simulations impose a uniform coefficient of
restitution C < 1 for each collision, as is common in mod-
eling granular fluids [27]. While the temperature is not
independently controlled, the steady state is character-
ized by a kinetic temperature Tkin = m〈|~vi − ~vav|2〉i/3,
where ~vav = ryγ̇x̂ is the average shear profile, x̂ is the
shear direction, and ry is the location in the shear gra-
dient direction. Our thermostatted simulations involve
purely elastic (C = 1) spheres but dissipate energy into
a thermal reservoir at a prescribed temperature T , as is
more usual in modeling atomic fluids [28]. Specifically,
we periodically rescale the nonaffine part of the veloc-
ity, ~vi − ~vav, to keep Tkin within 1% of T . Note that
while the shear flow in the inelastic simulations is purely
boundary-driven, the thermostatted simulations bias the
system to follow the assumed linear profile ~vav = ryγ̇x̂.

Although there are three control parameters for each
set of simulations (φ, γ̇, and C or Tkin), one of them
can be absorbed into the unit of time; for instance, time
can be measured in units of γ̇−1 or σ

√
m/Tkin. There

are therefore only two independent, dimensionless control
parameters, the packing fraction φ and a parameter that
controls the strength of shearing. While γ̇σ

√
m/Tkin and

C are both valid dimensionless control parameters, we
choose to represent the strength of shearing in both sets
of simulations by the ratio Σ/p of shear stress to pressure.
For the thermostatted and inelastic simulations, Σ/p can
be increased at fixed φ by increasing the shear strain
rate γ̇σ

√
m/Tkin or decreasing C, respectively; the equi-

librium limit Σ/p → 0 corresponds to γ̇σ
√
m/Tkin → 0

and C → 1.
We define the shear stress Σ = Σxy and the pressure

p = −(Σxx + Σyy + Σzz)/3 via the microscopic stress
tensor Σαβ , which is defined for a time interval ∆t as the
sum of kinetic and virial terms,

−V Σαβ =

〈
N∑
i=1

mviαvjβ

〉
∆t

+
1

∆t

∑
collisions

mrijαdvijβ .

(1)
In Eq. 1, V is the volume, the second term is a sum
over all collisions in the time interval ∆t, and d~vij =
d~vi = −d~vj is the change in velocity of sphere i due to
the collision. The velocities in the first term are defined
relative to an assumed linear shear gradient.

We characterize the mobility by the relaxation time
τ defined by ∆rz(τ) = σ/

√
3, where ∆rz(t) ≡√

〈(rz(t)− rz(0))2〉 is the root-mean-square displace-
ment in the direction perpendicular to the shear plane.

As we will discuss in the following section, we define the
effective temperature Teff as the value that replaces the
temperature T to satisfy two independent fluctuation-
dissipation relations. The first fluctuation-dissipation re-

lation is the compressibility equation relating the com-
pressibility to the amplitude of density fluctuations,

TχT =
S(0)

ρ
=

1

ρ
lim
k→0

S(~k). (2)

We define the isothermal compressibility out of equilib-
rium as the compressibility at fixed Tkin and Σ/p,

χT =
1

φ

∂φ

∂p

∣∣∣∣
Tkin,

Σ
p

, (3)

which we calculate by composing partial derivatives and
taking finite differences. For a two-component fluid like

ours the structure factor S(~k) in Eq. 2 is the combination
of partial structure factors [29]

S(~k) =
S11(~k)S22(~k)− (S12(~k))2

x1S22(~k) + x2S11(~k)− 2
√
x1x2S12(~k)

, (4)

where xα = 1/2 is the fraction of spheres of component
α. We take the limit in Eq. 2 by calculating S(kẑ) for
2πkL = 1, 2, ..., where ẑ is the direction perpendicular
to shearing and L is the periodic box length, and fitting
the lowest-order expansion S̃(kẑ) = S̃(0) + ck2 over the
domain k < 0.3/σ.

The second fluctuation-dissipation relation is the
Einstein-Helfand relation [30–32] relating the shear vis-
cosity η ≡ Σ/γ̇ to the amplitude of shear stress fluctua-
tions,

η =
1

T
lim
t→∞

dH(t)

dt
, (5)

where

H(t) =
1

2V

〈
|Gη(t)−Gη(0)− ΣV t|2

〉
, (6)

and Gη =
∑
imẋiyi The Einstein-Helfand relation is the

analog of the Green-Kubo relation

η =
V

T

∫ ∞
0

dt〈δΣ(t)δΣ(0)〉 (7)

for systems with discontinuous potentials. We calculate
the limit in Eq. 5 by fitting the slope of H(t) vs t over the
range 2τ < t < 20τ , where τ is the relaxation time, so
that we sample low-frequency fluctuations. We find that
we must average over very long simulations to converge
to the equilibrium expression, Eq. 5, for simulations with
purely elastic collisions and no shearing. Using this con-
vergence as a guide, we only compute the right side of
Eq. 5 for simulations of duration at least 500τ . Alter-
natively, we could average over initial conditions, but we
choose instead to run a single long simulation at each
state point in order to sample many state points while
minimizing the time spent reaching steady state.
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FIG. 1: (Color online) (a) Measured compressibility TkinχT
vs shear stress Σ/p. (b) Compressibility expected from apply-
ing the compressibility equation (Eq. 2), S(0)/ρ, vs Σ/p. (c)
Ratio of compressibility effective temperature to kinetic tem-
perature, Tχ/Tkin, vs Σ/p, where Tχ is defined via Eq. 8 as
the ratio of the compressibilities in panels (b) and (a). Data
are presented for a selection of four packing fractions. Red,
open symbols are for thermostatted simulations, while black,
filled symbols are for inelastic simulations.

III. SHEARED HARD SPHERES POSSESS AN
EFFECTIVE TEMPERATURE

Before analyzing the relationship between τ and Teff ,
we first show that the effective temperature is a valid
concept for sheared hard spheres by demonstrating that
the two independent fluctuation-dissipation relations are
satisfied by a single value of Teff to a reasonable level of

approximation.
We first consider the compressibility equation, Eq. 2,

relating the isothermal compressibility to the amplitude
of density fluctuations, quantified by the long-wavelength
limit of the structure factor. In Fig. 1 (a) and (b) we plot
the left and right sides of Eq. 2 for both types of energy
dissipation and five selected packing fractions as a func-
tion of Σ/p. In plotting the left side of Eq. 2 in Fig. 1
(a), we replace T by the kinetic temperature Tkin. Two
important features are apparent in Fig. 1 (a) and (b).
First, except at very high Σ/p, the data for the inelas-
tic and thermostatted simulations collapse. With one
exception that we will discuss, we find such a collapse
for all observable quantities that we measure, indicating
that the behavior of the model is insensitive to the way
that energy is dissipated. The breakdown of this col-
lapse at very high Σ/p is due to an unphysical layering
transition that occurs for sheared spheres coupled to a
profile-biased thermostat [19, 33, 34]. At these values
of Σ/p, the data for the inelastic simulations should be
considered the physically realistic branch.

The second important feature of Fig. 1 (a) and (b) is
that the data in panel (a) and (b) are not identical, in-
dicating that the compressibility equation does not hold
under strong shear. In particular, while the measured
compressibility at fixed φ decreases with increasing Σ/p,
the compressibility expected from applying the compress-
ibility equation to the measured density fluctuations in-
creases with increasing Σ/p. Nevertheless, following the
procedure practiced in previous studies of effective tem-
perature [3–15, 17], we can define a temperature-like pa-
rameter Tχ as the quantity that replaces T to satisfy
Eq. 2:

Tχ ≡
S(0)

ρχT
. (8)

Fig. 1 (c) shows the ratio of this compressibility tem-
perature to the kinetic temperature for the five pack-
ing fractions as a function of Σ/p. For packing fractions
φ = 0.55 and 0.58 below the colloidal glass transition [35],
we can easily conduct simulations in the near-equilibrium
regime, where Σ/p is small and Tχ ' Tkin. As Σ/p in-
creases, Tχ becomes larger than Tkin, indicating that the
degrees of freedom associated with compression are no
longer in equilibrium with the degrees of freedom asso-
ciated with velocity fluctuations. For packing fractions
φ = 0.6, 0.62, and 0.63 above the colloidal glass transi-
tion, all of our simulations are strongly nonequilibrium,
with Tχ � Tkin. For each packing fraction, the left edge

of the data represents the lowest strain rate γ̇σ
√
m/Tkin

(or highest coefficient of restitution C) that we can ac-
cess on the time scale of our simulations. Obtaining data
for lower strain rates or higher restitutions of coefficient
would require an intractably large separation between the
time scales for collisions and shearing.

In order for Tχ to be an effective temperature, it
should satisfy more than one independent fluctuation-
dissipation relation. The second fluctuation-dissipation
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FIG. 2: (Color online) (a) Measured shear viscosity η
√
σ/pm

vs shear stress Σ/p. (b) Einstein-Helfand shear viscosity

ηEH

√
σ/pm vs Σ/p. (c) Ratio of viscosity effective temper-

ature to kinetic temperature, Tη/Tkin, vs Σ/p, where Tη is
defined by the ratio of the viscosities in panels (a) and (b).
Data are presented for a selection of four packing fractions.
Red, open symbols are for thermostatted simulations, while
black, filled symbols are for inelastic simulations.

relation that we consider is the Einstein-Helfand expres-
sion, Eq. 5, relating the shear viscosity and the ampli-
tude of shear stress fluctuations. We define the Einstein-
Helfand viscosity as the right side of Eq. 5, replacing T
with Tkin:

ηEH ≡
1

Tkin
lim
t→∞

dH(t)

dt
. (9)

In Fig. 2 (a) and (b) we plot η and ηEH, respectively, as
functions of Σ/p, again for both types of energy dissipa-
tion and five selected packing fractions. We nondimen-
sionalize the viscosities in Fig. 2 (a) and (b) by dividing

them by a characteristic viscosity that is a product of
the energy density p and the time scale

√
m/pσ; choos-

ing such a characteristic energy density and time scale
constructed from the pressure allows direct comparisons
with systems with soft repulsions [18–20], but our evalu-
ation of the effective temperature is independent of this
choice. Note that more state points are represented in
Fig. 2 (a) than in Fig. 2 (b) because we only calculate
ηEH for the subset of simulations of duration at least
500τ .

Fig. 2 (a) shows a characteristic feature of the colloidal
glass transition: for φ = 0.55 and 0.58 below the colloidal
glass transition, the viscosity is nearly uniform within a
Newtonian regime at low Σ/p, while for φ ≥ 0.6 above
the colloidal glass transition, the viscosity increases with
decreasing Σ/p until it becomes too large to measure in
our simulations. Outside of the Newtonian regime, the
system exhibits shear thinning, with η

√
σ/pm decreasing

with increasing Σ/p. The apparent shear thickening for
the thermostatted simulations at very large Σ/p is an
artifact of the nonphysical layering transition.

Even restricting the calculations to the state points
for which we conducted simulations longer than 500τ ,
the data for ηEH are much less precise. However, two
observations are clear. First, the value of ηEH at given
values of φ and Σ/p is in most cases somewhat smaller
for the thermostatted simulations than for the inelastic
simulations. This is the only quantity that we measure
that is sensitive to the energy dissipation mechanism at
low or moderate Σ/p. We find that the discrepancy is ac-
counted for by a somewhat faster relaxation of the shear
stress correlation function in the thermostatted simula-
tions compared to the inelastic simulations, though the
time scales for the correlation function remain on the
order of τ for both inelastic and thermostatted simula-
tions. Apparently, the profile-biased thermostat damps
out some of the shear stress correlations that persist
longer in the inelastic simulations. Second, analogous
to our result for the compressibility, the behavior of ηEH

is markedly different than the behavior of η at large Σ/p.

While η
√
σ/pm uniformly decreases with increasing Σ/p,

ηEH

√
σ/pm is non-monotonic for large φ, first decreasing

and then increasing with increasing Σ/p, and is roughly
uniform for smaller φ.

We define the shear viscosity temperature Tη as the
parameter that replaces T to satisfy the Einstein-Helfand
expression:

Tη ≡
1

η
lim
t→∞

dH(t)

dt
=
ηTkin

ηEH
. (10)

Fig. 2 (c) shows that Tη behaves qualitatively similarly
to Tχ: for φ = 0.55 and 0.58, Tη ' Tkin at small Σ/p
and increases at large Σ/p, while for φ ≥ 0.6, Tη is sig-
nificantly larger than Tkin for all accessible values of Σ/p
and increases uniformly with Σ/p.

In Fig. 3, we show that Tχ and Tη represent a consis-
tent value of the effective temperature. We plot Tη/Tkin
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FIG. 3: (Color online) Viscosity effective temperature vs com-
pressibility effective temperature for all simulations that were
run long enough to measure both quantities. Black, filled
symbols are for inelastic simulations, while red, open symbols
are for thermostatted simulations. The solid lines represent-
ing Tη = 3Tχ and Tη = Tχ are visual guides.

vs Tχ/Tkin for a broad range of inelastic and thermostat-
ted simulations within the range 0.2 < φ < 0.636 and
2 × 10−4 < Σ/p < 0.5. The points near Tχ/Tkin =
Tη/Tkin = 1 represent near-equilibrium conditions, where
the system is characterized by a single temperature,
Tχ = Tη = Tkin = T . For the thermostatted simu-
lations, the viscosity and compressibility temperatures
away from equilibrium are strongly correlated, clustered
around the line Tη = Tχ representing a single effective
temperature. We are unable to test this relationship
for thermostatted simulations beyond Tχ/Tkin = 30, due
to the layering transition at very large Σ/p. However,
for the inelastic simulations, we are able to explore the
range 1 < Tχ/Tkin < 300 without encountering artifacts.
Throughout this range, we find a strong correlation be-
tween Tη and Tχ. However, the data clusters around a
line representing Tη = 3Tχ, not Tη = Tχ. While we have
already credited the discrepancy between thermostatted
and inelastic simulations to the faster decay of shear
stress correlations in the thermostatted simulations, we
cannot explain the factor of 3 difference between Tη and
Tχ. However, given that the range (300) is much larger
than the discrepancy (3), we find that Tη and Tχ repre-
sent a consistent value of the effective temperature to a
reasonable level of approximation.

We note that the agreement between Tχ and Tη for
the thermostatted simulations is consistent with previ-
ous studies of soft spheres with profile-biased dissipation,
while the factor of 3 difference for the inelastic simula-
tions warrants further investigation of effective tempera-

ture under purely boundary-driven flow. Most studies of
effective temperature for sheared soft spheres have em-
ployed one of two profile-biased, mean-field methods to
dissipate energy: either a profile-biased thermostat like
ours or a profile-biased viscous drag force that enforces
overdamped motion relative to an assumed linear shear
gradient. For a variety of soft sphere systems with profile-
biased dissipation, seven different relations involving the
temperature have been demonstrated to yield values of
the effective temperature consistent to within about 10%:
the relation between static pressure, shear stress, and
energy fluctuations and their associated response func-
tions [3, 5]; the relation between long-wavelength, time-
dependent density fluctuations and the associated re-
sponse functions at long times [5, 7–10]; the Einstein rela-
tion between diffusion and drag [3, 4, 8–10]; the derivative
of entropy with respect to energy [3, 4]; and the barrier
crossing rate of a two-state probe [6]. As far as we know,
only two of these definitions, those derived from static
pressure fluctuations and from long-wavelength, time-
dependent density fluctuations, have been shown to be
consistent for soft spheres under purely boundary-driven
flow [5]; the others have not yet been tested. Our work
suggests that under purely boundary-driven flow the tem-
perature defined from static shear stress fluctuations can
be up to 3 times larger than the temperature defined by
density fluctuations. Since density and pressure are con-
jugate variables, we expect that for soft spheres under
purely boundary-driven flow a similar discrepancy would
exist between temperatures defined by shear stress and
pressure fluctuations. It would be interesting to analyze
the remaining four temperatures under purely boundary-
driven flow to test whether they can be added to the set
of two definitions that yield consistent values under both
methods of energy dissipation, or whether they also show
significant discrepancies under purely boundary-driven
flow.

IV. EFFECTIVE TEMPERATURE CONTROLS
MOBILITY

We now turn to establishing the role of Teff in con-
trolling the mobility, which we characterize by the relax-
ation time τ . Recall that we define τ by ∆rz(τ) = σ/

√
3,

where ∆rz(t) ≡
√
〈(rz(t)− rz(0))2〉 is the root-mean-

square displacement in the direction perpendicular to the
shear plane.

While we have established that Tχ and Tη describe a
consistent value of effective temperature up to an accu-
racy of a factor of 3 over a range of 300 in Tχ/Tkin, in this
section we focus on Tχ for two reasons established in the
previous section. First, Tχ yields a consistent value for
both inelastic and thermostatted simulations. Second,
for sheared soft spheres, a similar compressibility tem-
perature has been established to coincide within about
10% with at least six other definitions of effective tem-
perature under mean-field dissipation and at least one
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FIG. 4: (Color online) (a) Yield strain τ γ̇ vs pσ3/Tχ.
The lines are visual guides satisfying the equations τ γ̇ =
10 exp(−0.22pσ3/Tχ) and τ γ̇ = 1.8 exp(−0.11pσ3/Tχ). (b)

Relaxation time nondimensionalized by the pressure τ
√
pσ/m

vs pσ3/Tχ. The solid curve is unsheared, equilibrium data for
which Tχ = T . In each panel, data are presented for a se-
lection of four packing fractions. Red, open symbols are for
thermostatted simulations, while black, filled symbols are for
inelastic simulations.

other definition under local dissipation.

Fig. 4 shows two different representations of the re-
lationship between τ and Tχ for the same five packing
fractions and range of shear stresses examined in Figs. 1
and 2. In order to show the relationship in a way that is
independent of any arbitrary choice of units, we present
the relationship in dimensionless form. Because there
are no internal energy scales in the hard-sphere interac-
tion, the effective temperature can only be compared to
external energy scales like Tkin and pσ3. Since we are
interested both in cases where Tχ ' Tkin and where Tkin

is negligible, we compare Tχ to pσ3 rather than Tkin. In
Fig. 4 (a) and (b), we represent τ using two different
dimensionless groups. In Fig. 4 (a), we plot the the av-
erage yield strain τ γ̇, the average amount of strain built
up locally between relaxations. In Fig. 4 (b), we plot

τ
√
pσ/m, the relaxation time nondimensionalized by the

pressure. The time scale
√
m/pσ is the pressure-driven

rearrangement time that sets the time scale for a loose
configuration to be compressed into a close-packed con-

figuration due to the pressure. Scaling both τ and Teff

by the pressure in Fig. 4 (b) serves to capture not only
the behavior of the hard-sphere system, but also the be-
havior of the related soft sphere system to leading order
in pσ3/ε, where ε is the energy scale of the soft repul-
sion [18–20].

In Fig. 4 (a) we examine the relationship between the
effective temperature and the mechanical state of the sys-
tem by plotting the average yield strain vs pσ3/Tχ for our
selection of five packing fractions. We find a crossover
between two regimes. In what we call the solid response
regime, at low pσ3/Tχ and high τ γ̇, the data at each
packing fraction follows the relationship

τ γ̇ ' c0 exp(−c1pσ3/Tχ), (11)

which appears as a linear relationship on the log-linear
scale of Fig. 4 (a). As illustrated by the visual guides in
Fig. 4 (a), the coefficient c0 ranges from 1.8 for φ = 0.63
to 10 for φ = 0.55, and c1 ranges from 0.11 for φ = 0.63
to 0.22 for φ = 0.55. The appreciable average yield strain
and its dependence on Tχ expressed by Eq. 11 indicates
that within the solid-response regime, the system behaves
like a continuously deformed solid with a mechanical re-
sponse controlled by the internal state parameter Tχ/pσ

3.
At high pσ3/Tχ and low τ γ̇, the data for each packing
fraction peel off of the linear relationship described by
Eq. 11. We will show shortly that these data correspond
to a fluid response. The vertical parts of the data for
φ = 0.55 and 0.58 indicate that for φ below the col-
loidal glass transition, the system approaches the equi-
librium limit of γ̇ → 0 and pσ3/Tχ → pσ3/T . We note
that the plot of Σ/p vs pσ3/Tχ is qualitatively similar
to Fig. 4 (b), due to the fact that the shear modulus in
a Maxwell-fluid model for hard spheres is roughly pro-
portional to the pressure [19]. This is consistent with
our result in Ref. [17] that Σ ∝ exp(−∆E/Teff) for soft,
repulsive disks above random close packing; the energy
scale ∆E is controlled by the pressure.

The form of Eq. 11 is consistent with the shear trans-
formation zone theory that describes plasticity of amor-
phous solids [16]. In the theory, the effective tempera-
ture describes the slow, configurational degrees of free-
dom associated with rearrangements of neighboring par-
ticles, and plastic rearrangements occur in zones whose
internal configurational degrees of freedom are mod-
eled as a system with two orientational states. The
steady-state solution to the theory at low temperature
is γ̇ = (1/2)ε0NZρZR(Σ, T ), where ε0 is the strain
per transformation, of order 1, NZ is the number of
particles in a zone, ρZ = exp(−EZ/Teff) is the den-
sity of zones, EZ is the energy to create a zone, and
R(Σ, T ) is the rate of transformations in a zone [16].
Without making any assumption about the form of
R(Σ, T ), we assume that it is proportional to the dif-
fusion coefficient; that is, we assume that the frequency
of plastic rearrangements is linked to the frequency at
which spheres make large displacements. This leads to
γ̇τ = (1/2)R̃ε0NZ exp(−EZ/Teff), where R̃ is the aver-
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FIG. 5: (Color online) Relaxation time τ
√
pσ/m vs (a) inverse compressibility temperature pσ3/Tχ, (b) inverse kinetic tem-

perature pσ3/Tkin, and (c) shear stress Σ/p. Data are presented for a selection of four packing fractions. Red, open symbols are
for thermostatted simulations, while black, filled symbols are for inelastic simulations. The solid curve that appears in panels
(a) and (b) is unsheared, equilibrium data for which Tχ = T . In each panel, data are presented for a selection of four packing
fractions.

age number of times a zone rearranges per relaxation
time τ . Comparing to Eq. 11 yields values of R̃ε0NZ be-
tween 3.6 and 20 and values of EZ between 0.11pσ3 and
0.21pσ3; that is, the free volume associated with creating
a shear transformation zone is approximately 0.11σ3 to
0.22σ3. Our measured excitation energies EZ are simi-
lar to the characteristic energy scales extracted from the
dependence of τ

√
pσ/m on T/pσ3 for equilibrium hard

spheres, for which fits of the Vogel-Fulcher and Elmatad-
Chandler-Garrahan [36, 37] forms yield energy scales of
0.18pσ3 and 0.25pσ3, respectively [18].

In Fig. 4 (b) we demonstrate that for parameters out-
side of the solid response regime, the relaxation time is
controlled by the effective temperature in a characteristi-
cally fluid way. In Fig. 4 (b) we plot τ vs Tχ, where each
quantity is nondimensionalized by the pressure, for the
same set of data as in Fig. 4 (a). Fig. 4 (b) is a standard
Arrhenius plot adapted to the effective temperature, a
log-linear plot of τ

√
pσ/m versus the ratio of pressure

to effective temperature, pσ3/Tχ. For each packing frac-
tion, the shear stress decreases to the right and upward;
relaxation time increases and effective temperature de-
creases as the shearing decreases. For comparison, the
solid curve represents equilibrium simulations under no
shear, which possess a single temperature Tχ = Tkin = T .
In equilibrium, the relaxation time depends on the tem-
perature according to the dimensionless function repre-
sented by the solid curve,

τ
√
pσ/m = f(T/pσ3). (12)

The packing fraction φ increases as this equilibrium curve
proceeds to the right and upward; the relaxation time in-
creases as φ approaches the colloidal glass transition and
pσ3/T increases according to the equation of state. We
find that outside of the solid response regime–wherever
the data in Fig. 4 (a) does not follow Eq. 11–the data
clusters around the equilibrium curve. Within this fluid

response regime, the dependence of relaxation time on
the two parameters φ and Σ/p is captured by the equi-
librium expression, Eq. 12, with T replaced by Tχ. This
suggests that within the fluid response regime, the same
mechanism that controls the relaxation of unsheared
hard spheres also controls the relaxation of sheared hard
spheres: spheres only flow if low-frequency fluctuations
and large enough compared to the pressure to open up
a sufficient amount of free volume [18]. However, for the
sheared hard spheres, the low-frequency fluctuations are
characterized by the effective temperature rather than
the kinetic temperature.

In order to more clearly establish that the effective
temperature, not the kinetic temperature, controls the
mobility in the fluid response regime, we compare the
dependence of τ

√
pσ/m on pσ3/Tχ with its dependence

on pσ3/Tkin in Fig. 5 (a) and (b), respectively. To aid the
comparison, we plot pσ3/Tχ and pσ3/Tkin on the same
logarithmic scale. Note that Fig. 5 (a) is a log-log version
of the log-linear Fig. 4 (b). The equilibrium curves that
appear in Fig. 5 (a) and (b) are identical, due to the
fact that Tχ = Tkin in equilibrium. While much of the
data–including large portions of the φ = 0.55, 0.58, and
0.6 data and some of the φ = 0.62 data–cluster near
the equilibrium curve in Fig. 5 (a), the sheared data in
Fig. 5 (b) only approach the equilibrium curve in the
limit Σ/p → 0 for φ = 0.55 and 0.58. For the packing
fractions above the colloidal glass transition, where the
near-equilibrium condition Σ/p << 1 is never met (see
Fig. 5 (c)), the sheared data remain distinct from the
equilibrium curve.

For reference, Fig. 5 (c) shows the same data plotted
vs Σ/p. Notice that the form of Fig. 5 (c) is very similar
to the form of Fig. 2 (a). As discussed in Ref. [19], this
is due to the fact that η/τp depends only weakly on φ
and Σ/p, indicating that sheared hard spheres can be
approximated as a Maxwell fluid with a modulus η/τ
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FIG. 6: (Color online) (a) Schematic of the jamming phase

diagram. (b-d) Color plots of (b) τ
√
pσ/m, (c) Tχ/Tτ , and

(d) Tχ/Tkin as functions of kinetic temperature Tkin/pσ
3 and

shear stress Σ/p. See text for details.

that is proportional to the pressure.

V. EFFECTIVE TEMPERATURE AND THE
JAMMING PHASE DIAGRAM

We have shown that the ratio of effective tempera-
ture to pressure, Tχ/pσ

3, controls the mobility of sheared
hard spheres according to two different mechanisms in
two different regimes. In the solid response regime, the
effective temperature controls the mechanical state of

the system, as evidenced by the dependence of the av-
erage yield strain. In the fluid response regime, the ef-
fective temperature facilitates relaxation by doing work
against the pressure, analogous to how the temperature
facilitates relaxation in the unsheared system. It is in-
structive to organize these regimes within the jamming
phase diagram [19, 38] that describes the relaxation of
repulsive spheres as a function of temperature, packing
fraction, and applied stress. Ref. [19] recast the jam-
ming phase diagram in dimensionless form in terms of
the parameters Tkin/pσ

3, Σ/p, and pσ3/ε, where ε is
the energy scale characterizing the repulsive interaction.
We sketch a schematic of the dimensionless jamming
phase diagram in Fig. 6 (a). For hard spheres, ε = ∞
and the jamming phase diagram reduces to the hard-
sphere limit, pσ3/ε → 0. In this limit the relaxation
depends on two parameters, an equilibrium parameter
Tkin/pσ

3 characterizing the strength of thermal fluctua-
tions and a nonequilibrium parameter Σ/p characterizing
the strength of shearing.

Fig. 6 (b-d) locates the solid response, fluid response,
near equilibrium, and jammed regimes in the dimension-
less jamming phase diagram. The three panels in Fig. 6
represent the same sets of simulations, a large collection
of all inelastic and thermostatted simulations for which
Σ/p < 0.4 and Tkin/pσ

3 < 0.1. Each panel presents a
color map of a different quantity. Fig. 6 (b) is a color

map of the dimensionless relaxation time τ
√
pσ/m. The

region where data appears is the unjammed region of the
phase diagram, where the equilibration and relaxation
times are short enough that we can run simulations to
calculate τ . The red region at small Σ/p and Tkin/pσ

3

and indicates very large relaxation times that are near the
limits of our simulations. The dynamic jamming transi-
tion, defined as the locus of points for which τ

√
pσ/m

equals some large but arbitrary number (like 104), sepa-
rates the jammed region at small Σ/p and Tkin/pσ

3 from
the unjammed region at large Σ/p and/or large Tkin/pσ

3.

Fig. 6 (c) shows that the unjammed region includes
both the fluid response and the solid response regimes.
Fig. 6 (c) is a color plot of the ratio of the effec-
tive temperature Tχ to the the temperature Tτ ≡
pσ3f−1(τ

√
pσ/m) defined by inverting the equilibrium

(zero shear) relationship, Eq. 12, between relaxation time
and temperature. A value of Tχ/Tτ = 1 indicates that
the relaxation time is predicted by Eq. 12 with T re-
placed by Tχ, corresponding to a collapse onto the equi-
librium curve in Fig. 4 (b) and Fig. 5 (a). Notice that
a large portion of the jamming phase diagram–including
both large and moderate Tkin/pσ

3–is blue, demarcating
the fluid response regime where Tχ/Tτ is equal to or not
much larger than 1 and the relaxation time is reasonably
well predicted by Eq. 12 with T replaced by Tχ. In par-
ticular, much of the dynamic jamming transition occurs
within the fluid response regime.

A comparison with Fig. 6 (d) emphasizes that fluid
response does not imply near-equilibrium conditions.
Fig. 6 is a color plot of the ratio of the effective tem-
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perature to the kinetic temperature. Values near 1, rep-
resented by blue, indicate that the system is near equilib-
rium, with fast and slow degrees of freedom characterized
by a single temperature. Values much greater than 1 in-
dicate that the system is strongly out of equilibrium, with
an effective temperature much greater than the tempera-
ture of the high frequency velocity fluctuations. While a
large portion of the unjammed region is within the near-
equilibrium regime at large Tkin/pσ

3 and small Σ/p, this
regime is distinctly smaller than the fluid response regime
of Fig. 6 (c).

Taken together, the three panels of Fig. 6 (b-d) show
that while the dynamic jamming transition at nonzero
shear stress is largely controlled by a competition be-
tween low-frequency fluctuations and pressure in the
same way as at zero shear stress, these low-frequency
fluctuations are characterized by an effective tempera-
ture that may be much larger than kinetic temperature.

The jamming phase diagram provides a framework for
applying our hard-sphere results to systems with soft in-
teractions. Moving away from the hard-sphere limit, the
relaxation of soft, repulsive spheres varies continuously
with the parameter pσ3/ε that characterizes the softness
of the potential [18, 19]. Even far from the hard-sphere
limit, where the relaxation time is not adequately ap-
proximated by its form at pσ3/ε = 0, the dependence

of τ
√
pσ/m on T/pσ3 (with no shear) can be mapped

onto the hard-sphere behavior by computing an effec-
tive hard-sphere diameter from the structure of the soft-
sphere system [20]. This suggests that while the numeric
form of the relaxation changes far away from pσ3/ε = 0,
the mechanisms remain the same. We therefore expect
that for pσ3/ε > 0 the effective temperature continues
to facilitate relaxation via the same two mechanisms as
in the hard-sphere limit. While the boundaries between
the two mechanisms may shift at elevated pσ3/ε, we ex-
pect that the solid response will continue to dominate at
low Tkin/pσ

3 and high Σ/p while the fluid response dom-
inates elsewhere. Analysis of our earlier simulations [17]
of sheared two-dimensional soft disks in terms of dimen-
sionless quantities is consistent with this picture.

VI. CONCLUSIONS

We have shown that the ratio of effective temperature
to pressure, Teff/pσ

3, controls the mobility of sheared
hard spheres throughout the unjammed region of the

jamming phase diagram spanned by packing fraction and
applied shear stress. The effective temperature charac-
terizes both the amplitude of static density fluctuations
relative to the compressibility and the amplitude of low-
frequency shear stress fluctuations relative to the shear
viscosity. At high shear stress and low kinetic tempera-
ture (relative to the pressure), the effective temperature
departs significantly from the kinetic temperature that
characterizes high-frequency fluctuations. In this far-
from-equilibrium regime, the effective temperature, not
the kinetic temperature, controls the diffusive motion of
the spheres.

We find that the mechanism by which Teff/pσ
3 controls

the mobility depends on where the system lies in the jam-
ming phase diagram, crossing over between two regimes.
For very low values of the kinetic temperature relative
to the pressure, the sheared hard spheres respond like a
solid. They maintain an average local yield strain that
depends on the value of Teff/pσ

3. The functional form
of this dependence is consistent with the effective tem-
perature’s thermodynamic role in the solid-based shear
transformation zone theory, in which the effective tem-
perature controls the density of localized zones suscep-
tible to plastic deformation. In contrast, for moderate
or large values of the kinetic temperature, the sheared
hard spheres respond like a fluid. The relaxation time
depends on temperature in the same way as does the
unsheared, equilibrium system, except that the relevant
temperature is the effective temperature, not the kinetic
temperature. This suggests that, just as the temperature
facilitates flow in the unsheared system by doing work
against the pressure, the effective temperature mobilizes
the sheared spheres by working against the pressure to
open up free volume.

By expressing our results in relation to the dimension-
less version of the jamming phase diagram, we have il-
lustrated how these mechanisms likely apply for systems
with soft repulsive potentials. It remains to be seen to
what extent these mechanisms hold for systems with at-
tractions.
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